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Intelligent Sensor Networks
Applications

UCONN

Intelligence, Surveillance, and Reconnaissance
A r s o=

=

Example Applications:

* Border Security

* Battlefield Surveillance
* Anti-submarine Warfare

Sensor
Towor:
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"Border Security Strategy Lacks Coherent Operating Concept | Market Info
Group LLC - Premium Market & Technology Forecasts." Market Info Group.
N.p., 03 Nov. 2009. Web. 07 Oct. 2015.

aboratory of Intelligent Networks
and Knowledge-Perception Systems
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Environmental Monitoring

Example Applications:
* Habitat Monitoring
* Disaster Monitoring

"Wireless Sensor and Actuator Networks." Automatica,
http://automatica.dei.unipd.it/people/schenato/research.html

Smart Cities and Homes

Example Applications:

* Traffic Light/Traffic Control
* Intelligent Parking Systems
* Activity Monitoring

"Top 10 Smart Cities In The World.” Stephanie
Beaumont, https://www.linkedin.com/pulse/top-10-smart-
cities-world-stephanie-Beaumont,

Wireless Body Sensor Networks

» e i)
Deep Brain . Cochlear Implants
ik J ~ < :

Neurostimulators N

i Cardiac Defibrillators/ H 1 .
T J crascoetrios/ Example Applications:
o O - * Monitoring Personal

Blood Pressure We” belng
%
N

\ .%.m.m Pumas * Activity Monitoring

Foot Drop
Implants \
v
o = Pulse Oximeter
EMG Sensors ?:: ..‘

Yang Zhou, Zhéngguo Sheng, Chinmaya Mahapatra, Victor C.M. Leung, Peyman Servati,

“Topology design and cross-layer optimization for wireless body sensor networks,” Ad Hoc
Networks, Volume 59, 2017, Pages 48-62,
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NN Challenges and Current Approaches
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?n N . _ > Coverage Gaps
£ Finite energy resources » Network density may be low or non-uniform > Missed Detections
E’ > Replacement is difficult » Sensor nodes are fixed and can fail > Mission Suspension
o s. | » Energy Wastage
" 4 Network Control Architecture N\
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¥ Problem Formulation ,ASELCR
UCONN Problem Statement

Objective: Develop a network autonomy approach that utilizes distributed supervisors (Probabilistic Finite State Automaton) to
probabilistically control multi-modal sensor nodes that meets the following requirements:

1. Extended network lifetime
2. Resilient target coverage

3. High tracking accuracy
4. Low missed detection rates Target Coverage‘
Energy EfﬁCiency ReSﬂience POSE.R considers both

energy-efficiency and resilience

> Classification feedback
> Sensor selection

» Resilient Target Coverage

O Distributed Supervisors for probabilistic O Distributed Classification for opportunistic O Prediction-based Opportunistic Coverage
control of Multi-modal sensor nodes sensing of Targets Of Interest O Resilient target coverage via distributed
Q Prediction-based Opportunistic Sensing O Distributed Clustering via efficient sensors learning and sensor range adjustment
selection O Enhanced distributed clustering

for energy-efficient control
O Distributed Control

Novel Contributions 4
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UCONN Multi-modal Sensor Node Description

Each Multi-modal Sensor Node, s;, is equipped with:

1. Data Processing Unit (DPU)

»  Performs necessary calculations

»  Facilitates decision-making to enable or disable each device at time k
2. Transmitter (TX) / Receiver (RX)

» Allows for data transmission between sensor nodes

High Power Sensing

Data Processing Unit Device (e.g. Laser)

3. Low Power Sensing (LPS) Device Low Power Sensing Transmitter/Receiver/
> Passive binary detectors that consume little energy , e.g. Passive Device (e.g. PIR) GPS
Infrared (PIR) sensor
> Allows for low power target detection, up to a distance R ps Figure: Multi-modal Sensor Node Example

4. High Power Sensing (HPS) Device
> Allows for accurate measurement of the target up to a distance R yps
»  This could be a Camera, Laser, Radar, Sonar, or other sensing devices

Energy Model
Individual Sensor node energy consumption [1]: Network energy consumption:
n
Sj — Si | ., Si
AOEDWIAFACI Eeel) = ) ESi(k)
k | ]
=1

« el The rate of energy consumption per unit time of device
I * n: Number of sensor nodes deployed
j €{DPU,LPS,HPS,TX,RX, Clock}
. )(;"(k) € {0,1}: Indicates whether the device is On or Off at time k
* AT:The sampling interval

[1] J. Chen, K. Cao, K. Li, and Y. Sun, “Distributed sensor activation algorithm for target tracking with binary sensor networks,” Cluster Computing, vol. 14, no. 1, pp. 55-64, 2011
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UCONN Target Description

Target Dynamics

Target Motion Model: Discrete White Noise Acceleration Model [1]

x*(k+1) = f(x*(k), k) +v(k)

- x%(k) =[x, %,y,y,¢]": Target, 7, state at time k
- f(, k): State transition matrix, and
- wv(k): White noise acceleration sequence with E[v(k)] = 0 and E[v(k)v(k)'] = Q.

Measurement Models

HPS Device Measurement Model: LPS Device Measurement Model:
z(k) = (z,(k), ..., 2, (k) z(k) € {0,1}
zj(k) = h(x"(k), k) + w(k) LPS Device Detection Model [2]:
- z(k): Set of measurements received a [lu’t —u" (k)| < R,
- z;(k): Range and azimuth measurement of target or clutter PDSiLPS(k) = { e~B([lwi-uT(®)l|-Ry) R, < |[w’i —u*(k)|| < Rs1ps
~ m: Number of measurements received 0 ||[u’t —u*(k)|| > Rs1ps

= h(; k): Measurement model, and — a and : Model Design Parameters

- @(k): Measurement noise w/ E[w(k)] = 0 and E[w(k)w(k)'] = R. —  R,: LPS device reliable sensing range

[1] Bar-Shalom, Yaakov, Peter K. Willett, and Xin Tian. "Tracking and data fusion." A Handbook of Algorithms. Yaakov Bar-Shalom (2011).

[2] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization in distributed sensor networks,” ACM Transactions on Embedded Computing Systems, vol. 3, no. 1, pp. 61-91, 2004. 6




¥ Problem Formulation ,ASELCR
UCONN Problem Statement

Objective: Develop a network autonomy approach that utilizes distributed supervisors (Probabilistic Finite State Automaton) to
probabilistically control multi-modal sensor nodes that meets the following requirements:

1. Extended network lifetime
2. Resilient target coverage

3. High tracking accuracy
4. Low missed detection rates Target Coverage‘
Energy Efficiency Resilience

— - _>d§sif'|§ationfeedback

> Sensor selection

» Resilient Target Coverage

O Distributed Supervisors for probabilistic O Distributed Classification for opportunistic O Prediction-based Opportunistic Coverage
control of Multi-modal sensor nodes sensing of Targets Of Interest O Resilient target coverage via distributed
Q Prediction-based Opportunistic Sensing O Distributed Clustering via efficient sensors learning and sensor range adjustment
selection O Enhanced distributed clustering

for energy-efficient control
O Distributed Control

Novel Contributions
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Legend
* R; 1 ps: LPS Sensing Range

* R yps: HPS Sensing Range

POSE
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Opportunistically turn-on
high power sensing
around target's predicted
position in a distributed
manner.

Main Idea
Target Ta}rget A
Predicted LPS ‘/ — \O A A N\ Trjectory @
Detection Area/ ~ 0 ~N N o o A A
N/ A O\ @ Target Current
A O Location (®)
[ /7 Rsips/ \ \ A e
| 0! Rs,ups o | O \\
0 | O | Target A / 0 \’ \A
\ \ \ ' / Predicted \ \
A \\ t \* ) / Location ( { \* \
@) ~d_- \ * o
A A v\ o /
Target A _ /
A O Predicted HPS 0) \\ ’( s A
Detection Area ~— -
o A A n A A 0 o
O A
') Sensor Node (®)
O

O Sleep State A Low Power Sensing (LPS) State QHigh Power Sensing (HPS) State
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Opportunistically turn-on high power sensing around target's predicted position in a distributed manner.
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UCONN Distributed Supervisor: Probabilistic Finite State Automaton (PFSA)

Multi-Modal Sensor Node Control Diagram

v Consumes minimal energy

v" Performs state estimation
v’ Alerts neighbors of target

whereabouts
v Target detection while

conserving energy

In the published POSE paper we
used a 4-state PFSA for
distributed control. Here we
combined the Listening and LPS
states together for compactness
and simplicity.

<

P32

P22

Sensor Data

Distributed Supervisor Layer

High Power Sensing (HPS)
Device (e.g. Laser)

spuewwo) 3adinaQg
3ujqesig/8uiiqeuy

Transmitter/Receiver/

GPS
/

Data Processing
Unit
Device Layer

Low Power Sensing (LPS)
Device (e.g. PIR)

PIR: Passive Infrared Sensor
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In the published POSE paper we used a 4-state PFSA for distributed control. Here we combined the Listening and LPS states together for compactness and simplicity. 
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UCONN Sleep State Algorithm

Objective
Minimize energy consumption by disabling all devices

Description
* Designed to minimize energy consumption when a target is away
from the sensor node
» All devices except a clock are disabled

P33 State Transition Probabirlities
Sleep | LPS | HPS
S; S Si
2% Psteep ‘ Pz =1~ Dsieep ‘ P13 =0

Where pgieep € [0,1] is a design parameter

LPS: Low Power Sensing
HPS: High Power Sensing 10




Legend:
sl Sensor node i

PD ‘LPS Probability of detection of LPS Device
s(k)- Probability that the target is

Iocated in HPS coverage area

pxy (k): State transition probability from

state x to state y

POSE

Low Power Sensing (LPS) State Algorithm

LPS
Detect

Utilize LPS
Detection Model

Objective

6) LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems

Detect the target while conserving energy

Description

Only the DPU, LPS devices, and transmitter/receiver are enabled
Desired to be enabled when a target is away
Detection occurs using LPS devices or from information
transmitted by neighbors.

Distributed One-step
Fusion Prediction

|:> Compute
HPS(k)

p21(k) =1- PDLP.S'

p23 (k) D LP.S'

Joint Estimates
of Targets

~~

Si

5; p21 B 5
Pyp(k) =1— PHJLZ'SU{)
ng(k) - Hps(k)

Figure: Low Power Sensing State Algorithm

11
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UCONN High Power Sensing (HPS) State Algorithm

Objective
Utilize HPS devices to estimate the target’s state and alert neighbors of
target’s location

Description
* HPS devices, DPU, transmitter, and receiver are enabled
P33 * Designed to only be enabled when a target is predicted to travel in
the sensor nodes coverage area
* Provides a range and angle measurement of the target
* Performs state estimation
* Broadcasts target state estimates to neighbors

12
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UCONN High Power Sensing (HPS) State Algorithm

Validated target state estimates
and filter gain matrix

Set of x%i(k|k),
Esi(k|k),
measurements Is State State N Wsi((kl |k))
z(k) nitialized Initialization | vy
T-Of-k Distributed
Previous target = . Fusion
state estimates Association and |5 Confirmation
25i(k — 1]k — 1) State Estimation 4 9]0|nt Estimates of
- ’ using JPDA . icti Targets
£si(k — 1|k — 1) g One-step Prediction
Si
Compute P, (k)
- >
P (k) =0

Pz (k) = 1= P p5(k)
Si Si
pgg(k) = PHpg(k)

Legend:
s;: Sensor node i

P;5 < (k): Probability that the target is

located in HPS coverage area

p;;, (k): State transition probability

from state x to state y 13
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UCONN High Power Sensing (HPS) State Algorithm
Validated target state estimates
and filter gain matrix
Set of x%i(k|k),
E5i(k|k)
measurements ’
Is State State ey
Wsi(k|k
z(k) nitialized Initialization ;,\’J MofN (k15
IS S S S . T-Of-k Distributed
Previous target = . Fusion
state estimates Association and 5"" Confirmation
25i(k — 1]k — 1) State Estimation | N {}Joint Estimates of
$si ’ using JPDA I One-step Prediction Targets
ESi(k — 1|k — 1)
Compute Py pc (k)
<~ >
psy (k) =0
Si Si
P3p(k) =1 —=Pyp(k)
Si S
pgg(k) = PHpg(k)
Legend:

s;: Sensor node i

P;5 < (k): Probability that the target is

located in HPS coverage area

p;;, (k): State transition probability

from state x to state y 14
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UCONN High Power Sensing (HPS) State Algorithm
Joint Probabilistic Data Association (JPDA) Filter [1]

Advantages:

* Updates multiple state estimates at once

* Associates measurements to a previous track

* State may not be corrupted by clutter measurements

Set of HPS Measurements:
z(k) — o Updated state estimates:
Previous state estimates: ASSOCIat!On a.nd — x%i(k|k)
%Si(k — 1|k — 1) =P State Estimation Updated covariance estimates:
Previous covariance estimates: using JPDA < X%i(k|k)
SSi(f — 1|k — 1) "=—>
% e °
v
°, O 8
PR m -
[ J
Previous state Predicted state estimates Associate measurements Update state
estimates and measurement set to estimates estimates

[1] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association filter,” IEEE Control Systems, vol. 29, no. 6, pp. 82-100, 2009. 15
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UCONN High Power Sensing (HPS) State Algorithm

Validated target state estimates
and filter gain matrix

Set of :x:? Eklkﬁ’
Bsi(k|k
measurements
Is State State — i
z(k) nitialized Initialization * M-of-N 'kl )
T'Ofk Distributed
Previous target — rac Fusion
state estimates Association and )‘I— Confirmation
25k — 1[k — 1) State Estimation | A= = o <> Joint Estimates of
X , . ) g Targets
£si(k — 1)k — 1) using JPDA One-step Prediction
Compute Py pc (k)
Track Confirmation Si{k"’
M out of N consecutive measurements si (;;31_(1) B (; 0
must associate to a track [1] Pa2 ) = PS
Benefits Ps3() = Paps (k)
Legend:
s;: Sensor node i e Allows for Track-before-detect
Pybs(k): Probability that the target is * Reduced False Tracks generated by

located in HPS coverage area
pxy(k) State transition probability
from state x to state y

False Alarms and Clutter

[1] S. Coraluppi and C. Carthel, “Distributed tracking in multistatic sonar,” IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 3, pp. 1138-1147, 2005. 16
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Legend:
s;: Sensor node i

HPS(k) Probability that the target is
located in HPS coverage area
p;;',(k): State transition probability
from state x to state y

Set of
measurements

z(k)

I
[
: Trustworthy
[

POSE

High Power Sensing (HPS) State Algorithm

Previous target
state estimates

25i(k — 1|k — 1),
ik — 1|k — 1)

Is State
nitialized

State
Initialization

Association and
State Estimation
using JPDA

Validated target state estimates

and filter gain matrix

Distributed Fusion

Sets Formation

|
i

Track
Association

=

QL NkKs
0 Laboratory of Intelligent Networks

and Knowledge-Perception Systems

x%i(k|k),
TSi(k|k),
Wi (e ) _
M-of-N Yed | -
Distributed I
Track ¢ Fusion
Confirmation
b # P-JEintJEstimatesof
One-step Prediction Targets
<_~
Compute PHPS (k)
< >
| st (k) =0
Si
Il p3,(k) = Hps(k)
| P30 = Byps(k)
Track !
Fusion I
|
|

17
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UCONN High Power Sensing (HPS) State Algorithm

Form the Trustworthy Information Ensemble, 7;" (k)

Advantages:
* Elimination of faulty/poor state estimates Please see the published paper for detailed
* Minimize false tracks transmitted by neighbors descriptions of the material.

* Enhanced state estimation and fusion
* Reduced computational complexity

Received information ensemble: Trustworthy Set Trustworthy information ensemble:
i) = {(8,29, W¥),Vs; € Nyps) = Formation  [=» Ir(k) = {(27,2%, W), vs; € Ny}

VL : Set of neighbors who

TSi . .
I; (k) is computed as follows: transmitted target state information

Legend: 1. The set of trustworthy neighbors N;i c N;f,s is obtained as follows:
S Sensor node i Nyt = {sj € Nyt Trace(HESTH') < &}
Sj: si's jth neighbor 2. Form the set as follows:

&: Trustworthy threshold

x°%i (k|k): Target state estimate

¥5i (k|k): Target covariance estimate
WSi(k|k): Filter gain matrix

H: Jacobian of measurement matrix 18

Ii(k) = {(z%,25,W%),vs; € Ny '}
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Legend:
s;: Sensor node i

HPS(k) Probability that the target is
located in HPS coverage area
p;;',(k): State transition probability
from state x to state y

measurements

POSE

High Power Sensing (HPS) State Algorithm

Validated target state estimates
and filter gain matrix

Set of

z(k)

Previous target
state estimates

25i(k — 1|k — 1),
ik — 1|k — 1)

Is State
nitialized

State
Initialization

Association and
State Estimation
using JPDA

Trustworthy

Sets Formation

istributed FUuSiON =

Track
Association

=

and Knowledge-Perception Systems

QL NkKs
0 Laboratory of Intelligent Networks

x*i(k|k),
z%i(klk),
W*i(k|k) o= =
R 4 Distributed I
Con;:if\::tion | Fusion
b {}‘BintjEstimates of
One-step Prediction Targets
~
Compute Pp¢ (k)
==
| Pgsi(k)—o
Il pa(k) =1-— Hps(k)
! p33(k) 5(k)
Track I
Fusion |
!

19
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Associate and Fuse Trustworthy Information Ensembles using Track-to-track Association and Fusion [1]

Advantages:
Please see the published paper for detailed e Improves state estimation

descriptions of the material. * Identifies the number of disjoint tracks
* Incorporates correlation between nodes

C Associated Trustworthy C Fused State
Information Ensembles Estimates
%Si,1 551 $5;,1
Trustworthy information ensemble: Track K ,I\? z(k) < x° (k|k),§5 (klk)
75Ti(k) — {(ﬁsf,fsf,Wsj),Vsj € NTSL} > rac -t.O-t.l'ac ITD (k)-> Track-to-track fsi'z(klk),zsi'z(klk)
Association : Fusion :
157 (k) = %€ (k| k), £5C (ke | k)
7S
SR INE AN
\ /] = » ""‘ »‘ "“‘ ’
N7 PR
\
(9 v ¥ ¥
Ny .

Fused Tracks w/
Association

Fused Tracks w/out

Association
[1] Bar-Shalom, Yaakov, Peter K. Willett, and Xin Tian. "Tracking and data fusion." A Handbook of Algorithms. Yaakov Bar-Shalom (2011). 20

Associated Tracks Received Tracks
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UCONN High Power Sensing (HPS) State Algorithm

Validated target state estimates
and filter gain matrix

Set of x%i(k|k),
Esi(k|k),
measurements Is State State N Wsi((kl |k))
z(k) nitialized Initialization | vy
T-Of-k Distributed
Previous target = . Fusion
state estimates Association and |5 Confirmation
25i(k — 1]k — 1) State Estimation P — - %mt Estimates of
- ’ using JPDA . icti Targets
£5i(k — 1)k — 1) g I One-step Prediction I

| | compute P, (k) I
P e e el
psy (k) =0
P (k) = 1= Byp (k)
pas (k) = Pypg(K)

Legend:

s;: Sensor node i

P;L<(k): Probability that the target is

located in HPS coverage area

pjg,(k): State transition probability

from state x to state y 21
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UCONN High Power Sensing (HPS) State Algorithm
e g . Si
One-step Prediction and Computation of P, (k)
S predicted State estimates Probability that the target will be
tate estimates: 5 -
= =5; located in the HPS coverage area
#i(klk) == Opestep | Filk+1lk) == compute — PSi (k
Covariance estimates: Predicted Covariance estimates: : Hps( )

S Si
$51(K|) > Prediction | __, SSi(k+ 1)k)  =— Pyps(k)

Targets Predicted Distribution

Advantages:
N\ E';i(k + 1|k) * Allows for Opportunistic Sensing .
S\ Z°i(k + 1]k) * s; only transitions to the HPS state if P, (k) is high

S _ S 5S; <SS
Probability of target PHPS(k) — jj PD,HPS(x' VN (Z (k + 1]k), 2" (k + 1|k)) dxdy
traveling w/in sensing D
radius

Where:

* D ={xy;||u— (| <Rsups}

o Z5i(k+ 1|k) = Hx%i(k + 1|k): Predicted target position

Ry 11ps: HPS device sensing range « Z)i(k + 1lk) = HE®(k + 1|k)H': Predicted target position error 22

Figure: Visual Representation of P;Ii,s(k)




W POSE AL

UCONN High Power Sensing (HPS) State Algorithm

Validated target state estimates
and filter gain matrix

Set of ;fj(k|k),
measurements Is State State E ;(kklk}?’
Wi
z(k) nitialized Initialization ;,\’J (k1)
M-of-N . .
Track Distributed
Previous target = . Fusion
state estimates Association and |5 Confirmation
25i(k — 1|k — 1) State Estimation {}Joint Estimates of
P ’ ing JPDA ) g Targets
£si(k — 1|k — 1) using One-step Prediction
Si
Compute P, (k)
<~ >
ore epen e Si )= 0
State Transition Probabilities Py (k) =

p’jfz (k) =1- HPS(k)

Sleep | LPS | HPS pSi (k) = HPS(k)

p31 =0 ‘ p32 =1- HPS(k) ‘ pSl = PIjILJS(k)

Legend:
s;: Sensor node i

HPS(k) Probability that the target is
located in HPS coverage area

pxy(k) State transition probability
from state x to state y 23
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UCONN PFSA Overview

Multi-Modal Sensor Node Control Diagram

v Consumes minimal energy

v Performs state estimation

v’ Improves estimation via distributed
fusion

v’ Uses predictions for control

P11

v’ Target detection with LPS devices

v’ Target detection via Distributed
Fusion

v’ Uses predictions for control

<

P32
P22

Sensor Data

Distributed Supervisor Layer

High Power Sensing (HPS)
Device (e.g. Laser)

spuewwo) 3adinaQg
3ujqesig/8uiiqeuy

Transmitter/Receiver/

GPS
/

Data Processing :
Unit Low Power Sensing (LPS)

Device Layer Device (e.g. PIR)

U bIR: Passsive Infrared Sensor 2




Results could be slightly
different from the published
POSE paper due to different
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POSE

S

UCONN  |sensing parameter choices. | Missed Detection and Energy Characteristics
POSE LPS-HPS Scheme Random Scheduling Scheme
Distributed detection-based Distributed probabilistic sensor
sensor activation activation.
cl:lzs Detection=1 g 1— Drand
i : %
o Detection =0 = Prand )
LPS-HPS and RAND
POSE Missed Detections . . ) POSE % Energy Savings
0.17 0.1 Missed Detections 1 ° By 8
A - =----"C
0.08 0.08 \ ® 0.8 |
e POSE, =0 o))
Psleep \ = =LPS-HPS c
0.06 | — =POSE, psleep_o'25 0.06 N \ RAND, p, =0 (% 06! Lot
c ' POSE, Pyieep=0-D e N ——RAND, p_ =0.25 w
T (A POSE, psleep=0'75 o ‘\\ —==RAND, prand=0'5 3 ‘___.-" -
0.04 | 0.04 | N D 504 “““___,.-
o = ——POSE/RAND p__.=0
\~ ~ L rand
0.02 002l \\\ - L o — =POSE/RANDp __ =0.25
\ ‘\Q: - POSE/RAND p_ =0.5
; rremiemsnans () Tt — Tme=R=memme | e POSE/LPS-HPS
0 rhit LLEFRLREFETE ] O 0 1 I I
0.6 0.8 1 1.2 14 06 0.8 1 1.2 1. 0 0.2 0.4 0.6
_ _ 5 . . .
Network Density, p  x107® Network Density, o <10 Psieep 25
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UCONN State Estimation Error Results
e POSE, psleep=0
== = POSE, p_,, =025
02 Position Root Mean 02 Velocity Root Mean POSE: Pyeep™0:0
Bk Squared Error ' Squared Error “owne POSE Pgeep=0-75
—~ me = | PS-HPS
’é\ % EEEEE RAND, psleep=0
‘g 0.15 = 0.15 ———RAND, p__ =0.25
t e e = m RAND, p | =0.5
LLI LE . sleep
c :
O 01 2 01+
= &)
S G
D- > “-“v,‘o.t.4-"-’0w,"('.‘--I""'.;I'-.ob.’-...o’lo.“'
%)0_05_ NO00SEA~ NV e AP Y\ N
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Y
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UCONN Conclusions and Limitations

Target A o A\ Target A The POSE algorithm allows for
Predicted LPS  — A TT&JEC“"”YA (o) « Multi-modal sensor node control,
Detection Area - 0 \ o 0O A * Prediction-based Opportunistic Sensing,
0\ Target C}lﬂent * Low missed detection rates,
A LPS \ Location - O » Large energy savings, and
Ol RS HPS $ l \ A O N * Improved state estimation
(@) o \/\2 Target o\ \O\\A
\ \O & / ir;f;;tsj \ POSE Algorithm Limitations
A -~ l ‘“ ¢ l * Redundant sensor nodes tracking
\ A o Qo * Target may not be of interest
@) ~ L ../A \ O / /
A A Target A \\ \9\__ _ 6 / /
O Predicted HPS o < 7 A
Detection Area A ~—_ ~ 0
(@) A A A A O
A . .
0 Sensor Node o O Theme 2: Prediction-based Opportunistic
A 0 \A A O A Sensing using Distributed Classification,
o Clustering and Control (POSE.3C)

Lesend Sleep State A Low Power Sensing (LPS) State ) High Power Sensing (HPS) State

* R 1 ps: LPS Sensing Range
* R yps: HPS Sensing Range 27
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DlStrlbUted and Knowledge-Perception Systems
UCONN . Classification Induced
Maln Idea Sensor Selection to
avoid tracking TNOI
Target TS Motivation
A o Trajectory O A o // ’ A A
Target Of Interest I, A o Types of Ta rgets
Distributed o) A (TOD o (o) : A A * q: Target Of Interest (TOI)

Classification Induced s o \ ! * (,: Target Not Of Interest (TNOI)

Sensor Selection to Target’s \ A . ..
enhance tracking TOI Predicted --~_ O A Example Applications

' LE e A s A _-Y '+ Humans and Vehicles (TOI) vs. Animals
_ . A\‘ -7 (TNOI) in bogrder surveillance

Opportunistically . A / \ o

turn-on high power _7 \ I' o

:Ir:escl?egdosners:sors O Target's Current | 0 4

) % )
around the target of Location '\G : op et 1(\1%01) Algorithm Improvements:
e ancon s 7 s 3C Network Autonomy
’ Opportunistic L . . .
target not of interest. A Predicted HPS SN D|str.|buted Classification for opportunistic
o Detection Region 0O A o sensing of TOI
O Distributed Clustering to reduce energy
A O A Sensor Node wastage
Target 0O j A i<trib q |
Of Interest (TOI) A Distributed Contro
o o)

Legend

O Sleep State A Low Power Sensing (LPS) State OHigh Power Sensing (HPS) State

* Rs yps: HPS Sensing Range
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Opportunistically turn-on high power sensing on 3 selected sensors around the target of interest and on 1 sensor around the target not of interest. 
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Sleep State Algorithm

UCONN

P33

LPS: Low Power Sensing
HPS: High Power Sensing

‘97 LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems

Objective
Minimize energy consumption by disabling all devices

Description
Designed to minimize energy consumption when a target is away

from the sensor node
All devices except a clock are disabled
Once deployed, all sensor nodes start in this state

State Transition Probabirlities
Sleep | LPS | HPS

Si _ Si _ Si
p11 - psleep ‘ p12 =1- psleep ‘ p13 =0

Where pgieep € [0,1] is a design parameter

29
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UCONN Low Power Sensing (LPS) State Algorithm

New Features
» Target class decision fusion
> Classification induced sensor selection

New Feature New Feature

p ______________ — e —
> XDlstrlbuted Sensor Coll tion
Yes! Distributed

I
|
P2 e e o
LPS Distributed [> 5 $ Compute :
. ensor S;
Detect Fusion ) | |
Selection ups (k) ,
Legend: —_—— e e = = — = — - R
Si: Sensor node i @Sl &S @Si €S
Py’ ps: Probability of detection of LPS Device pyi(k)=1- PDS’iLPS pyi(k) =1- PD - pyi(k) =0
HPS(k) Probability that the target is p;lz(k) _ O pzz(k) _ DLPS P;lz(k) =1 HPS(k)
located in HPS coverage area 1) = S (k) = (k)
S*: Set of selected nodes p23( ) = DLPS p23(k) =0 P23 HPS

p;;, (k): State transition probability from

Figure: Low Power Sensing State Algorithm
state x to state y
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and Knowledge-Perception Systems

UCONN High Power Sensing (HPS) State Algorithm New Feature
meassj:ecr):]ents New Features
Tarcetds Decision@R — — — — — — — — — — — — - —
z(k) I.S ?ta.'te . .St?te. Y ares Distributed Sensor Col ration |
nitialized Initialization S P . |
of . Distributed Pl Compute |
Track Classification i Fusion el (k) |l
Association and [s— Confirmation Selection Piips |
State Estimation Validated state estimates -—— el iy .
Prexiqus state estimates using JPDA xSi(k|k), One-step Prediction {; Si €5 ; Si €5
fil-(k — 1k - 1), 25i(k|k), : psl(k) =1- PD ' ps 3 psi(k) =0
ik — 1]k = 1) Wi (k|k) Pip(k) = Poips || P32(k) = 1= Pyps(k)
Compute Py;pg (k) p3i(k) = 0 p3 (k) = Pybs(k)
- >
R OEL
Please see the published paper for detailed pglz (k)=1- HPS(k)
descriptions of the material. p33(k) — HPS(k)
Legend: New Features
s;: Sensor node i » Target classification

WSsi(k|k): Filter gain matrix
HPS(k) Probability that the target is

located in HPS coverage area
S*: Set of selected sensors

PD 1 ps: LPS Probability of detection

pxy(k) State transition probability from
state x to state y 32

» Target class decision fusion
> Classification induced sensor selection
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Please see the published paper for detailed descriptions of the material. 
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UCONN High Power Sensing (HPS) State Algorithm

Set of
T Ey st state |\, forget Class Decsion ™ = " o ed Sensor Collaboration
z(k) nitialized Initialization S L = == == =) .. I
-of- Target Distributed BB GEE Compute |I
Track g as . Sensor
. . Classification Fusion . HPS(k) I
Association and |> Confirmation ' Selection I
State Estimation Validated state estimates =TT _{; . E_S*_ T I Do est T
H H H . . . L l
Prexlqus state estimates using JPDA and filter gain matrix One-step Prediction -
’fs;_(k -1k —1), xSi(k|k), o sy (k) =1- PD LPS N p31(k) =0
ik — 1|k — 1) 251 (k| k), c o P (K Pan(K) = Pyl ps pggg(c) =1— P (k)
Wi (k|k) ompute Py, (k) pSi(k) =0 psi (k) = PiL (k)
- >
psi(k) =0
Si
pgz(k) =1- Hps(k)
pgg(k) = Hps(k)
Legend:

s;: Sensor node i
HPS(k) Probability that the target is
located in HPS coverage area
S*: Set of selected sensors
PD . ps: LPS Probability of detection

pxy(k) State transition probability from
state x to state y 33
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UCONN High Power Sensing (HPS) State Algorithm
Classify the type of target being tracked

Advantages:
* Reduces energy wastage

Target Class Decision:

Validated state estimates: oo Dsi(k) Target Class Definition:
x5 (k|k),Z5 (k|k), Wi (k) > . S . cq: Target of Interest (TOI)
’ , HERSIIE o Validated state estimates: C,: Target Not Of Interest (TNOI)

25 (k|k), £51 (k| k), WSi (k)

Classifier performance is modeled by a Confusion Matrix

Estimated
Class
)
TOl | TNOI A ene, Where.
TOl | A B Pt (k) =441 ¢ WEEd Dsi(k) € {0,1) Dsi(k) = 1: TOl
True Class RS Decision DSi(k) = 0: TNOI
TNOI [ € | D T+ D 2

Confusion Matrix
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@

UCONN
Set of
measurements

z(k)

Previous state estimates

Is State
nitialized

xSi(k — 1|k — 1),
2Si(k — 1|k — 1)

Legend:
s;: Sensor node i

P;5<(k): Probability that the target is

located in HPS coverage area
S 4et: Set of candidate sensors

S Set of candidates with highest

energy remaining

S*: Set of selected sensors

P

pxy(k). State transition probability from

state x to state y

POSE.3C

High Power Sensing (HPS) State Algorithm

QL NkKs
0 Laboratory of Intelligent Networks

and Knowledge-Perception Systems

T tC Decision , — T LT T So—T-T-=./ S So T ===
..St?te. Y ATBEL L ass Lechion Distributed Sensor Collaboration
Initialization S M-of-N Yes —
Tr:ck [> Target } Distributed [> D'Zt(:z;tred [> Compute I
. . Classificati Fusi
Association and |5 Confirmation assification usion Selection HPS(k)
State.Estimation Validated state estimates i‘_‘ —_ oy gl = e all
using JPDA and filter gain matrix One-ste .
-step Prediction _
x%i(k|k), =y = p31(k) =1- PDLPS N P31(k) 0
25i(k|k), c te P K p32(k) = DLPS p312g€) =1- HPS(k)
Wi (k|) ompute Pjyps (k) pSi(k) =0 pss (k) = Pyhs (k)
< >
psi(k) =0
S
(k) =1- k
New Feature p32( ) Fibs () New Feature
p33(k) = Hps(k)
I Distributed Fusiof 11 Distributed Sensor Selection |
1| Trustworthy Decision Sdet SE lg-
! Sets a Fusion Ener | Compute
. Candidate gy
|| Formation & * Identification ::> HEEEL :> SR [:> s (1)
! Data g T2T Fusion If} Ranking |
I| Association & Prediction |

D.LPS" : LPS Probability of detection

Distributed Sensor Collaboration Algorithm
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UCONN Distributed Sensor Collaboration Algorithm

o . o . 1
I Distributed Fusion 1] Distributed Sensor Selection ,
| Trustworthy Decision Sdet SE I ¢
! Sets a Fusion Ener Compute
. gy | P
| Formation & : d:l":;:’:::ttiin ::> Based :> GDOP _I/‘ HPS(k‘)
l Data g T2T Fusio Ranking |
| Association & Prediction |
I = = = = = —— e o m o — — = o = = o] B
Decision Fusion
Fuse associated target class decisions using the Majority Vote. Hpg (k)

Benefits
* Forms a single class decision for each target

* Reduces energy wastage via Opportunistic Sensing of Targets Of Interest

Legend:
s;: Sensor node i

HPS(k) Probability that the target Bsi'c(k) _ |Isl (k) |
is located in HPS coverage area
S qet: Set of sensors that can detect 0
the target
Sg: Set of sensors with the highest ~§;,C  ((aS: S TS RS S;,C o~ .
energy remaining Where I (k) = {(x J, %% W>i,D J(k)),VSj € N, } € I (k) is the set of
S*: Set of selected sensors aSSOC|ated trUStWOI’thy information

z BSi(k) = 0.5

else
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Distributed Sensor Collaboration Algorithm

Distributed Fusion

|

| Trustworthy
! Sets

l| Formation &
! Data

| Association

Decision
Fusion

T2T Fusion
& Prediction

Legend:
s;: Sensor node i

HPS(k) Probability that the target
is located in HPS coverage area
S qet: Set of sensors that can detect
the target
Sk Set of sensors with the highest
energy remaining
S*: Set of selected sensors

Distributed Sensor Selection

Sdet

SE

Based
Ranking

11 Candidate ::> Energy
Identification

GDOP

1

.

IIL _______________

Key Features:
Allows for uniform energy depletion

Geometric Diversity among HPS nodes
Classification Driven Clustering

‘ik‘

QL NkKs
Laboratory of Intelligent Networks

aborator
an

d Knowledge-Perception Systems

Compute
HPS(k‘)

~

Pyps ()
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UCONN Distributed Sensor Selection Algorithm
Dsi(k) ®Si(k + 1|k) ZSi(k + 1|k)

Candidate Identification
Identify the set of sensors that can detect
the predicted target location

Sdec = {5j € (WS U s)); ||usi — HRSi(k + 11k)|| < R yips}

If 5; € Sger, 5; Will broadcast it’s energy consumed E.! (k) = Yk_, ESi(x)

Target’s Predicted Location

Legend:
s;: Sensor node i

Dsi(k): Target class decision
x5i(k + 1|k) : Predicted target
state estimate

2Si(k + 1|k) : Predicted target
covariance estimate

N%i: Set of neighbors

H: Jacobian of measurement
model

ESi(k): Energy consumption at

%

time k §* = mSaX .U(S) Candidate Region Set of Candidate Sensors, S 4.+
S*: Set of selected sensors
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UCONN Distributed Sensor Selection Algorithm

Dsi(k) =x5i(k+ 1|k) Z%(k + 1|k) Energy Based Ranking
Identify the set of sensors with the most energy remaining

1. Rank the sensors in S, by their energy remaining, E;j (k)
<.
E.’ (k) + Eyps
Eo
Ejj (k): Energy consumption up to time k

» Eyps = (eyps +ery + erx + eppy) AT
= E,:Sensor nodes initial energy

:
EJ(k)=1-

2. Select the top N.,; to form the set Sg. Note: D% (k)
F DS overns the number
Nggy = = Nyt if D¥i(k) =1 gf | g
1 else of selected sensors

Legend: Max Energy

s;: Sensor node I

Dsi(k): Target class decision
x5i(k + 1]k) : Predicted target
state estimate

ESi(k + 1|k) : Predicted target
covariance estimate

N, : Desired Number of HPS .
nodes S* = mSaX ,u(S)

S*: Set of selected sensors

Min Energy

Energy Remaining
Color Code

Set of Candidate Sensors, S, Set of Energy Ranked Sensors, S 39
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UCONN Distributed Sensor Selection Algorithm

Dsi(k) ®Si(k + 1|k) ZSi(k + 1|k) Geometrical Dilution Of Precision (GDOP)
|dentify the best set of sensors in $* that minimizes
the predicted measurement covariance error [1].

Identify the set of nodes, S, that maximizes the cost function u(g)
~ 2
~ det ] S —_ . ¢s- — si ¢s- ¢S'
u(s) = - ( ( z) , J(8) = z 0217‘2 | sm( 1) Sm( 1) COSZ( 1)
trace (](5)) s;€8 ¢'Sj|—sin (gbsj) cos (gbsj) cos (qbsj)
st[3] = Nyey = {Nsez if D%i(k) = 1

: The desired number of HPS sensors.

%

1 else

Legend:
s;: Sensor node I

Dsi(k): Target class decision
x5i(k + 1]k) : Predicted target
state estimate

ESi(k + 1|k) : Predicted target
covariance estimate

Note: DSi(k)
governs the number
of selected sensors

p

Set of Energy Ranked Sensors, SE Set of Selected Sensors, $*

N, : Desired Number of HPS .
nodes St = max ,u(S) [1] L. M. Kaplan, “Local node selection for localization in a distributed sensor network,” IEEE Transactions on
S*: Set of selected sensors S Aerospace and Electronic Systems, vol. 42, no. 1, pp. 136—-146, 2006. 40
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UCONN High Power Sensing (HPS) State Algorithm

Set of
measurements Is State State Target Class Decision R Al
z(k) S o M | Distributed Sensor Collaboration |
nitialized Initialization | P — I
-of- Target Distributed BB GEE Compute |
Track . Classification Fusion Sensor (k) |l
Association and [s— Confirmation Selection Piips :
State Estimation Validated state estimates -—== ururtralie el e iyl rali
. . . 4 ; S; &S S;ES
Prexlqus state estimates using JPDA and filter gain matrix One-step Prediction : S l
’fs;_(k — 1]k =1, x5i(k|k), o Py (k) =1- PD Lps || P31 (k) =
ik — 1]k = 1) Z5i(k(k), | PO =R | Pl =1 Py
Wi (k| k) ompute Pyps (k) pL(k) =0 p33(k) = Pyps (k)
< >
psi(k) =0
Si
pgz(k) =1- Hps(k)
pgg(k) = Hps(k)
Legend:

s;: Sensor node i
HPS(k) Probability that the target is
located in HPS coverage area
S*: Set of selected sensors
PD . ps: LPS Probability of detection

pxy(k) State transition probability from
state x to state y 41
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UCONN PFSA New Features

Multi-Modal Sensor Node Control Diagram

v’ Fuse target class information
together P11
v’ Perform distributed clustering to
determine control

v’ Performs target classification

Sensor Data
~
N
N
spuewwo) 321naQ
3ujqesig/8uiiqeuy

High Power Sensing (HPS)

) Transmitter/Receiver/
Device (e.g. Laser)

GPS
/

Data %ﬁ?fssmg Low Power Sensing (LPS)

Device Layer Device (e.g. PIR)

bR Passive Infrared Sensor 42
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UCONN Expected Energy Consumption Characteristics

Theorem 1: The expected energy consumption of the POSE.3C network during %1 0'4 Theorem 1 Validation
a AT time interval is given as

Enr(m) = NselrnEWi + (PAQ1 - Nselm)EQ;I + pAQZEQZ + pAﬂsﬁﬂs
p: Network Density

— A * Q Q* Q Q . .
e EN = E psp, '+ ;Sp3 . Expected energy consumption in Q]

ik *I
. EY = Eszeeppi) +E? Psp2 : Expected energy consumption in Qf

o EQ — Esleepp Psp2 22, Expected energy consumption in Q,

o E% = ESleepp +ED Psp2 4+ EHPSp3 *: Expected energy consumption in Q3
* Steady-state probabilities of a node being in each state within each region:

l1—«a
p11™ 0 o7 2 — psleep a
[pzl = [1 - a] ’ [ ] psleep ’
P ® 2 - psl O | | | | |
_ 1-pra i [ . ;—prazp 1 0 1 2 3 4 5
~ VPsleep — a .
% (2= =pra| 1|0 )1 paeen) m, # of TOIs in O
[52] ) -~ Pteep ’ [gz] | 2- Dsteep — 2Pfa Simulated
2— Psle(e)p — Pfa pra(l - psleep) +Psleep =0 - Psleep = 0.25 Psleep = 0.5 '.'Psleep =(0.75
_ _ | 2~ Dsteep — 2Pfa | Theoretical
~Psteep = 0 = = Pyjeep = 0.25 Pgieep = 0.5 = = Pgeep = 0.75
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@ Target’s Current Target’s P OS E 3 C @bolr:torylofIﬂlige!fNeté)rks
LocatiOIl Trajectory ] ] b . o and Knowledge-Perception Systems
UCONN Network Lifetime Definition
o © Consider:
A * Multiple targets travel through the network along similar paths
. * Apath (), contains the highest frequency of target’s traveling through it
. o * The number of targets located in (1, during each time step is 4
A L
© A
O
A A 2Rs pps
O
P =% o
O // ¢

Figure: Visual Representation of (), with 1 = 2 targets

Network Lifetime Definition: The expected network lifetime, Ty, is the
time when the energy of sensor nodes within (), reduces ton € [0,1), s.t.

— O A A © Sj Sj —
A, A \\ . o o A A ZsjESy (E() - Ec (TLife)) _
{ : 9 1o 4 ZS}'ESV 0
\ *_’ N © A A
\A * A /0 © A © Legend: Egj: Initial energy of node s;

O Sleep State A Low Power Sensing (LPS) State
<>High Power Sensing (HPS) State

Figure: POSE.3C Network

L: Length of the tube (),
R.: Communication Radius
R yps: HPS Sensing Range
Sj: Set of sensor nodes in ()

Ecsj: Energy consumed by node s;

4, : Region within R y;p¢ of targets

(1, : Region within R, and outside R yps of targets
¥ Q3,: Region outside R, of targets
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UCONN Network Lifetime Characteristics

Theorem 2: The expected lifetime of the POSE.3C network is
2pRsypsLE(AT (1 — 1)
Exr(4)

TLire(D) =

p: Network Density

R yps: HPS device sensing radius

L: Length of the target track

Ey: Initial sensor energy

n: Minimum percent of energy tolerated before (,, is considered dead

L: Length of the target track

A: Expected number of TOI'in Q,,

),: A Tube in the deployment region that contains the highest frequency of targets
Er(1): Expected energy consumption of the POSE.3C network during a AT time
interval

1 Theorem 2 Validation

07psleep:O-75)

TLife ()\apsleep)

TLife(A

0 1 2 3

A, Expected # of TOls in Q7
Simulated
+Psleep =0 '.'Psleep =0.25 Psleep =0.5 '.'Psleep =0.75
Theoretical

= _Psleep =0- _Psleep = 0.25 Psleep =05- _Psleep = 0.75
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UCONN Missed Detection Characteristics

Target Birth: The time instance when a target appears in the deployment region
Mature Target: A target that has travelled inside the region for sufficient time such that sensor collaboration has occurred

Theorem 3: The missed detection probability characteristics of a POSE.3C network are given as follows:
a) For atarget birth:

nRZayp(1 —
Pmblr > exp _( T Xp( psleep))

2 — Dsieep — 2Pfa

b) For a mature target:

(TL'R,%(X)(,D [(1 - psleep) Ty — sel a)])

P”Rs HPS

Pm,matzexp _ 2 — pg; —a
sleep

_ 2(1+BRy) (. (1+BRsups) eXp(—BRs,HPS)>
where X =1+ 5ort s (1 (1+BR,) exp(—BR,)
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UCONN Missed Detection Theorem Validation
Theorem 3a Validation: Target Birth Theorem 3b Validation: Mature Target
0.6
=
o 3
O
= ©
m —
:
(@) 2 i
- = 0.2
— =
2 3 4 N t2 <D ;{% 4
: etwor ensity,
Network Density, p  «10™ Y. p <1074
Simulated
+Psleep = 0 i Pgjeep = 0.25 Pgieep = 0.5 @ Pgreep = 0.75
Theoretical
- _Psleep =0- _Psleep =0.25 Psleep =0.5- _Psleep =(0.75 47
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UCONN Network Lifetime Comparison
POSE.3C Autonomous Node Selection (ANS) [1] LPS-HPS Scheme Random Scheduling Scheme
: A Distributed Sensor Selection Method that Distributed detection- Distributed Probabilistic sensor

utilizes GDOP as the cost function based sensor activation activation.

o Selected =1 e o Detection=1 =
0 o D S &
psy & Selected=0 - = Detection = Q - h
D22
Network Lifetime Normalized by the Lifetime of the POSE.3C Network with 4 = 0
0.35 T T T T T T I
) -
0.3 N =2
A=3
5 0.25 -
=1 02 y
— ko
=
L5 L 015 8
S
= o -
0 1 IR mEn mmo
POSE.3C POSE.3C ANS LPS-HPS RAND RAND RAND
A: Expected number of targets TNOI TOI ,=05 P_ =025 P __ =0 48
ran ran ran
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UCONN Estimation Error Comparison
27 Position Root Mean 27 Velocity Root Mean
Squared Error Squared Error
1.57 1.5
— w
E £
5 .
\.‘{ ’\'_,0",'\, .- Y e TN s ¥ i > LK ..,‘_ SN WY, - S - [OOSR  J e
TARRATSS Y 0 A S L N vy 0.5  {RRE=R, “ -
NN e O O 5 D PG
0 | | ! ! 0 | | ! !
0 50 100 150 200 0 50 100 150 200
Time (s) Time (s)
Legend

-0 ‘POSE.C TOl ~~POSE.C TNOI —={-ANS [ LPS-HPS
~+- RAND, P, ;g = 0 ~~RAND, P,gng = 0.25--RAND, P, 4ng = 0.5
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Conclusions and Limitations

Target

; Location

A * o/
N :

(o) A (TOD)
/
Target’s O
Predicted -

o Trajectory (@) A

Target Of Interest

o // A \\
;A
/ ¢
I A 8 A
]
l\ A i
A

o,. :;o

/ Distributed

/

Target Not
Of Interest (TINOI)

(®) Target’s Current \
Location
(@)
A
o Predicted I-[PS
Detection Region 0
O
A Target A 0o
Of Interest (TOT)
O o

A

Sensor Node

Opportunistic
Sensing A
(@)
o
A

O Sleep State A Low Power Sensing (LPS) State OHigh Power Sensing (HPS) State

The POSE.3C algorithm:
* Distributed classification for opportunistic sensing of TOI

\ * Distributed clustering for minimizing energy wastage

* Distributed control

* Theoretical properties of energy consumption, network
lifetime, missed detections

* Extended the network lifetime

* Accurate state estimation

POSE.3C Algorithm Limitations:
* Does not address multiple co-located node failures
* Network density around target is not used for control

Theme 3: Prediction-based Opportunistic
Sensing for Resilience (POSE.R)
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Main Idea
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. A O A
//Eoverage Gap>
i D\ o
A ® ©® \\
,I R Gap * @ | A
' I
O \\ @ : /I
\ /
‘ \\ * @ //
\\\ @ / A O
o ~~_]_- /\
¢ <>T N
arget
A <> <> Predicted HPS
Detection Area
o A A A
') Sensor Node (®)
A o \‘A
0)

O Sleep State A Low Power Sensing (LPS) State
Q High Power Sensing (HPS) State @ Failed Node

a

Target Coverage

/

>

>
>

Resilience
Nodes Fail

= Component degradation, Hardware failures, Malicious attacks,
Battery Depletion, etc.

Non-uniform Deployment
Multiple collocated node failures result in a coverage gap

-

Proposed Solution

/Opportunistically Adjust Sensing Range to fill

coverage gaps

\- Optimize network lifetime while ensuring coverage

~
Current Adjustable Range Selection Methods

* Optimize probability of detection while minimizing the
number of sensors active

* Jointly optimize detection and connectivity

AN

s

Research Gaps
v Resilient target coverage does not exist
v" Only consider stationary targets
v Do not consider sensor node failures

\

N

A

=

~
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UCONN Multi-modal Sensor Node Description
New Feature
_ _ High Power Sensing
Data Processing Unit «— Device (e.g. Laser)
HPS Sensing Radius
Low Power Sensing Transmitter/Receiver/ R H ps(k) = {Rq, ..., R}

Device (e.g. PIR) GPS

* Range can be expanded at the cost of energy

Figure: Multi-Modal Sensor Node Example

Energy Model
New Feature

Individual Sensor node energy consumption [1,2]: Network energy consumption:

ESi(k) = z z ejsi l(k)AT + eHPSRs 4ips (X5 (OAT E,..(k) = i E®i(k)
k|

=1

. ejsi: The rate of energy consumption per unit time of device
j € (DPU, LPS,TX, RX, Clock) * n: Number of sensor nodes deployed

* eyps: Energy consumption cost of the HPS device

. )(;"(k) € {0,1}: Indicates whether the device is On or Off at time k

* AT:The sampling interval

[1] ). Chen, K. Cao, K. Li, and Y. Sun, “Distributed sensor activation algorithm for target tracking with binary sensor networks,” Cluster Computing, vol. 14, no. 1, pp. 55-64, 2011
[2] Jia, Jie, et al. "Multi-objective optimization for coverage control in wireless sensor network with adjustable sensing radius." Computers & Mathematics with 59
lications 57.11 (2009): 1767-1775.




A

Low Density Target
Detection Region A \\«” Trajectory
forming a Coverage Gap

High Density

Target Detection
A Region
Sensor Node O
\‘A A

Target Current
Location

O Sleep State A Low Power Sensing (LPS) State <>High Power Sensing (HPS) State

6) LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems

Opportunistically turn-on high power
sensing on 3 selected sensors around
the predicted position of the target and
also adjust their sensing ranges to
accommodate for low sensing densities
and coverage gaps.

Algorithm Improvements:
Distributed density identification
Distributed Clustering to ensure
N, —coverage degree
Resilient to sensor failures or
sparse deployment

Target Coverage Degree
Number of nodes covering the
target with the HPS devices
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UCONN

P33

LPS: Low Power Sensing
HPS: High Power Sensing

‘97 LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems

POSE.R

Sleep State Algorithm

Objective
Minimize energy consumption by disabling all devices

Description
Designed to minimize energy consumption when a target is away
from the sensor node

All devices except a clock are disabled
Once deployed, all sensor nodes start in this state

State Transition Probabirlities
Sleep | LPS | HPS
Si S; Si
pll1 = Dsleep ‘ p1lz =1- Psieep ‘ p113 =0

Where pgieep € [0,1] is a design parameter
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UCONN Low Power Sensing (LPS) State Algorithm

New Features
» Adaptive sensor selection for resilient target coverage

New Feature

p T N i S = = e rylonti
+ I Distributed Sensor Colwlon
I N

|
P2 e d |
I LPS Distributed [> Asd::st;‘:e f‘> Compute :
Detect Fusion ) (k) |1
Selection HPS :
Legend: —_— e e e e e e - = ———— - - N
sl Sensor node i @Si €S S; €S
PD . ps: Probability of detection of LPS Device p;;(k) =1- PDS,iLPS p21(k) =1-— PD | ps pgl(k) =0
HPS(k) Probability that the target is P;lz(k) — O pzz(k) _ DLPS p;lz(k) —1— HPS(RS HPS(k))
located in HPS coverage area _ s .
S*: Set of selected nodes p23(k) D LPS ng(k) =0 ng(k) HPS(RS Hpg(k))

p;;, (k): State transition probability from

Figure: Low Power Sensing State Algorithm
state x to state y 55
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UCONN High Power Sensing (HPS) State Algorithm

New Features
» HPS device sensing range may vary based target
location and network density

P33
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UCONN High Power Sensing (HPS) State Algorithm

Validated state estimates

and filter gain matrix New Feature
Set of ?Si(k|k),
measurements Xi(kl|k), o T TR B
’ Is State State N, n | Distributed Sensor Col@Soration |
z(k) nitializeg Initialization S M-of-N Adant I
Distributed | N| aprive Compute I
Track Fusion /| Sensor (k) |I
Association and [s— Confirmation Selection Pyips |
State Estimation _—— - e ——
Previous state estimates using JPDA One-sten Prediction {; i €5 i €S
AG: - Si
ik — 1|k = 1), P pai(k) =1— PD s pai(k) =0
Si _ _ { }
pX l(k 1|k 1) Si p32(k) DLPS p32(k) =1- PHpg( SHPS(k))
Compute Py, (k) (k) = 0
Pas() = pas (k) = (k)
< 33 HP.S‘ sHPS
pyi (k) =0
p32(k) =1- PHPS( SHPS(k))
p33(k) = HPS ( SHP.S‘(k)) Please see the puplis_hed paper for de_tailed
and updated descriptions of the material.

Legend:
s;: Sensor node i

HPS(k) Probability that the target is
located in HPS coverage area
PD LpstLPS device Probability of detection
S*: Set of selected sensors
p;; (k): State transition probability from

state x to state y >/



ShalabhGupta
Text Box
Please see the published paper for detailed and updated descriptions of the material. 


¥

UCONN

Desired Coverage Degree
Nsel

Predicted Target Estimate »

x5i(k + 1|k), 25 (k + 1]k)
Radius of Candidate Region
Raet = Ry

EGOP: Energy-based
Geometric Dilution Of
Precision

Legend:
s;: Sensor node i

R*: Set of HPS ranges for each
selected node

N/,;: Number of players for range

selection game

POSE.R

6) LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems

High Power Sensing (HPS) State Algorithm

Set of Candidate

Sensors, Set of Selected Game Leader
Saie Sensors, S* S Yes
Candidate Leader Partition Target .
cps a: Maxlogit
Identification » Ao # Identification # CoverageArea # g #
No
Low Density or Wait for Action

Coverage Gap

Adjusts radius of candidate region

and desired coverage degree
_— _— !
Rdet - RLaNsel - Nsel

Adaptive Sensor Selection

Potential Game for Optimal Range Selection

§* N, -Coverage
R*Degree is sufficient
w/ HPS range R;

Please see the published paper for detailed
and updated descriptions of the material.

S*
R*
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UCONN High Power Sensing (HPS) State Algorithm

QL NkKs
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and Knowledge-Perception Systems

Adaptive Sensor Selection

Set of Candidate Potential Game for Optimal Range Selection
Desired Coverage Degree Sensors,  Set of Selectfd Game Leader
Ngop Saie Sensors, § Vs s, Yes
Predicted Target Estimate > Candidate i> ¢> > Leader §> Partition Target f'> N
s os e . EGDOP Rt =R pe s Maxlogit .
x°i(k + 11k), 2% (k + 1]k) [ Identification GbO det = Z Identification . Coverage Area Y R
Radius of Candidate Region No N
o
Raget = Ry "
Low Density or Wait for Action

Coverage Gap No

EGOP: Energy-based

Geometric Dilution Of : : : :
Precision Adjusts raius of candidate region

~

N,.;-Coverage
*Degree is sufficient

and desfed coverage degree w/ HPS range R,
!
RLaNseI - Nsel
Target’s Predicted Location
Candidate Identification 7 7

Identify if node s; is a candidate for tracking the target

Legend: ' Please see the published paper for detailed
s;: Sensor node i and updated descriptions of the material.
R*: Set of HPS ranges for each

selected node
N/,;: Number of players for range
selection game

Candidate Region

7

Set of Candidate Sensors, § jer
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UCONN High Power Sensing (HPS) State Algorithm

Adaptive Sensor Selection

Set of Candidate Potential Game for Optimal Range Selection
Desired Coverage Degree Senso& _set of Selected Game Leader
Neos S{e Sensdrs, S* § Sy Yes
Predicted Target Estimate Candidate =2 Leader Partition Target . S*
®5i(k + 1]k), i (k + 1]k) » Identification EGDOP H Identification # Coverage Area # Maxlogit # R~
Radius of Candidate Region No NoO
Raget = Ry
Low Density or Wait for Action

EGOP: Energy-based Coverage Gap

G tric Dilution Of §* N, -Coverage
eometric Dilution . . e
Precision Adjusts radius of candidate region R*Degree is sufficient

and desired coverage degree w/ HPS range R,
I
Raet = Ry Nset = Ngey

Legend:
s;: Sensor node i

R*: Set of HPS ranges for each

selected node

N/,;: Number of players for range

selection game 60
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UCONN High Power Sensing (HPS) State Algorithm

Energy-based Geometrical Dilution Of Precision (EGDOP)
Identify the best set of sensors in $* that are geometrically diverse with high energy.

Max Energy
Key difference between EGDOP and GDOP:
* GDOP minimizes the predicted covariance
and does not use energy
« EGDOP scales predicted covariance with
Min Energy energy remaining

Energy Color Code

7

Set of Candidate Sensors, S,  Set of Selected Sensors, S* Fisher Information Matrix
Process: <
~ S . 2 .
_ det (](S)) _ ERJ sin (qbsj) — sin (qbsj) cos (qbsj)
S) = —\’ ](S) = 2 o2 ) 2
trace (](S)) Sng ¢.norm Sj,MOTM | — sin (¢S]) cos (¢S]) cos (¢S])

S.t. |§| - Nsel and
. E;f = EoE, Energy Remaining for sensor node s;

0
2

2 _ 9% . . . .
Opnorm = 3z° Normalized Azimuth Measurement noise
Ts]-
Rget

. rszj"norm = ( ) : Normalized Range from the target -
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High Power Sensing (HPS) State Algorithm

QL NkKs
0 Laboratory of Intelligent Networks

and Knowledge-Perception Systems

Desired Coverage Degree
Nsel

Predicted Target Estimate [>

x5i(k + 1k), E%(k + 1]k)
Radius of Candidate Region
Raet = Ry

EGOP: Energy-based
Geometric Dilution Of
Precision

Adaptive Sensor Selection

Set of Candidate
Sensors,
Sde

Set of Sedactesh == =

Potential Game for Optimal Range Selection

Game Leader

Candidate
Identification

4

Senslars, S
EGDOP [P

Leader

Identification

_!_

Yes
Raet = Ry,
No

Low Density or

S Yes
Partition Target j) . HA\ SF
Maxlogit
§> . Coverage Area 0B by g+
LLNo
Wait for Action

Coverage Gap

Yes | g+

Adjusts radius of candidate region
and desired coverage degr@!‘ —
Rget = Ry, Ngep =

!
sel

N,.;-Coverage

| R*Degree is sufficient
w/ HPS range Ry

Please see the published paper
for detailed and updated
descriptions of the material.

Legend:
s;: Sensor node i

R*: Set of HPS ranges for each
selected node

N/,;: Number of players for range
selection game

Check R{-Coverage Degree

Insufficient: < Ng,; nodesin S*

=

Rl - 30—%‘

» ldentifies gap/

>

¢

>

7

Set of Selected Sensors, s*

Optimal range

Rl - 30—)1

insufficient coverage
Requires Expanding
Candidate Region

selection requires

7

R1 - 30-x

b>\
A M
I

Ry

7

Set of Selected Sensors, $*

Sufficient: Ng,; nodes in §*

> Sensor Selection is
Complete
> R" = {R1|Vsj € S*}

62



ShalabhGupta
Text Box
Please see the published paper for detailed and updated descriptions of the material. 


W POSE.R AL

UCONN High Power Sensing (HPS) State Algorithm
Adaptive Sensor Selection

Set of Candidate Potential Game for Optimal Range Selection
Desired Coverage Degree Sensors, Set of Selected Game Leader

Nger Sde Sensors, S yeJ R ——

L Yes
Predicted Target Estimate Candidate Leader Partition Target . S*
g a: Maxlogit .
Identification Coverage Area R
No

EGDOP

®°i(k + 1]k), £%i(k + 1]k) /| Identification
Radius of Candidate Region L

Raet = Ry
Low Density or Wait for Action
Coverage Gap g+ N, N coverage
EGOP: Energy-based Adjusts radius of candidate region R*Degreg s sufficient
Geometric Dilution Of and desired coverage degree w/ HJS range R,
Precision Rger = Ry, Nget = Ny

Leader Identification
Identify the Game coordinator to identify the players actions.

s, = argmax E,’
S:

Legend: y

s;: Sensor node i

R*: Set of HPS ranges for each

selected node

N/,;: Number of players for range

selection game 63

Where Ef.j is the energy remaining of node s;
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UCONN High Power Sensing (HPS) State Algorithm
Adaptive Sensor Selection

Set of Candidate Potential Game for Optimal Range Selection

Desired Coverage Degree Sensors, Set of Select:ed Game Leader
Ny, Sae Sensors, § sy Yog ™ = = = == = =
. ) - iti . S*
AP;edmted TarEeS’F Estimate » Canf:ll-dat-e EGDOP Le_afjer_ Partition Target Maxlogit .
x°i(k + 11k), 2% (k + 1]k) Identification Identification Coverage Area R
Radius of Candidate Region No ™= == == == == == == =
o
Raet = Ry
Low Density or Wait for Action
Coverage Ga
° 0 §* N,.;-Coverage
EGOP: Energy-based Adjusts radius of candidate region R*Degree is sufficient
Geometric Dilution Of and desired coverage degree w/ HPS range R,
Precision Rger = Ry, Nget = Ny

Legend:
s;: Sensor node i

R*: Set of HPS ranges for each

selected node

N/,;: Number of players for range

selection game 64
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Potential Game Objective

Objective: Select the optimal sensing range for each node s; € §%, s.t.

1.
2.

Achieve Ng,;-Coverage, i.e. maximize target coverage
Minimize selected sensing range, R*J, i.e. minimize redundant coverage

Potential Game Preliminaries:

Players: The set of nodes selected using EGDOP, $*

Set of Actions: Each action, a; € A;, represents the nodes sensing range during the next time
step, where A; = {Ry, Ry, ..., R, } is the set of actions or each player and Ry = Om

Utility Function: U;(a;, a_;) is the node utility function

Potential Function ®(a;, a_;): The global objective function

Potential Game Requirement:

Ui (a£; a—i) - Ui(a£,; a—i) = CD(a£; a—i) - cb(a£,; a—i)

Va{,a{' € Ai and Va_i € A—i

Advantage:
1.

2.
3.
4

There exists at least one pure-strategy Nash Equilibrium

The best equilibrium is the maximizer of the Potential Function

There exist learning algorithms, e.g. Maxlogit, that quickly converge to the best equilibrium
Fits the distributed framework of the network
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Sensor Range Selection Game

Potential Function Design

v v
®(a) = z z v nBjn(a) —

j=1h=1

ZS]'ES* EC(a])

S*|Ec(Ry)

vj p: Cell worth
B; n(a): Coverage Function

AT . eLPS lf aj = RO

S
AT - e’ . 1 + R
Ec(aj) = { eHPS(a]) if @ # %: The energy cost by

taking action q;

6) LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems
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POSE.R Algorithm

Sensor Range Selection Game

Potential Function Design

j=1h=1 A

|74 |74
Ys.estEcla;
®(a) = zZvj,th,h(a) _Zsjes Bela))

S*|Ec(Ry)

*  Ujp: Cell worth

*  Bjn(a): Coverage Jfnction

Achieve N ;-Coverage, i.e.
maximize target coverage

Si .
'eH]Ps(aj) if a; #
AT . eLPS lf aj =

%: The energy cokt by

Ro

Minimize selected sensing range, R/,
i.e. minimize redundant coverage

Please see the published paper for detailed
and updated descriptions of the material.

6) LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems
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UCONN Sensor Range Selection Game
Potential Function Design

vV oV
| Zs]-ES* EC(a])
P(a) = z j'h(a) IS*IE.(RL)

j=1

*  VUjp: Cell worth
* Bjn(a): Coverage Function

N
AT - e’ . i .+ R
Ec(aj) = eHPS(aJ) l,f % 7 70, 1he energy cost by taking action q;
AT'eLPS lf aj =R0

and Knowledge-Perception Systems

6) LINKS
Laboratory of Intelligent Networks

Target’s Predicted Target’s Predicted Partition
Position, Z°L (k + 1|k)  Position Uncertainty, Region Cell,

60'y f;L (k + 1|k) -ij,h Partition Region
2
/ / 3o
60'x - .Qg - .

0.06

0.04

0.02

y Position

x Position

Cell Worth

W ([ vgal 25 G + 1100, Z54 (e 4 11K

vj,h =

C1

. [xﬁh, y]fh]: The center points of the cell Q,,j,h
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UCONN Sensor Range Selection Game
Potential Function Design

Vv v
0=y Yo o}
a) = V; inla
]' ],h *
j=1h=1 |S |EC (RL) Please see the published paper for detailed
and updated descriptions of the material.

*  VUjp: Cell worth
* Bjn(a): Coverage Function

N
AT - e’ . i .+ R
Ec(aj) = eHPS(a]) l,f % 7 70, 1he energy cost by taking action q;
AT'eLPS lf aj =R0

Desired C°Ve’age\'39gfee' Nser Coverage Function Properties
1o | | 1. The coverage degree of the target’s predicted position is Ny, if:
Coverage Function Design
AB;p,(a) 2 —————,YNg. . (@) <N
. 1t j.h * ’ Bjn sel
0.5 Npj(@)  if Np(@) S Noot xIS7IR,
Bin(a) = ; = AB; (@) < ———,YNg  (a) > N
0.5 (6 — NB].‘h(a)) if NB].‘h(a) >Ny o o j,n\a xIS*IR, " Bin a sel
* N, (a): Number of nodes covering cell Oy, Where AB; ,(a) = Bj (Nth(a)> — Bjp (NB].h(a) — 1) ,and AR =
with joint action a 0 ‘ ‘ R, —R,.
0 2 ' 4 6 ’
NB (a) 2. The total coverage worth achieved by a node s;s best action a; is:

j,h

Vv Vv
Figure: Example of Coverage Function Z 2 vin 1 AR
j=1h=1

BB, (a)IS7IR,

69



ShalabhGupta
Text Box
Please see the published paper for detailed and updated descriptions of the material. 


L] POSE.R Algorithm GhLLNks

UCONN Sensor Range Selection Game
Potential Function Design

Vv Vv
Zs-e *EC(a')
d(a) = z z vinBjn(a) |.S]'*TE (RL;
j=1h=1 -

*  VUjp: Cell worth
* Bjn(a): Coverage Function

<

AT - e’ . i .+ R

Ec(aj) = eHPS(a]) l,f % 7 70, 1he energy cost by taking action q;
AT . eLpS lf aj == RO

The normalized energy consumption of the joint action
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Sensor Range Selection Game

Potential Function Design

Vv Vv
Zs-e *Ec(a')
®(a) = Z Z VinBjn(a) = |.S]'*|SEC(RL;
j=1h=1

*  Ujp: Cell worth
* Bjn(a): Coverage Function
N
AT - (a;) if a; # R
Ec(aj) = eHPS(aJ) l_f % 7 0. 1he energy cost by taking action g;
AT . eLPS lf aj ES RO

Utility Function Design using Marginal Contribution
Ui(aj,a_y) = ®(a;,a_;) — ®(@,a_;)

Ec(a;) — Ec(Ro)
1S*|Ec(RL)

%
Ui(a;,a_;) = Z Vjn (Bj,h(ai;a—i) — B; (R, a—i)) —

Proposition 1: The designed utility function results in a Potential Game
Proof:

Ui(a;’,a_;) —Ui(a;',a_;) = ®(a;’,a_;) — ®(@,a_;) — ®(ai’,a_;) + ®(@,a_;)
Ui(a;',a_;) — Ui(afl' a_;) = ®(a;’,a_;) — q’(a?, a—;)

6) LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems
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High Power Sensing (HPS) State Algorithm
Compute the Optimal Sensing Ranges using Maxlogit [1]

Set of Players
Partition Region Maxlosit Optimal sensing ranges:
axiogi o *
_Qg * g R
Cell worth
vj’h '

R” is found using the Maxlogit Learning Algorithm [1]:

[EEN

. Select a Player at random and choose a new action, a’’/, for that player according to a uniform distribution
2. Compute the sensor node utility for the selected player using the previous action a; and the new action a;’
Usi(aél,a_i)

3. Compute the deviation probability as follows: u =
max(e

* T:Learning parameter

a; withPr=1—
4. Determine the players next action as follows: a(s;) = { ; with Pr = p :

a;

5. Repeat for Nj;,., iterations

[1] H. Dai, Y. Huang, and L. Yang, “Game theoretic max-logit learning approaches for joint base station selection and resource allocation in heterogeneous

networks,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 6, pp. 1068-1081, 2015. 72
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UCONN High Power Sensing (HPS) State Algorithm

Validated state estimates
and filter gain matrix

Set of ?Si(k|k),
measurements Xi(kl|k), T R S
’ Is State State N, n | Distributed Sensor Collaboration |
z(k) nitializeg Initialization S M-of-N Adant I
Distributed | N| aprive Compute I
Track Fusion /| Sensor (k) |I
Association and [s— Confirmation Selection Pyips |
State Estimation _—— - e ——
Previous state estimates using JPDA o Predi {; Si €5 Si €S
%5i(k — 1|k — 1), ne-step Prediction Pgl(k) —1— PD - p;il(k) —0
s B I
hX l(k 1|k 1) S; p32(k) DLPS p32(k) =1- PHpg( SHPS(k))
Compute Py, (k) (k) = 0
Pas() = pas (k) = (k)
< 33 HP.S‘ SHPS
pyi (k) =0
p32(k) =1- PHPS( SHPS(k))
p33(k) = HPS( sHP.S‘(k))
Legend:
s;: Sensor node i
HPS(k) Probability that the target is Please see the published paper for detailed
located in HPS coverage area and updated descriptions of the material.

PD LpstLPS device Probability of detection
S*: Set of selected sensors
p;; (k): State transition probability from

state x to state y /3
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UCONN

v’ Identifies density around target’s

predicted location

v’ Selects optimal sensors and their

sensing ranges

Sensor Data

and Knowledge-Perception Systems

POSE.R AR

PFSA Overview

Multi-Modal Sensor Node Control Diagram

v’ Uses Optimal Sensing Range

High Power Sensing (HPS)
Device (e.g. Laser)

Data Processing
Unit
Device Layer

spuewwo) 3adinaQg
3ujqesig/8uiiqeuy

Transmitter/Receiver/

GPS
/

Low Power Sensing (LPS)
Device (e.g. PIR)

PIR: Passive Infrared Sensor
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UCONN Characteristics Compared with Existing Techniques
Missed Detection Avg. Energy Consumption Avg. Energy Consumption
Probability 8 Around Target 8 - Away from Target
0.4 -
6 -
0.3 - ~
0502 '2 7
0.1+ 2 5
0 -
O -
4 12 Ty 40 _ 1T 30 40 50 6C . T 30 40 50 6
x10 : HPS Range 1073 HPS R 9 :
Network Density Network Density ange etwork Density HPS Range

POSE.R, Psteep = 0.5 | |ANS | tPs-HPS [JRAND, prang = 0| RAND, prang = 0.25 [ RAND, prana = 0.5 ‘
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UCONN Network Lifetime Compared with Existing Techniques
| 0.5 1 =
50.8 .
I
% 061 ©
&)1 0.4 I
502 —— . POSER, p,,=0.5
i ‘ e . ]ANS
30 1.2 14 30 40 1 1214 LPS-HPS
600.6 0.8 50 600.6 0.8 5
10
HPS Range (m) Network Density, p «10”  HPS Range (m) Network Density>f 0 -RAND Prang=Y
0.5 - =2 05 - A=3 RAND, prand—0.25
IRAND, p_ =05

Trife(*)

O—W O—W
30 40 50 gppp o081 12714 30 40 50 goopo081 1274

x10°  HPSR %107
HPS Range (m) Network Density, p ange (m) Network Density, p 76
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UCONN Position Root Mean Squared Error Comparison
Network Density, p = 1. 4e~3

RHPS=30m RHPS=36m RHPS=42m
0.15¢ 0.157 0.15¢
o 5, IR LU= S < ':: "";.f
holiastidiehalTa s R
= = 8 ﬂp«“ ¥ A"«'-'!M?k-? 230 ¥ “‘}{mr%‘{"‘& bl el e S al
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of the results.

Network Resiliency Compared with Existing Techniques

All nodes within a radius R, of the targets position at k = 50s have failed
Rgqp was varied between [30m, 50m] for a Network Density p = 1.4e73
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Network Resiliency Compared with Existing Techniques

All nodes within a radius R, of the targets position at k = 50s have failed
Rgap was varied between [30m, 50m] for a Network Density p = 1.4e3
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@ Conclusion

UCONN
Objective: Develop a network autonomy approach that utilizes distributed supervisors (Probabilistic Finite State Automaton) to
probabilistically control multi-modal sensor nodes that meets the following requirements:

v'  Extended network lifetime Please see the published POSE.R
v"  Resilient ta rget coverage paper for results of comparative
v High tracking accuracy evaluation of POSE, POSE.3C and
POSE.R networks.
v" Low missed detection rates Target Coverage‘
Energy Efficiency Resilience

> Classification feedback
> Sensor selection

» Resilient Target Coverage

O Distributed Supervisors for probabilistic O Distributed Classification for opportunistic O Prediction-based Opportunistic Coverage
control of Multi-modal sensor nodes sensing of Targets Of Interest O Resilient target coverage via distributed
Q Prediction-based Opportunistic Sensing O Distributed Clustering via efficient sensors learning and sensor range adjustment
selection O Enhanced distributed clustering

for energy-efficient control
O Distributed Control

Novel Contributions 81
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Please see the published POSE.R paper for results of comparative evaluation of POSE, POSE.3C and POSE.R networks. 
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