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Mine Countermeasures

“Mine Countermeasures”, General Dynamics, n.p.n.d., May 16, 2011

Search & Rescue

US Coast Guard Office of Search and Rescue (CG-SAR)

Oil & Gas Industry

“Saab Sabertooth AUV/ROV for Oil & Gas Inspection”, Saab, Jan 26,2018

Wildlife Habitat Monitoring

Deep-sea coral specimen collection. Plymouth University etal. 2018
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Objective: Develop a computationally efficient time-risk optimal motion planner for variable-speed autonomous vehicles
in obstacle-rich environments.

Existing Approaches
T* for Time-Risk Optimal Motion Planning Sample-based Methods for Rapid Motion Planning
O The T™ algorithm [1] is the only motion plannerthat considers O RRT* and PRM* [2] quickly generate asymptotically-optimal
multi-speed vehicles and jointly optimizes time and risk. shortest paths as number of samplesincrease
O Limitation: Grid-based approach is computationally expensive O Limitation: Restricted to single-speed vehicles & no risk considered
Kinodynamic Motion Models Features and Contributions of T*-Lite
O Dubins [3] provides shortest paths for single velocity vehicles O Enables fast time-risk optimal motion planning for variable-speed
L Limitation: Does not consider multi-speed vehicles vehicles by:
O Wolek [4] provides time-optimal paths for multi-speed vehicles Q Portingthe novel time-risk cost function from T* into a fast
O Limitation: Requires nonlinear solvers ‘ and asymptotically-optimal sample-based motion planner
O The recently developed Generalized Multi-speed Dubins O Generatingsamples from a four-dimensional configuration
Motion Model (GMDM) [5] overcomes the above limitations: space considering position, heading, and speed.
O Better maneuvering by controllingthe turningradius Q Utilizingthe GMDM to produce the optimal time-risk
L Speed selected based on obstacle distance to mitigate risk trajectories connecting sampled states
O Allows for real-time computation O Algorithmis computationally efficient while providing reasonable

solution quality
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(a) Overview of the computation of the time and (b) Example of the high-dimensional sampled vehicle states
risk costs in the joint optimization problem. and the time-risk optimal trajectory produced by the

Generalized Multi-speed Dubins Motion Model.
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Autonomous Vehicle Description SearchArea: A € R?
a (x,y,0) € SE(2) is the vehicle and position heading
 Taking speed v(t) and turning rateu(t) be the inputs,
the equations of motion are:
x(t) = v(t) - cos8(t)
y(t) = v(t) - sin6(t)

B(t) = u(t)
Obstacle
Space A,ps
Bounded Turning Rate
u(t) € [—Umax> Umax] rad/s, Upax € R isthe max
turningrate, and “-/+” indicates a right/left turn Free Space Afree

Variable Speed Curvatur(e)
v(t) € [Vimin, Vmax] M/s k(t) = AL < |k(®)| < M

v(©)’ Vmin Define vehicle stateasp = (x,y,0,v)
Q(x,y)eA Q06 €(0,2n) Qv eE [v,,V
Note: curvatureis the inverse of turning radius: 7(t) = % Y free [0,2m) [Vmin: Vmax]
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Admissible Control: Let I' denote the set of collision-free paths between the start state pg;,,+ and goal state
Pgoar- Foreach pathy €T, the control c(s) = (k,v) atany point s on path y, belongs to:

umax}

= {(K’ U):Umin S v S vmax; |K| S

Cost of a Path: Let R(s) denote the risk cost at point s on path y. Then the total costis written as:

- [ n 1),

risk cost t|me cost

Objective: Find the optimal control ¢* € Q, which generates the collision-free path y*, such that: J(y*) <
J(y),Vy € I'in a computationally efficient manner
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Approximate Piecewise Path Cost Function: Assume a constant risk %
along pathy; ;,4. Thus: Pstart '\y. » Pgoal
) l,l
1 A Low Speed State % HighSpeed State
J(Vii+1) = R(Vi,i+1)l'Uy' () dSJ An example of the interpolated state sequence P™
/! At composed of states p™* = (x;,v;,6;, ;)
risk cost time cost
. ° . N . d :l:
Risk Cost R(yi,i“). For each evenly interpolated state p, along y; ;41: 1 d, e
1. Compute collision timet, = % ’
£ T
1 ," d ”
2. Givensafetythreshold t*, compute sample risk: ro 3 ,L,if"
t* ! JJ" ’ 7 J dS
A 1+1log|—| ift,<t* 4 S S
risk(p,) = g(t{)) ¢ 17 %t

1 if tp= t* ﬁ ,%’m -Ps------1

. . . . . ’ﬁl ,‘;ﬁ Pi+1
Finally, the piecewise risk is computed as: 2
R(y;ir1) = max (risk(D,))k
(Vl,l+1) {’E{l,...,M}( (p{’))
O k > 0isthe user-defined risk weight

T Min-speed State | Max-speed State

Sample states P, along collision-free pathy; ;1 and
corresponding collisiondistances d,
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The Generalized Multi-speed Dubins Motion Model (GMDM) is a fundamental improvement of the Dubins model that enables
the selection of any speed for any of the three segments of a Dubins path (L = left turn, S = straight, or R = right turn).
[ Used to generate a set of candidate trajectories that connect any two statesp; top;+1

Main Features:

[ Provides path planners the
flexibility to select the
appropriate speed dynamically
based on the perceived risk

L Selection of both turning rate
and speed enables selection of
appropriateturning radius to
smoothly maneuver around
obstacles based on their
shapes and sizes

[ Synthesisis similar to Dubins,
thus providing simple closed-
form solutions for real-time
computation.
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Visualization of the Generalized Multi-speed Dubins Motion model for each of the six path types.
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T*-Lite utilizes the asymptotically-optimal sample-based RRT* framework, which has six core functions:

[ As new states are added, connections
between existing states are updated if
connectionsto the new states are faster.

O Nearest neighbor O Sampling
O Near-byvertices  no changesfrom RRT* O Distance — updated in T*-Lite
Q Collision check O Localsteering
_________ ~ neighborhood
Neighborwith .~ .
Summary of RRT* 7 e nearest the least cost to " nearest
1 Sampled states are randomly generatedin [ . the start node 7 @~
the obstacle-free space ? L. samp'e - \., o |
O Asearch tree of minimum-cost collision- Y \ Samp ©J
free paths that connect statestothe start o — Ny ,,,f. "
node is created ® el
o

obstacle

Figure: lllustration of RRT* and the iterative search-tree update for a point vehicle.
Note: connections between nodesin T*-Lite are subject to curvature constraints.
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T*-Lite is based on the asymptotically-optimal sample-based RRT* framework, which has six core functions:

O Nearest neighbor
U Near-byvertices  no changesfrom RRT*
Q Collision check

—_

O Sampling
O Distance

— updated in T*-Lite

O Localsteering

Sampling Function: generates randomly sampled collision-free statesstatesp = (x, y,8,v) € P in the obstacle-free

space Agpee.

Distance Function: Let dist: P X P — R? be a function that returns the cost of the time-risk optimal trajectoryy;’; ;4
between two states p;, p;+1 € P such that dist(p;, p;+1) = ](y{fiﬂ).

Local Steering Function: Given two states p;,p;+1 € P, the steerfunction produces the optimal collision-free trajectory
¥ 141 cOnnecting p; to p;;1 such that /(steer(p;, pi4+1)) = dist(p;,pi41). Producing the optimal trajectory requires:
O The approximate optimization function from T” to evaluate the time-risk costs of the created candidate trajectories
O A kinodynamic motion model to create a sufficient set of candidate trajectories connecting two states
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Autonomous Vehicle and T *-Lite Parameters:

U (Ymin Vmax) = (0.5,1.0) m/s 25
U uy.=0.57rad/s

O Safetythresholdt* =6 20
O Risk weight k = 2 )
O Num. of interpolated states M = 4 ‘é 15
d Searchtree maxsize: 3000 sampled states >
O Num. of nearest neighbors: 100 10
O Max. connection distance: 3m

 ScenarioSize: 30m X 30m 5
Motion modelsused in T *-Lite: 0
L Max-speed Dubins motion model 0 > 10 X [mfters] 20 25 %0

U Generalized Multi-speed Dubins Motion model . _ : L :
Figure: Scenario used in simulation

8/31/2020 T*-Lite for Fast Time-Risk Optimal Motion Planning



and Knowledge-Perception Systems

@ Results (QL'NKS

v
fa Velocity
g States
8 1.0 m/s
'g Single speed reduces CPU
e requirements but produces
"'; longer and riskier paths
hd
‘O
° 0.5 m/s
)
>
17,) Risk
f, . Values
Iy Variable speeds enhance Max 2.5
o) maneuverability and
% reduce risk to provide
§ quicker and safer paths
Ll
fu_‘, Min 1.0
o
6 12 18 24 30 6 12 18 24 30
Travel Time: 44.56 s Max Risk: 2.13 Travel Time: 39.23 s Max Risk: 1.69
Time-Risk Total: 60.47 CPU Time:1.34s Time-Risk Total: 45.78 CPU Time:8.65 s
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Conclusions
1 Developed T*-Lite for rapid time-risk optimal motion planning for variable-speed autonomous vehicles.
Achieved by:

L Porting the novel time-risk cost function from T into the RRT* framework
L Generating high-dimensional samples that considers vehicle position, heading, and speed.

O Utilizing the Generalized Multi-speed Dubins Motion model to provide near-optimal trajectoriesin a
computationally efficient manner

O Provides fast, safe, and flexible maneuvers in obstacle-rich environments
1 Suitable for on-demand real-time motion planning

Future Work
In-depth analysis of the T*-Lite framework in other asymptotically optimal sample-based frameworks.
Direct comparisons against the grid-based T™ in terms of both solution quality and CPU time.

Develop smart high-dimensional sampling methods for multi-speed vehicles to further enhance solution
quality and reduce computation time.

Extend to multi-agent resilient systems.

U 000
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