

POSE, POSE.3C and POSE.R Algorithms:

Prediction-based Opportunistic Sensing for Energy-Efficiency and Resilience in Distributed Sensor Networks

Applications to Target Tracking Sensor Networks

Presented by: James Zachary Hare **Major Advisor:** Prof. Shalabh Gupta

Publications below contain detailed updated material.

- 1) J. Z. Hare, J. Song, S. Gupta and T. A. Wettergren, "POSE.R: Prediction-based Opportunistic Sensing for Resilient and Efficient Sensor Networks", ACM Transactions on Sensor Networks, accepted 2020, arXiv:1910.10795
- 2) J. Z. Hare, S. Gupta and T. A. Wettergren, "POSE.3C: Prediction-based Opportunistic Sensing using Distributed Classification, Clustering and Control in Heterogeneous Sensor Networks", *IEEE Transactions on Control of Network Systems*, Vol. 6, No. 4, pp. 1438-1450, December 2019.
- 3) J. Z. Hare, S. Gupta and T. A. Wettergren, "POSE: Prediction-based Opportunistic Sensing for Energy Efficiency in Sensor Networks using Distributed Supervisors", *IEEE Transactions on Cybernetics*, Vol. 48, No. 7, pp. 2114-2127, July, 2018.

Intelligent Sensor Networks Applications

Intelligence, Surveillance, and Reconnaissance

Example Applications:

- Border Security
- Battlefield Surveillance
- Anti-submarine Warfare

Environmental Monitoring

Example Applications:

- Habitat Monitoring
- Disaster Monitoring

"Border Security Strategy Lacks Coherent Operating Concept | Market Info Group LLC - Premium Market & Technology Forecasts." *Market Info Group*. N.p., 03 Nov. 2009. Web. 07 Oct. 2015.

Smart Cities and Homes

"Top 10 Smart Cities In The World." Stephanie Beaumont, https://www.linkedin.com/pulse/top-10-smartcities-world-stephanie-Beaumont,

Example Applications:

- Traffic Light/Traffic Control
- Intelligent Parking Systems
- Activity Monitoring

Wireless Body Sensor Networks

http://automatica.dei.unipd.it/people/schenato/research.html

Example Applications:

- Monitoring Personal Well being
- Activity Monitoring

Yang Zhou, Zhengguo Sheng, Chinmaya Mahapatra, Victor C.M. Leung, Peyman Servati, "Topology design and cross-layer optimization for wireless body sensor networks," *Ad Hoc Networks*, Volume 59, 2017, Pages 48-62,

Intelligent Sensor Networks

Challenges and Current Approaches

Problem Formulation Problem Statement

Objective: Develop a network autonomy approach that utilizes distributed supervisors (Probabilistic Finite State Automaton) to probabilistically control multi-modal sensor nodes that meets the following requirements:

- 1. Extended network lifetime Resilient target coverage High tracking accuracy 3. **Target Coverage** Low missed detection rates 4 **Energy Efficiency** Resilience POSE.R considers both energy-efficiency and resilience **Theme 2: POSE using Distributed** Theme 3: POSE for Resilience **Theme 1: Prediction-based Classification**, **Clustering and** (POSE.R) **Opportunistic Sensing (POSE) Control (POSE.3C)** \succ Classification feedback Resilient Target Coverage Sensor selection
- Distributed Supervisors for probabilistic control of Multi-modal sensor nodes
- Prediction-based Opportunistic Sensing for energy-efficient control

Novel Contributions

- Distributed Classification for opportunistic sensing of Targets Of Interest
- Distributed Clustering via efficient sensors selection
- Distributed Control

- Prediction-based Opportunistic Coverage
- Resilient target coverage via distributed learning and sensor range adjustment
- □ Enhanced distributed clustering

Problem Formulation

Multi-modal Sensor Node Description

Each Multi-modal Sensor Node, s_i , is equipped with:

- 1. Data Processing Unit (DPU)
 - Performs necessary calculations
 - Facilitates decision-making to enable or disable each device at time k
- 2. Transmitter (TX) / Receiver (RX)
 - Allows for data transmission between sensor nodes
- 3. Low Power Sensing (LPS) Device
 - Passive binary detectors that consume little energy , e.g. Passive Infrared (PIR) sensor
 - Allows for low power target detection, up to a distance $R_{s,LPS}$

4. High Power Sensing (HPS) Device

- Allows for accurate measurement of the target up to a distance $R_{s,HPS}$
- This could be a Camera, Laser, Radar, Sonar, or other sensing devices

Figure: Multi-modal Sensor Node Example

Energy Model

Individual Sensor node energy consumption [1]:

$$E^{s_i}(k) = \sum_k \sum_j e_j^{s_i} \cdot \chi_j^{s_i}(k) \Delta T$$

- $e_j^{S_i}$: The rate of energy consumption per unit time of device $j \in \{DPU, LPS, HPS, TX, RX, Clock\}$
- $\chi_i^{s_i}(k) \in \{0,1\}$: Indicates whether the device is On or Off at time k
- ΔT : The sampling interval

Network energy consumption:

$$E_{net}(k) = \sum_{i=1}^{n} E^{s_i}(k)$$

• *n*: Number of sensor nodes deployed

[1] J. Chen, K. Cao, K. Li, and Y. Sun, "Distributed sensor activation algorithm for target tracking with binary sensor networks," Cluster Computing, vol. 14, no. 1, pp. 55–64, 2011

Problem Formulation

Target Description

Target Dynamics

Target Motion Model: Discrete White Noise Acceleration Model [1]

$\boldsymbol{x}^{\boldsymbol{\tau}}(k+1) = \boldsymbol{f}(\boldsymbol{x}^{\boldsymbol{\tau}}(k), k) + \boldsymbol{v}(k)$

- $x^{\tau}(k) = [x, \dot{x}, y, \dot{y}, \phi]'$: Target, τ , state at time k
- $f(\cdot, k)$: State transition matrix, and
- $\boldsymbol{v}(k)$: White noise acceleration sequence with $E[\boldsymbol{v}(k)] = 0$ and $E[\boldsymbol{v}(k)\boldsymbol{v}(k)'] = \boldsymbol{Q}$.

Measurement Models

HPS Device Measurement Model:

$$\mathbf{z}(k) = (\mathbf{z}_1(k), \dots, \mathbf{z}_m(k))$$
$$\mathbf{z}_j(k) = \mathbf{h}(\mathbf{x}^{\tau}(k), k) + \mathbf{\omega}(k)$$

- **z**(k): Set of measurements received
- $\mathbf{z}_{\mathbf{j}}(k)$: Range and azimuth measurement of target or clutter
- *m*: Number of measurements received
- $h(\cdot, k)$: Measurement model, and
- $\boldsymbol{\omega}(k)$: Measurement noise w/ $E[\boldsymbol{\omega}(k)] = 0$ and $E[\boldsymbol{\omega}(k)\boldsymbol{\omega}(k)'] = \mathbf{R}$.

LPS Device Measurement Model:

 $\mathbf{z}(k) \in \{0,1\}$

LPS Device Detection Model [2]:

$$P_{D,LPS}^{s_i}(k) = \begin{cases} \alpha & || \boldsymbol{u}^{s_i} - \boldsymbol{u}^{\tau}(k) || \le R_r \\ e^{-\beta (|| \boldsymbol{u}^{s_i} - \boldsymbol{u}^{\tau}(k) || - R_r)} & R_r < || \boldsymbol{u}^{s_i} - \boldsymbol{u}^{\tau}(k) || \le R_{s,LPS} \\ 0 & || \boldsymbol{u}^{s_i} - \boldsymbol{u}^{\tau}(k) || > R_{s,LPS} \end{cases}$$

- α and β : Model Design Parameters
- R_r: LPS device reliable sensing range

[1] Bar-Shalom, Yaakov, Peter K. Willett, and Xin Tian. "Tracking and data fusion." A Handbook of Algorithms. Yaakov Bar-Shalom (2011). [2] Y. Zou and K. Chakrabarty, "Sensor deployment and target localization in distributed sensor networks," ACM Transactions on Embedded Computing Systems, vol. 3, no. 1, pp. 61–91, 2004.

Problem Formulation Problem Statement

Objective: Develop a network autonomy approach that utilizes distributed supervisors (Probabilistic Finite State Automaton) to probabilistically control multi-modal sensor nodes that meets the following requirements:

- Extended network lifetime 1. Resilient target coverage High tracking accuracy 3. **Target Coverage** Low missed detection rates 4 **Energy Efficiency** Resilience **Theme 2: POSE using Distributed Theme 3: POSE for Resilience Theme 1: Prediction-based Classification**, **Clustering and** (POSE.R) **Opportunistic Sensing (POSE) Control (POSE.3C) Classification** feedback Resilient Target Coverage Sensor selection
- Distributed Supervisors for probabilistic control of Multi-modal sensor nodes
- Prediction-based Opportunistic Sensing for energy-efficient control

Novel Contributions

- Distributed Classification for opportunistic sensing of Targets Of Interest
- Distributed Clustering via efficient sensors selection
- Distributed Control

- Prediction-based Opportunistic Coverage
- Resilient target coverage via distributed learning and sensor range adjustment
- □ Enhanced distributed clustering

POSE

Opportunistically turn-on high power sensing around target's predicted position in a distributed manner.

<u>Legend</u>

- *R*_{*s*,*LPS*}: LPS Sensing Range
- *R*_{*s*,*HPS*}: HPS Sensing Range

O Sleep State ▲ Low Power Sensing (LPS) State ♦ High Power Sensing (HPS) State

Distributed Supervisor: Probabilistic Finite State Automaton (PFSA)

POSE

Multi-Modal Sensor Node Control Diagram

POSE Sleep State Algorithm

Objective

Minimize energy consumption by disabling all devices

Description

- Designed to minimize energy consumption when a target is away from the sensor node
- All devices except a clock are disabled

State Transition Probabilities			
Sleep	LPS	HPS	
$p_{11}^{s_i} = p_{sleep}$	$p_{12}^{s_i} = 1 - p_{sleep}$	$p_{13}^{s_i} = 0$	

Where $p_{sleep} \in [0,1]$ is a design parameter

state x to state y

Low Power Sensing (LPS) State Algorithm

POSE

11

POSE

Objective

Utilize HPS devices to estimate the target's state and alert neighbors of target's location

Description

- HPS devices, DPU, transmitter, and receiver are enabled
- Designed to only be enabled when a target is predicted to travel in the sensor nodes coverage area
- Provides a range and angle measurement of the target
- Performs state estimation
- Broadcasts target state estimates to neighbors

POSE

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{S_i}(k)$: Probability that the target is

located in HPS coverage area

 $p_{xy}^{s_i}(k)$: State transition probability

from state *x* to state *y*

POSE

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{S_i}(k)$: Probability that the target is

located in HPS coverage area

 $p_{xy}^{s_i}(k)$: State transition probability

from state *x* to state *y*

Joint Probabilistic Data Association (JPDA) Filter [1]

Advantages:

- Updates multiple state estimates at once
- Associates measurements to a previous track
- State may not be corrupted by clutter measurements

[1] Y. Bar-Shalom, F. Daum, and J. Huang, "The probabilistic data association filter," IEEE Control Systems, vol. 29, no. 6, pp. 82–100, 2009.

POSE

- located in HPS coverage area
- $p_{xy}^{s_i}(k)$: State transition probability

from state x to state y

Legend:

s_i: Sensor node i

[1] S. Coraluppi and C. Carthel, "Distributed tracking in multistatic sonar," IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 3, pp. 1138–1147, 2005. 16

False Alarms and Clutter

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{s_i}(k)$: Probability that the target is

located in HPS coverage area

 $p_{xy}^{s_i}(k)$: State transition probability

from state *x* to state *y*

Form the Trustworthy Information Ensemble, $\hat{I}_{T}^{s_{i}}(k)$

Advantages:

- Elimination of faulty/poor state estimates
- Minimize false tracks transmitted by neighbors
- Enhanced state estimation and fusion
- Reduced computational complexity

1. The set of trustworthy neighbors $\mathcal{N}_T^{s_i} \subseteq \mathcal{N}_{HPS}^{s_i}$ is obtained as follows:

Please see the published paper for detailed descriptions of the material.

Received information ensemble: $\hat{I}^{s_i}(k) = \{ (\hat{x}^{s_j}, \hat{\Sigma}^{s_j}, \hat{W}^{s_j}), \forall s_j \in \mathcal{N}_{HPS}^{s_i} \}$

2.

 $\hat{I}_{T}^{s_{i}}(k)$ is computed as follows:

Form the set as follows:

Trustworthy Set Formation

 $\mathcal{N}_{T}^{S_{i}} = \left\{ s_{i} \in \mathcal{N}_{HPS}^{S_{i}} : Trace(H\widehat{\Sigma}^{S_{j}}H') \leq \xi \right\}$

 $\widehat{\boldsymbol{I}}_{T}^{s_{i}}(k) = \{ (\widehat{\boldsymbol{x}}^{s_{j}}, \widehat{\boldsymbol{\Sigma}}^{s_{j}}, \widehat{\boldsymbol{W}}^{s_{j}}), \forall s_{i} \in \mathcal{N}_{T}^{s_{i}} \}$

Trustworthy information ensemble: $\hat{I}_{T}^{s_{i}}(k) = \{ (\hat{x}^{s_{j}}, \hat{\Sigma}^{s_{j}}, \widehat{W}^{s_{j}}), \forall s_{j} \in \mathcal{N}_{T}^{s_{i}} \}$

 $\mathcal{N}_{HPS}^{S_i}$: Set of neighbors who transmitted target state information

Legend:

s_i: *s_i*'s *j*th neighbor

 ξ : Trustworthy threshold

 $\widehat{x}^{s_j}(k|k)$: Target state estimate

$$\widehat{\Sigma}^{s_j}(k|k)$$
: Target covariance estimate

 $\widehat{W}^{s_j}(k|k)$: Filter gain matrix

H: Jacobian of measurement matrix

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{s_i}(k)$: Probability that the target is

located in HPS coverage area

 $p_{xy}^{s_i}(k)$: State transition probability

from state *x* to state *y*

Associate and Fuse Trustworthy Information Ensembles using Track-to-track Association and Fusion [1]

[1] Bar-Shalom, Yaakov, Peter K. Willett, and Xin Tian. "Tracking and data fusion." A Handbook of Algorithms. Yaakov Bar-Shalom (2011).

POSE

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{S_i}(k)$: Probability that the target is

located in HPS coverage area

 $p_{xy}^{s_i}(k)$: State transition probability

from state *x* to state *y*

High Power Sensing (HPS) State Algorithm

One-step Prediction and Computation of $P_{HPS}^{s_i}(k)$

POSE

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{S_i}(k)$: Probability that the target is

located in HPS coverage area

 $p_{xy}^{s_i}(k)$: State transition probability

from state *x* to state *y*

POSE p₁₁ Sleep θ₁ p₁₂ p₂₁ p₃₁ p₂₃ HPS p₃₃ p₃₂ θ₃ p₃₃

LPS-HPS Scheme Distributed detection-based

Random Scheduling Scheme

Distributed probabilistic sensor activation.

POSE State Estimation Error Results

26

O Sleep State \triangle Low Power Sensing (LPS) State \diamondsuit High Power Sensing (HPS) State

The POSE algorithm allows for

- Multi-modal sensor node control,
- Prediction-based Opportunistic Sensing,
- Low missed detection rates,
- Large energy savings, and
- Improved state estimation

POSE Algorithm Limitations

- Redundant sensor nodes tracking
- Target may not be of interest

Theme 2: Prediction-based Opportunistic Sensing using Distributed Classification, Clustering and Control (POSE.3C)

- R_{s,LPS}: LPS Sensing Range
- R_{s,HPS}: HPS Sensing Range

Legend

POSE.3C

Main Idea

0

Distributed Classification Induced Sensor Selection to avoid tracking TNOI

Motivation

Types of Targets

- c_1 : Target Of Interest (TOI)
- c₂: Target Not Of Interest (TNOI)

Example Applications

Humans and Vehicles (TOI) vs. Animals (TNOI) in boarder surveillance

Algorithm Improvements: 3C Network Autonomy

- Distributed Classification for opportunistic sensing of TOI
- Distributed Clustering to reduce energy ٠ wastage
- **Distributed Control** .

0 Trajectory Distributed $R_{s,HPS}$ 0 Classification Induced Sensor Selection to enhance tracking TOI റ Opportunistically turn-on high power sensing on 3 Target's Current 0 selected sensors Location around the target of Ο linterest and on 1 sensor around the

Target

0

Legend

• R_{SHPS} : HPS Sensing Range

POSE.3C Sleep State Algorithm

Objective

Minimize energy consumption by disabling all devices

Description

- Designed to minimize energy consumption when a target is away from the sensor node
- All devices except a clock are disabled
- Once deployed, all sensor nodes start in this state

State Transition Probabilities		
Sleep	LPS	HPS
$p_{11}^{s_i} = p_{sleep}$	$p_{12}^{s_i} = 1 - p_{sleep}$	$p_{13}^{s_i} = 0$

Where $p_{sleep} \in [0,1]$ is a design parameter

POSE.3C Low Power Sensing (LPS) State Algorithm

state x to state y

30

Legend:

- *s*_{*i*}: Sensor node *i*
- $\widehat{W}^{s_i}(k|k)$: Filter gain matrix
- $P_{HPS}^{s_i}(k)$: Probability that the target is
- located in HPS coverage area
- S*: Set of selected sensors
- $P_{D,LPS}^{s_i}$: LPS Probability of detection
- $p_{xy}^{s_i}(k)$: State transition probability from state x to state y

New Features

- Target classification
- Target class decision fusion
- Classification induced sensor selection

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{Si}(k)$: Probability that the target is

located in HPS coverage area

S*: Set of selected sensors

 $P_{D,LPS}^{s_i}$: LPS Probability of detection

 $p_{xy}^{s_i}(k)$: State transition probability from

state x to state y

Classify the type of target being tracked

-POSE.3C

Classifier performance is modeled by a Confusion Matrix

Distributed Sensor Collaboration Algorithm

- Forms a single class decision for each target
- Reduces energy wastage via Opportunistic Sensing of Targets Of Interest

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{Si}(k)$: Probability that the target

is located in HPS coverage area

S_{det}: Set of sensors that can detect the target

 S_E : Set of sensors with the highest energy remaining

S*: Set of selected sensors

$$\widehat{D}^{s_{i},c}(k) = \begin{cases} 1 & if \ \frac{1}{\left|\widehat{I}_{T}^{s_{i},c}(k)\right|} \sum_{\substack{s_{j} \in \mathcal{N}_{T}^{s_{i},c} \\ 0}} \widehat{D}^{s_{j}}(k) \ge 0.5 \\ 0 & else \end{cases}$$

Where $\hat{I}_T^{s_i,c}(k) = \{(\hat{x}^{s_j}, \hat{\Sigma}^{s_j}, \hat{W}^{s_j}, \hat{D}^{s_j}(k)), \forall s_j \in \mathcal{N}_T^{s_i,c}\} \subseteq \hat{I}_T^{s_i}(k) \text{ is the set of associated trustworthy information}$

Distributed Sensor Collaboration Algorithm

Legend:

- s_i: Sensor node i
- $P_{HPS}^{S_i}(k)$: Probability that the target
- is located in HPS coverage area
- S_{det} : Set of sensors that can detect the target
- \boldsymbol{S}_E : Set of sensors with the highest

energy remaining

S^{*}: Set of selected sensors

Key Features:

- Allows for uniform energy depletion
- Geometric Diversity among HPS nodes
- Classification Driven Clustering

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{S_i}(k)$: Probability that the target is

located in HPS coverage area

S*: Set of selected sensors

 $P_{D,LPS}^{s_i}$: LPS Probability of detection

 $p_{xy}^{s_i}(k)$: State transition probability from

state *x* to state *y*

Multi-Modal Sensor Node Control Diagram

Expected Energy Consumption Characteristics

○ Sleep State ▲ Low Power Sensing (LPS) State
♦ High Power Sensing (HPS) State
Figure: POSE.3C Network

POSE.3C

Network Lifetime Definition

Consider:

- Multiple targets travel through the network along similar paths
- A path Ω_{γ} contains the highest frequency of target's traveling through it
- The number of targets located in Ω_{γ} during each time step is λ

Figure: Visual Representation of Ω_{γ} with $\lambda = 2$ targets

Network Lifetime Definition: The expected network lifetime, \overline{T}_{Life} , is the time when the energy of sensor nodes within Ω_{γ} reduces to $\eta \in [0,1)$, s.t.

$$\frac{\sum_{s_j \in S_{\gamma}} \left(E_0^{s_j} - E_c^{s_j}(\overline{T}_{Life}) \right)}{\sum_{s_j \in S_{\gamma}} E_0^{s_j}} = \eta$$

Legend:

L: Length of the tube Ω_{γ} R_c : Communication Radius $R_{s,HPS}$: HPS Sensing Range S_j : Set of sensor nodes in Ω_{γ}

 $E_0^{s_j}$: Initial energy of node s_j $E_c^{s_j}$: Energy consumed by node s_j $\Omega_{1\gamma}$: Region within $R_{s,HPS}$ of targets $\Omega_{2\gamma}$: Region within R_c and outside $R_{s,HPS}$ of targets $\Omega_{3\gamma}$: Region outside R_c of targets

Network Lifetime Characteristics

POSE.3C

$$\bar{T}_{Life}(\lambda) = \frac{2\rho R_{s,HPS} L E_0 \Delta T (1-\eta)}{\bar{E}_{\Delta T}(\lambda)}$$

 ρ : Network Density

 $R_{s,HPS}$: HPS device sensing radius

L: Length of the target track

 E_0 : Initial sensor energy

 η : Minimum percent of energy tolerated before Ω_{γ} is considered dead

L: Length of the target track

 λ : Expected number of TOI in Ω_{γ}

 Ω_{γ} : A Tube in the deployment region that contains the highest frequency of targets $\overline{E}_{\Delta T}(\lambda)$: Expected energy consumption of the POSE.3C network during a ΔT time interval

Missed Detection Characteristics

Target Birth: The time instance when a target appears in the deployment region **Mature Target:** A target that has travelled inside the region for sufficient time such that sensor collaboration has occurred

Theorem 3: The missed detection probability characteristics of a POSE.3C network are given as follows: a) For a target birth:

$$P_{m,bir} \ge \exp\left(-\left(\frac{\pi R_r^2 \alpha \chi \rho (1-p_{sleep})}{2-p_{sleep}-2p_{fa}}\right)\right)$$

b) For a mature target:

$$P_{m,mat} \ge \exp\left(-\frac{\left(\pi R_r^2 \alpha \chi \rho \left[\left(1 - p_{sleep}\right) + \frac{N_{sel}}{\rho \pi R_{s,HPS}^2}(1 - \alpha)\right]\right)}{2 - p_{sleep} - \alpha}\right)$$

where
$$\chi = 1 + \frac{2(1+\beta R_r)}{\beta^2 R_{s,HPS}^2} \left(1 - \frac{(1+\beta R_{s,HPS}) \exp(-\beta R_{s,HPS})}{(1+\beta R_r) \exp(-\beta R_r)} \right)$$

Missed Detection Theorem Validation

 $p_{11}($

 p_{12}

LPS

 p_{22}

 p_{32}

Network Lifetime Comparison

LPS-HPS Scheme Distributed detectionbased sensor activation

Random Scheduling Scheme

Distributed Probabilistic sensor activation.

Network Lifetime Normalized by the Lifetime of the POSE.3C Network with $\lambda=0$

Conclusions and Limitations

The POSE.3C algorithm:

- Distributed classification for opportunistic sensing of TOI
- Distributed clustering for minimizing energy wastage
- Distributed control
- Theoretical properties of energy consumption, network lifetime, missed detections
- Extended the network lifetime
- Accurate state estimation

POSE.3C Algorithm Limitations:

- Does not address multiple co-located node failures
- Network density around target is not used for control

Theme 3: Prediction-based Opportunistic Sensing for Resilience (POSE.R)

Main Idea

Target Coverage

Resilience

- Nodes Fail
 - Component degradation, Hardware failures, Malicious attacks, Battery Depletion, etc.
- Non-uniform Deployment
- Multiple collocated node failures result in a coverage gap

Proposed Solution

Opportunistically Adjust Sensing Range to fill

coverage gaps

Current Adjustable Range Selection Methods

- Optimize probability of detection while minimizing the number of sensors active
- Jointly optimize detection and connectivity
- Optimize network lifetime while ensuring coverage

Research Gaps

- ✓ Resilient target coverage does not exist
- ✓ Only consider stationary targets
- ✓ Do not consider sensor node failures

- $\chi_i^{s_i}(k) \in \{0,1\}$: Indicates whether the device is On or Off at time k
- ΔT : The sampling interval

[1] J. Chen, K. Cao, K. Li, and Y. Sun, "Distributed sensor activation algorithm for target tracking with binary sensor networks," *Cluster Computing*, vol. 14, no. 1, pp. 55–64, 2011
[2] Jia, Jie, et al. "Multi-objective optimization for coverage control in wireless sensor network with adjustable sensing radius." Computers & Mathematics with Applications 57.11 (2009): 1767-1775.

Opportunistically turn-on high power sensing on 3 selected sensors around the predicted position of the target and also adjust their sensing ranges to accommodate for low sensing densities and coverage gaps.

Algorithm Improvements:

- Distributed density identification
- Distributed Clustering to ensure N_{sel} -coverage degree
- Resilient to sensor failures or sparse deployment

Target Coverage Degree

• Number of nodes covering the target with the HPS devices

O Sleep State ▲ Low Power Sensing (LPS) State ♦ High Power Sensing (HPS) State

POSE.R Sleep State Algorithm

Objective

Minimize energy consumption by disabling all devices

Description

- Designed to minimize energy consumption when a target is away from the sensor node
- All devices except a clock are disabled
- Once deployed, all sensor nodes start in this state

State Transition Probabilities		
Sleep	LPS	HPS
$p_{11}^{s_i} = p_{sleep}$	$p_{12}^{s_i} = 1 - p_{sleep}$	$p_{13}^{s_i} = 0$

Where $p_{sleep} \in [0,1]$ is a design parameter

state x to state y

POSE.R Low Power Sensing (LPS) State Algorithm

Figure: Low Power Sensing State Algorithm

POSE.R

New Features

HPS device sensing range may vary based target location and network density

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{S_i}(k)$: Probability that the target is

located in HPS coverage area

 $P_{D,LPS}^{si}$: LPS device Probability of detection

S*: Set of selected sensors

 $p_{xy}^{s_i}(k)$: State transition probability from

state *x* to state *y*

Legend:

s_i: Sensor node *i*

R^{*}: Set of HPS ranges for each

selected node

 N'_{sel} : Number of players for range selection game

Please see the published paper for detailed and updated descriptions of the material.

Candidate Identification

Identify if node s_i is a candidate for tracking the target

Legend:

s_i: Sensor node i **R**^{*}: Set of HPS ranges for each

selected node

 N'_{sel} : Number of players for range selection game

Please see the published paper for detailed and updated descriptions of the material.

Candidate Region

Legend:

*s*_{*i*}: Sensor node *i*

R^{*}: Set of HPS ranges for each

selected node

 N'_{sel} : Number of players for range selection game

Energy-based Geometrical Dilution Of Precision (EGDOP)

Identify the best set of sensors in S^* that are geometrically diverse with high energy.

62

High Power Sensing (HPS) State Algorithm

 N'_{sel} : Number of players for range

selection game

High Power Sensing (HPS) State Algorithm

63

Legend:

s_i: Sensor node *i*

R^{*}: Set of HPS ranges for each

selected node

 N'_{sel} : Number of players for range

selection game

POSE.R Algorithm Potential Game Objective

Objective: Select the optimal sensing range for each node $s_i \in S^*$, s.t.

- 1. Achieve N_{sel} -Coverage, i.e. maximize target coverage
- 2. Minimize selected sensing range, R^{s_j} , i.e. minimize redundant coverage

Potential Game Preliminaries:

- Players: The set of nodes selected using EGDOP, S^{*}
- Set of Actions: Each action, $a_i \in A_i$, represents the nodes sensing range during the next time step, where $A_i = \{R_0, R_1, ..., R_L\}$ is the set of actions or each player and $R_0 = 0m$
- **Utility Function:** $U_i(a_i, a_{-i})$ is the node utility function
- **Potential Function** $\Phi(a_i, a_{-i})$: The global objective function

Potential Game Requirement:

$$U_i(a'_i, a_{-i}) - U_i(a''_i, a_{-i}) = \Phi(a'_i, a_{-i}) - \Phi(a''_i, a_{-i})$$

 $\forall a'_i, a''_i \in A_i \text{ and } \forall a_{-i} \in A_{-i}$

Advantage:

- 1. There exists at least one pure-strategy Nash Equilibrium
- 2. The best equilibrium is the maximizer of the Potential Function
- 3. There exist learning algorithms, e.g. Maxlogit, that quickly converge to the best equilibrium
- 4. Fits the distributed framework of the network

Sensor Range Selection Game

Potential Function Design

- $v_{j,h}$: Cell worth
- $B_{j,h}(a)$: Coverage Function

•
$$E_c(a_j) = \begin{cases} \Delta T \cdot e_{HPS}^{s_j}(a_j) & \text{if } a_j \neq R_0 \\ \Delta T \cdot e_{LPS} & \text{if } a_j = R_0 \end{cases}$$
: The energy cost by taking action a_i

taking action a_j

Sensor Range Selection Game

Potential Function Design

Achieve N_{sel} -Coverage, i.e. maximize target coverage

Minimize selected sensing range, R^{s_j} , i.e. minimize redundant coverage

Please see the published paper for detailed and updated descriptions of the material.

Sensor Range Selection Game

Potential Function Design

- $v_{j,h}$: Cell worth
- $B_{j,h}(a)$: Coverage Function

•
$$E_c(a_j) = \begin{cases} \Delta T \cdot e_{HPS}^{s_j}(a_j) & \text{if } a_j \neq R_0 \\ \Delta T \cdot e_{LPS} & \text{if } a_j = R_0 \end{cases}$$
: The energy cost by taking action a_j

• $c_1 = \sum_{j=1}^V \sum_{h=1}^V \mathcal{N}\left(\left[x_{j,h}^c, y_{j,h}^c\right]', \hat{\mathbf{z}}^{s_L}(k+1|k), \hat{\mathbf{\Sigma}}_{\mathbf{z}}^{s_L}(k+1|k)\right)$: Normalization Constant s.t. $\sum_{j=1}^V \sum_{h=1}^V v_{j,h} = 1$

٠

POSE.R Algorithm

Sensor Range Selection Game

Potential Function Design

Please see the published paper for detailed and updated descriptions of the material.

 $\overline{\Delta B_{j,h}(a^*)|\boldsymbol{S}^*|R_L}$

- $v_{j,h}$: Cell worth ٠
- $B_{i,h}(a)$: Coverage Function ٠

•
$$E_c(a_j) = \begin{cases} \Delta T \cdot e_{HPS}^{s_j}(a_j) & \text{if } a_j \neq R_0 \\ \Delta T \cdot e_{LPS} & \text{if } a_j = R_0 \end{cases}$$
: The energy cost by taking action a_j

$$\begin{array}{l} \begin{array}{l} \text{Coverage Function Design} \\ B_{j,h}(a) = \begin{cases} 0.5 \cdot N_{B_{j,h}}(a) & \text{if } N_{B_{j,h}}(a) \leq N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) > N_{sel} \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) & \text{if } N_{B_{j,h}}(a) \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) & \text{if } N_{B_{j,h}}(a) & \text{if } N_{B_{j,h}}(a) \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) & \text{if } N_{B_{j,h}}(a) \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) & \text{if } N_{B_{j,h}}(a) & \text{if } N_{B_{j,h}}(a) \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right) & \text{if } N_{B_{j,h}}(a) & \text{if } N_{B_{j,h}}(a) & \text{if } N_{B_{j,h}}(a) \\ 0.5 \left(6 - N_{B_{j,h}}(a)\right)$$

69

Sensor Range Selection Game

Potential Function Design

- $v_{j,h}$: Cell worth
- $B_{j,h}(a)$: Coverage Function

•
$$E_c(a_j) = \begin{cases} \Delta T \cdot e_{HPS}^{s_j}(a_j) & \text{if } a_j \neq R_0 \\ \Delta T \cdot e_{LPS} & \text{if } a_j = R_0 \end{cases}$$
: The energy cost by taking action a_j

The normalized energy consumption of the joint action

Sensor Range Selection Game

Potential Function Design

- $v_{j,h}$: Cell worth
- $B_{j,h}(a)$: Coverage Function
- $E_c(a_j) = \begin{cases} \Delta T \cdot e_{HPS}^{s_j}(a_j) & \text{if } a_j \neq R_0 \\ \Delta T \cdot e_{LPS} & \text{if } a_j = R_0 \end{cases}$: The energy cost by taking action a_j

Utility Function Design using Marginal Contribution

$$U_{i}(a_{i}, a_{-i}) = \Phi(a_{i}, a_{-i}) - \Phi(\emptyset, a_{-i})$$
$$U_{i}(a_{i}, a_{-i}) = \sum_{j=1}^{V} \sum_{h=1}^{V} v_{j,h} \left(B_{j,h}(a_{i}, a_{-i}) - B_{j,h}(R_{0}, a_{-i}) \right) - \frac{E_{c}(a_{i}) - E_{c}(R_{0})}{|S^{*}|E_{c}(R_{L})}$$

Proposition 1: The designed utility function results in a Potential Game *Proof:*

$$U_{i}(a_{i}', a_{-i}) - U_{i}(a_{i}'', a_{-i}) = \Phi(a_{i}', a_{-i}) - \Phi(\emptyset, a_{-i}) - \Phi(a_{i}'', a_{-i}) + \Phi(\emptyset, a_{-i})$$
$$U_{i}(a_{i}', a_{-i}) - U_{i}(a_{i}'', a_{-i}) = \Phi(a_{i}', a_{-i}) - \Phi(a_{i}'', a_{-i})$$

Compute the Optimal Sensing Ranges using Maxlogit [1]

R^{*} is found using the Maxlogit Learning Algorithm [1]:

- 1. Select a Player at random and choose a new action, a'', for that player according to a uniform distribution
- 2. Compute the sensor node utility for the selected player using the previous action a'_i and the new action a''_i

3. Compute the deviation probability as follows:
$$\mu = \frac{e^{\frac{U_{s_i}(a_i',a_{-i})}{\tau}}}{\max\left(e^{\frac{U_{s_i}(a_i',a_{-i})}{\tau}}, e^{\frac{U_{s_i}(a_i',a_{-i})}{\tau}}\right)}$$

• *τ*: Learning parameter

4. Determine the players next action as follows:
$$a(s_i) = \begin{cases} a'_i \text{ with } \Pr = 1 - \mu \\ a''_i \text{ with } \Pr = \mu \end{cases}$$

5. Repeat for N_{iter} iterations

[1] H. Dai, Y. Huang, and L. Yang, "Game theoretic max-logit learning approaches for joint base station selection and resource allocation in heterogeneous networks," *IEEE Journal on Selected Areas in Communications*, vol. 33, no. 6, pp. 1068–1081, 2015.

High Power Sensing (HPS) State Algorithm

Legend:

*s*_{*i*}: Sensor node *i*

 $P_{HPS}^{S_i}(k)$: Probability that the target is

located in HPS coverage area

 $P_{D,LPS}^{s_i}$: LPS device Probability of detection

S*: Set of selected sensors

 $p_{xy}^{s_i}(k)$: State transition probability from

state *x* to state *y*

Please see the published paper for detailed and updated descriptions of the material.

Multi-Modal Sensor Node Control Diagram

Characteristics Compared with Existing Techniques

POSE.R

Network Lifetime Compared with Existing Techniques

Position Root Mean Squared Error Comparison

Network Density, $ho = 1.4e^{-3}$

Velocity Root Mean Squared Error Comparison Network Density, $\rho = 1.4e^{-3}$

POSE.R

Network Resiliency Compared with Existing Techniques

Please see the published paper for detailed explanations of the results.

All nodes within a radius R_{gap} of the targets position at k = 50s have failed

 R_{gap} was varied between [30m, 50m] for a Network Density $ho = 1.4e^{-3}$

Network Resiliency Compared with Existing Techniques

All nodes within a radius R_{gap} of the targets position at k = 50s have failed

 R_{gap} was varied between [30m, 50m] for a Network Density $\rho = 1.4e^{-3}$

80

Conclusion

Objective: Develop a network autonomy approach that utilizes distributed supervisors (Probabilistic Finite State Automaton) to probabilistically control multi-modal sensor nodes that meets the following requirements:

- Distributed Supervisors for probabilistic control of Multi-modal sensor nodes
- Prediction-based Opportunistic Sensing for energy-efficient control

Novel Contributions

- Distributed Classification for opportunistic sensing of Targets Of Interest
- Distributed Clustering via efficient sensors selection
- Distributed Control

- Prediction-based Opportunistic Coverage
- Resilient target coverage via distributed learning and sensor range adjustment
- □ Enhanced distributed clustering

Publications

JOURNAL PUBLICATIONS

- J. Z. Hare, J. Song, S. Gupta and T. A. Wettergren, "POSE.R: Prediction-based Opportunistic Sensing for Resilient and Efficient Sensor Networks", ACM Transactions on Sensor Networks, accepted 2020, arXiv:1910.10795
- J. Z. Hare, S. Gupta and T. A. Wettergren, "POSE.3C: Prediction-based Opportunistic Sensing using Distributed Classification, Clustering and Control in Heterogeneous Sensor Networks", *IEEE Transactions on Control of Network Systems*, Vol. 6, No. 4, pp. 1438-1450, December 2019.
- J. Z. Hare, S. Gupta and T. A. Wettergren, "POSE: Prediction-based Opportunistic Sensing for Energy Efficiency in Sensor Networks using Distributed Supervisors", *IEEE Transactions on Cybernetics*, Vol. 48, No. 7, pp. 2114-2127, July, 2018.
- N. Najjar, S. Gupta, J. Z. Hare, S. Kandil and R. Walthall, "Optimal Sensor Selection and Fusion for Heat Exchanger Fouling Diagnosis in Aerospace Systems", *IEEE Sensors Journal*, Vol.16, Issue. 12, pp. 4866-4881, (2016).
- J. Z. Hare, X. Shi, S. Gupta, A. Bazzi, "Fault Diagnostics in Smart Micro-Grids: A Survey", Renewable & Sustainable Energy Reviews, Vol. 60, pp. 1114-1124, (2016).
- N. Najjar, C. Sankavaram, J. Z. Hare, S. Gupta, K. Pattipati, R. Walthall and P. D'Orlando, "Health Assessment of Liquid Cooling System in Aircrafts: Data Visualization, Reduction, Clustering and Classification", *SAE International Journal of Aerospace*, Vol. 5, Issue 1, pp. 119-127, October, (2012).

CONFERENCE PUBLICATIONS

- J. Z. Hare, S. Gupta, J. Song and T. A, Wettergren, "Classification Induced Distributed Sensor Scheduling for Energy-Efficiency in Underwater Target Tracking Sensor Networks", *Proceedings of OCEANS'17 MTS/IEEE*, Anchorage, AK, USA, (2017).
- W. Chen, A. Bazzi, J. Z. Hare, S. Gupta, "Real-time Integrated Model of a Micro-grid with Distributed Clean Energy Generators and their Power Electronics", *IEEE Applied Power Electronics Conference and Exposition*, Long Beach, CA, (2016).
- J. Z. Hare, S. Gupta, N. Najjar, P. D'Orlando and R. Walthall, "System Level Fault Diagnosis for the Air Management System of an Aircraft", SAE AeroTech Congress and Exhibition, Seattle, WA, USA, (2015).
- J. Z. Hare, S. Gupta and J. Wilson, "Decentralized Smart Sensor Scheduling for Multiple Target Tracking for Border Surveillance", *IEEE International Conference on Robotics and Automation*, Seattle, WA, May, (2015).
- J. Wilson, N. Najjar, J. Z. Hare and S. Gupta, "Human Activity Recognition using LZW-Coded Probabilistic Finite State Automata", IEEE International Conference on Robotics and Automation, Seattle, WA, May, (2015).
- J. Song, S. Gupta and J. Z. Hare, "Game-theoretic Cooperative Coverage using Autonomous Vehicles", Proceedings of OCEANS'14 MTS/IEEE, St. John's, Newfoundland, Canada, September, (2014).
- J. Song, K. Qiu, S. Gupta and J. Z. Hare, "SLAM based Adaptive Navigation of AUVs for Oil Spill Cleaning", Proceedings of OCEANS'14 MTS/IEEE, St. John's, Newfoundland, Canada, September, (2014).
- J. Z. Hare, S. Gupta and J. Song, "Distributed Smart Sensor Scheduling for Underwater Target Tracking", Proceedings of OCEANS'14MTS/IEEE, St. John's, Canada, September (2014).
- J. Z. Hare, X. Shi, S. Gupta and A. Bazzi, "A Review of Faults and Fault Diagnosis in Micro-grids Electrical Energy Infrastructure", *IEEE Energy Conversion Congress and Exposition*, Pittsburgh, PA, September (2014).
- J. Song, S. Gupta, J. Z. Hare and S. Zhou, "Adaptive Cleaning of Oil Spills by Autonomous Vehicles Under Partial Information", *Proceedings of OCEANS'13 MTS/IEEE*, San Diego, California, USA, September, (2013).
- N. Najjar, J. Z. Hare, A. Silva, S. Gupta, G. Leaper, K. Pattipati, R. Walthall and P. D'Orlando, "Heat Exchanger Fouling Diagnosis for an Aircraft Air- Conditioning System", SAE 2013 AeroTech Congress and Exhibition, Montreal, Canada, September, (2013).
- S. Gupta, J. Z. Hare and S. Zhou, "Cooperative Coverage using Autonomous Underwater Vehicles in Unknown Environments", *Proceedings of OCEANS'12 MTS/IEEE*, Virginia Beach, VA, USA, October, (2012).
- N. Najjar, C. Sankavaram, J. Z. Hare, S. Gupta, K. Pattipati, R. Walthall and P. D'Orlando, "Health Assessment of Liquid Cooling System in Aircrafts: Data Visualization, Reduction, Clustering and Classification", *SAE 2012 Aerospace Electronics and Avionics Systems Conference*, Phoenix, AZ, USA, November, (2012).

PATENT SUBMISSIONS

- J. Z. Hare, N. Najjar, S. Gupta, "System Level Fault Diagnosis on Aerospace Air Management Systems," Patent 14/687, 112, April 15, 2015.
- N. Najjar, J. Z. Hare, S. Gupta, "Optimal Sensor Selection and Fusion for Heat Exchanger Fouling Diagnosis in Aerospace Systems," Patent 14/700, 769, April 30, 2015.