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Autonomous Vehicle Path Planning Applications
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Mine Countermeasures

“Mine Countermeasures”, General Dynamics, n.p.n.d., May 16, 2011 US Coast Guard Office of Search and Rescue (CG-SAR)

Search & Rescue

Oil & Gas Industry

“Saab Sabertooth AUV/ROV for Oil & Gas Inspection”, Saab, Jan 26,2018

Wildlife Habitat Monitoring

Deep-sea coral specimen collection. Plymouth University et al. 2018



Introduction
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Objective: Develop a computationally efficient time-risk optimal motion planner for variable-speed autonomous vehicles 
in obstacle-rich environments.

Existing Approaches
Sample-based Methods for Rapid Motion Planning
❑ RRT* and PRM* [2] quickly generate asymptotically-optimal 

shortest paths as number of samples increase
❑ Limitation: Restricted to single-speed vehicles & no risk considered

𝐓⋆ for Time-Risk Optimal Motion Planning
❑ The 𝐓⋆ algorithm [1] is the only motion planner that considers 

multi-speed vehicles and jointly optimizes time and risk.
❑ Limitation: Grid-based approach is computationally expensive

Kinodynamic Motion Models
❑ Dubins [3] provides shortest paths for single velocity vehicles

❑ Limitation: Does not consider multi-speed vehicles
❑ Wolek [4] provides time-optimal paths for multi-speed vehicles

❑ Limitation: Requires nonlinear solvers
❑ The recently developed Generalized Multi-speed Dubins 

Motion Model (GMDM) [5] overcomes the above limitations:
❑ Better maneuvering by controlling the turning radius
❑ Speed selected based on obstacle distance to mitigate risk
❑ Allows for real-time computation

Features and Contributions of 𝐓⋆-Lite

❑ Enables fast time-risk optimal motion planning for variable-speed 
vehicles by:
❑ Porting the novel time-risk cost function from T⋆ into a fast 

and asymptotically-optimal sample-based motion planner
❑ Generating samples from a four-dimensional configuration 

space considering position, heading, and speed.
❑ Utilizing the GMDM to produce the optimal time-risk 

trajectories connecting sampled states
❑ Algorithm is computationally efficient while providing reasonable 

solution quality



𝐓⋆-Lite Overview
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(a) Overview of the computation of the time and 
risk costs in the joint optimization problem.

(b) Example of the high-dimensional sampled vehicle states 
and the time-risk optimal trajectory produced by the 
Generalized Multi-speed Dubins Motion Model.



Problem Formulation
Autonomous Vehicle Description & Search Area
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Autonomous Vehicle Description

❑ 𝑥, 𝑦, 𝜃 ∈ 𝑆𝐸(2) is the vehicle and position heading

❑ Taking speed 𝑣(𝑡) and turning rate 𝑢(𝑡) be the inputs, 
the equations of motion are:

൞

ሶ𝑥 𝑡 = 𝑣 𝑡 ⋅ cos𝜃 𝑡
ሶ𝑦 𝑡 = 𝑣 𝑡 ⋅ sin𝜃 𝑡

ሶ𝜃(𝑡) = 𝑢 𝑡

Bounded Turning Rate 
𝑢 𝑡 ∈ [−𝑢max, 𝑢𝑚𝑎𝑥] rad/s, 𝑢max ∈ ℝ+ is the max 
turning rate, and “-/+” indicates a right/left turn

Variable Speed
𝑣 𝑡 ∈ [𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥] m/s

Curvature

𝜅 𝑡 =
𝑢 𝑡

𝑣 𝑡
, 0 ≤ 𝜅 𝑡 ≤

𝑢𝑚𝑎𝑥

𝑣𝑚𝑖𝑛

Note: curvature is the inverse of turning radius: 𝑟(𝑡) =
1

𝜅 𝑡

Obstacle 
Space 𝑨𝒐𝒃𝒔

Free Space 𝑨𝒇𝒓𝒆𝒆

Search Area: 𝐴 ∈ ℝ2

Define vehicle state as 𝐩 = (𝑥, 𝑦, 𝜃, 𝑣)

❑ 𝑣 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]❑ 𝜃 ∈ [0,2𝜋)❑ 𝑥, 𝑦 ∈ 𝐴𝑓𝑟𝑒𝑒



Problem Formulation
Time-Risk Cost Function
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Admissible Control: Let Γ denote the set of collision-free paths between the start state 𝐩𝑠𝑡𝑎𝑟𝑡 and goal state
𝐩𝑔𝑜𝑎𝑙. For each path 𝛾 ∈ Γ, the control𝒄 𝑠 = (𝜿, 𝑣) at any point 𝑠 on path 𝛾, belongs to:

Ω = 𝜅,𝑣 :𝑣min ≤ 𝑣 ≤ 𝑣𝑚𝑎𝑥, 𝜅 ≤
𝑢max

𝑣

Cost of a Path: Let𝑅(𝑠) denote the risk cost at point 𝑠 on path 𝛾. Then the total cost is written as:

𝐽 𝛾 = න
𝛾

𝑅 𝑠 ⋅
1

𝑣(𝑠)
𝑑𝑠

Objective: Find the optimal control 𝑐⋆ ∈ Ω, which generates the collision-free path 𝛾⋆, such that: 𝐽 𝛾⋆ ≤
𝐽 𝛾 ,∀𝛾 ∈ Γ in a computationally efficient manner

risk cost time cost



𝐓⋆-Lite Algorithm
Approximate Time-Risk Cost Function
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Sample states ෝ𝒑ℓ along collision-free path 𝛾𝑖,𝑖+1 and 
corresponding collision distances 𝑑ℓ

An example of the interpolated state sequence 𝑃𝑚

composed of states 𝒑𝑖
𝑚 = (𝑥𝑖 ,𝑦𝑖 , 𝜃𝑖 , 𝑣𝑖)

Low Speed State High Speed State

𝒑𝒈𝒐𝒂𝒍𝒑𝒔𝒕𝒂𝒓𝒕
𝛾𝑖 ,𝑖+1

Obstacle

Obstacle𝒑𝑖
𝑚

𝒑𝑖+1
𝑚

Approximate Piecewise Path Cost Function: Assume a constant risk 
along path 𝛾𝑖,𝑖+1. Thus:

𝐽 𝛾𝑖,𝑖+1 = 𝑅 𝛾𝑖,𝑖+1 ⋅ න
𝛾𝑖,𝑖+1

1

𝑣(𝑠)
𝑑𝑠

Risk Cost 𝑹 𝜸𝒊,𝒊+𝟏 : For each evenly interpolated state Ƹ𝑝ℓ along 𝛾𝑖,𝑖+1:

1. Compute collision time 𝑡ℓ =
𝑑𝑙

𝑣ℓ

2. Given safety threshold 𝑡⋆, compute sample risk:

𝑟𝑖𝑠𝑘 Ƹ𝑝ℓ = ൞
1 + log

𝑡⋆

𝑡ℓ
if 𝑡ℓ < 𝑡⋆

1 𝑖𝑓 𝑡ℓ ≥ 𝑡⋆

Finally, the piecewise risk is computed as:

𝑅 𝛾𝑖,𝑖+1 = max
ℓ∈ 1,…,𝑀

𝑟𝑖𝑠𝑘( Ƹ𝑝ℓ)
𝑘

❑ 𝑘 > 0 is the user-defined risk weight

risk cost time cost



𝐓⋆-Lite Algorithm
Kinodynamic Motion Model

8/31/2020 T*-Lite for Fast Time-Risk Optimal Motion Planning 8

Visualization of the Generalized Multi-speed Dubins Motion model for each of the six path types.

The Generalized Multi-speed Dubins Motion Model (GMDM) is a fundamental improvement of the Dubins model that enables 
the selection of any speed for any of the three segments of a Dubins path (𝐿 ≡ left turn, 𝑆 ≡ straight, or 𝑅 ≡ right turn).
❑ Used to generate a set of candidate trajectories that connect any two states 𝐩𝑖 to 𝐩𝑖+1

Main Features:
❑Provides path planners the 

flexibility to select the 
appropriate speed dynamically 
based on the perceived risk

❑Selection of both turning rate 
and speed enables selection of 
appropriate turning radius to 
smoothly maneuver around 
obstacles based on their 
shapes and sizes

❑Synthesis is similar to Dubins, 
thus providing simple closed-
form solutions for real-time 
computation.



❑ Sampling
❑ Distance
❑ Local steering

𝐓⋆-Lite Algorithm
RRT* Motion Planner
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T⋆-Lite utilizes the asymptotically-optimal sample-based RRT* framework, which has six core functions: 

❑ Nearest neighbor
❑ Near-by vertices
❑ Collision check

updated in 𝐓⋆-Lite no changes from RRT*

Summary of RRT*
❑ Sampled states are randomly generated in 

the obstacle-free space
❑ A search tree of minimum-cost collision-

free paths that connect states to the start 
node is created

❑ As new states are added, connections 
between existing states are updated if 
connections to the new states are faster.

Figure: Illustration of RRT* and the iterative search-tree update for a point vehicle. 
Note: connections between nodes in T⋆-Lite are subject to curvature constraints.

Neighbor with 
the least cost to 
the start node



❑ Sampling
❑ Distance
❑ Local steering

𝐓⋆-Lite Algorithm
Core Functions
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T⋆-Lite is based on the asymptotically-optimal sample-based RRT* framework, which has six core functions: 

❑ Nearest neighbor
❑ Near-by vertices
❑ Collision check

updated in 𝐓⋆-Lite no changes from RRT*

Sampling Function: generates randomly sampled collision-free states states 𝐩 = 𝑥, 𝑦, 𝜃, 𝑣 ∈ 𝐏 in the obstacle-free 
space 𝐴𝑓𝑟𝑒𝑒. 

Distance Function: Let 𝑑𝑖𝑠𝑡:𝐏 × 𝐏 → ℝ2 be a function that returns the cost of the time-risk optimal trajectory 𝛾𝑖,𝑖+1
∗

between two states 𝐩𝑖 , 𝐩𝑖+1 ∈ 𝐏 such that 𝑑𝑖𝑠𝑡 𝐩𝑖,𝐩𝑖+1 = 𝐽 𝛾𝑖,𝑖+1
∗ .

Local Steering Function: Given two states 𝐩𝑖 ,𝐩𝑖+1 ∈ 𝐏, the steer function produces the optimal collision-free trajectory 

𝛾𝑖,𝑖+1
∗ connecting 𝐩𝑖 to 𝐩𝑖+1 such that 𝐽 𝑠𝑡eer 𝐩𝑖,𝐩𝑖+1 = 𝑑𝑖𝑠𝑡 𝐩𝑖,𝐩𝑖+1 . Producing the optimal trajectory requires:

❑ The approximate optimization function from 𝐓⋆ to evaluate the time-risk costs of the created candidate trajectories 
❑ A kinodynamic motion model to create a sufficient set of candidate trajectories connecting two states



Simulation Setup
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Autonomous Vehicle and 𝐓⋆-Lite Parameters:

❑ (𝑣min,𝑣max) = (0.5,1.0) 𝑚/𝑠

❑ 𝑢max = 0.5 𝑟𝑎𝑑/𝑠

❑ Safety threshold 𝑡⋆ = 6 𝑠

❑ Risk weight 𝑘 = 2

❑ Num. of interpolated states 𝑀 = 4

❑ Search tree max size: 3000 sampled states

❑ Num. of nearest neighbors: 100

❑ Max. connection distance: 3𝑚

❑ Scenario Size: 30𝑚× 30𝑚

Motion models used in 𝐓⋆-Lite:

❑ Max-speed Dubins motion model

❑ Generalized Multi-speed Dubins Motion model
Figure: Scenario used in simulation

Start

Goal



Travel Time: 44.56 s  Max Risk: 2.13
Time-Risk Total:  60.47 CPU Time: 1.34 s

Dubins

Travel Time: 39.23 s Max Risk: 1.69
Time-Risk Total: 45.78 CPU Time:8.65 s

GMDM

Results
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Variable speeds enhance 
maneuverability and 
reduce risk to provide 
quicker and safer paths

Single speed reduces CPU 
requirements but produces 
longer and riskier paths  

Velocity 
States

1.0 m/s

0.5 m/s

Risk 
Values

Max 2.5

Min 1.0



Conclusions & Future Work

Conclusions
❑ Developed T⋆-Lite for rapid time-risk optimal motion planning for variable-speed autonomous vehicles. 

Achieved by:
❑ Porting the novel time-risk cost function from T⋆ into the RRT* framework
❑ Generating high-dimensional samples that considers vehicle position, heading, and speed.
❑ Utilizing the Generalized Multi-speed Dubins Motion model to provide near-optimal trajectories in a 

computationally efficient manner
❑ Provides fast, safe, and flexible maneuvers in obstacle-rich environments
❑ Suitable for on-demand real-time motion planning

Future Work
❑ In-depth analysis of the T⋆-Lite framework in other asymptotically optimal sample-based frameworks.
❑ Direct comparisons against the grid-based T⋆ in terms of both solution quality and CPU time.
❑ Develop smart high-dimensional sampling methods for multi-speed vehicles to further enhance solution 

quality and reduce computation time.
❑ Extend to multi-agent resilient systems.
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Thank You!


