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Introduction

❖ Objective: Develop an online coverage path planning algorithm for energy-constrained 
vehicles

❖ Background: 

• Battery powered coverage (BPC) algorithm [1]

▪ Generate difficult-to-follow and less desirable contour path

▪ Produce redundant paths with longer length

• Energy-constrained coverage algorithm [2]

▪ Rely on the a priori knowledge of the environment, thus it’s performance can degrade if 
the knowledge is incomplete or incorrect

• 𝜖⋆ algorithm [3] for complete coverage

▪ Use Exploratory Turing Machine (ETM) as a supervisor

▪ Limitation: it didn’t consider the limited energy capacity of the vehicle, i.e., while 
executing a coverage trajectory, the vehicle has to return to the charging station for a 
recharge before the battery runs out

3



8/31/2020

Introduction

❖ Highlights of the 𝜖⋆+ Algorithm:

▪ Presents online coverage path planning of unknown environments using energy-
constrained vehicles

▪ The remaining energy is monitored throughout the coverage process

▪ Before the battery runs out, the vehicle returns to the charging station by following the 
computed retreat trajectory

▪ After getting a full recharge, the computed advance trajectory takes the vehicle to the
new coverage start point to restart the coverage process

❖ Benefits and Contributions of the 𝜖⋆+ Algorithm: 

▪ Produces easy-to-follow and user-desired back-and-forth trajectories

▪ Chooses a nearby unexplored cell as the new coverage start point after each recharging 
to avoid longer travel to the cell from where it retreated back

▪ Guarantees complete coverage with minimum overlaps

▪ Works in unknown environments

▪ Computationally efficient for real-time implementation
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Problem Statement

❖ Let 𝐴 ⊂ ℝ2 be the estimated area that includes the 
desired area to cover.

❖ Tiling: The set 𝑇 = {𝜏𝑖 ⊂ ℝ2: 𝑖 = 1… |𝑇|} is called a tiling 
of 𝐴 if its elements, called cells:

▪ have mutually exclusive interiors, i.e., 𝜏𝑖
0 ∩ 𝜏𝑗

0 =

∅,∀𝑖 ≠ 𝑗, where 𝑖, 𝑗 ∈ {1… |𝑇|}, and superscript 0
denotes the interior of a cell

▪ form a cover of 𝐴, i.e., 𝐴 ⊆∪𝑖=1
|𝑇|

𝜏𝑖, while removal 

of any cell destroys the covering property

❖ The tiling 𝑇 is partitioned into two subsets:

▪ Obstacle cells (𝑇𝑜): they are occupied by obstacles 
and detected online

▪ Allowed cells (𝑇𝑎): these are free of the obstacles 
and further classified as unexplored and explored

Fig. Tiling of the Search Area

5



8/31/2020

Problem Statement

❖ Let 𝐴(𝑇𝑎) denote the total area of the allowed cells in 
𝑇𝑎 ⊆ 𝑇. Let 𝜏𝑐 ∈ 𝑇 be the cell at which the charging 
station is located. Let 𝐸0 ∈ ℝ+ be the total energy that 
the vehicle has under full charge. 

❖ Trajectory: A trajectory 𝜋 is defined as a sequence of 
cells visited by the autonomous vehicle consisting of 
three segments: i) advance, ii) coverage, and iii) retreat.

▪ The advance segment takes the vehicle from the 
charging station to an unexplored cell

▪ The coverage segment performs coverage of 
unexplored cells using the 𝜖⋆ algorithm till the 
vehicle’s battery depletes to the extent that allows 
it to go back to the charging station

▪ The retreat segment brings the vehicle back to the 
charging station along the shorter path

Fig. Tiling of the Search Area

❖ Online Energy-Constrained Coverage Problem: Let 𝐴(𝜋𝑛) denote the area covered by a 
trajectory 𝜋𝑛. Then the goal is to find an ordered set of trajectories Π = 𝜋1, ⋯ , 𝜋𝑁 such that:

• Each trajectory 𝜋𝑛 ∈ Π starts and ends at 𝜏𝑐
• Each trajectory 𝜋𝑛 ∈ Π consumes energy 𝐸 𝜋𝑛 ≤ 𝐸0
• Π forms a cover of 𝐴(𝑇𝑎), i.e., 𝐴(𝑇𝑎) ⊆∪𝑛=1

𝑁 𝐴(𝜋𝑛)
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Exploratory Turing Machine (ETM)
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❖ Summary of the 𝜖⋆ Algorithm :

• During the coverage process, the environmental information is encoded on the symbolic 
map, which is used to dynamically construct the Multi-scale Potential Surfaces (MAPS)

• By default, the ETM uses the lowest level of MAPS for generating the back-and-forth 
coverage path online

▪ The navigation goal is selected as centroid of the cell that possesses the highest positive 
potential in the vehicle’s local neighborhood

▪ If multiple cells have the same highest positive potential, the vehicle selects the cell 
with the least travel cost to reach it

• It switches to higher levels of MAPS as needed to escape from a local extremum

▪ It sequentially switches to higher levels of MAPS, until a coarse cell with highest 
positive potential is found in the local neighborhood

▪ Within the selected coarse cell, the unexplored cell at the finest level is randomly 
picked as the goal
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❖ Computation of the Retreat Trajectory:

• Each time the navigation waypoint is computed by the 𝜖⋆ algorithm, the retreat trajectory is 
computed from this waypoint to the charging station as the shortest path using visibility 
graph [4] and 𝐴⋆ search [5]

▪ The visibility graph is extracted from the latest symbolically encoded tiling structure

▪ The retreat path is obtained by performing 𝐴⋆ search on the visibility graph

• The expected energy consumption, for retreating to the charging station, is evaluated 
against the vehicle’s remaining energy, such that it can maintain sufficient energy for 
returning to the charging station after covering the navigation waypoint

▪ If the remaining energy is less than the expected energy consumption for covering the 
next navigation waypoint and then retreating to the charging station, then the vehicle 
returns back to the charging station
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❖ Energy consumption: the energy consumption of the vehicle is modeled as proportional 
to the trajectory length for the advance and retreat segments, while it is twice this 
amount for coverage segment.



Methodology
Novel Features of the 𝜖⋆+ Algorithm

8/31/2020

❖ Computation of the Advance Trajectory:

• At the charging station, the vehicle uses the MAPS structure of the 𝜖⋆ algorithm to find a 
nearby unexplored point

▪ The 𝜖⋆ algorithm switches to a coarse level on the MAPS until it finds an unexplored 
coarse cell with the highest positive potential

▪ Within the coarse cell, the closest unexplored cell at the finest level is selected as the 
new coverage start point

• The advance trajectory from the charging station to the selected coverage start point is 
computed using the visibility graph and the 𝐴⋆ search 
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Methodology
Execution Example
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Simulation Validations
Simulation Setup

❖ A high-fidelity simulator called Player/Stage [6] is used for simulation

❖ Autonomous Vehicle: a Pioneer AT2 of dimensions 0.44m × 0.38m × 0.22m was used with constraints: 
▪ Total energy capacity: 320 units
▪ Top speed: 0.5m/s
▪ Maximum acceleration: 0.5m/s2

▪ Top turning rate: 60 Τdegree s

❖ Sensing systems
▪ Sonar: 16-beam with detection range of 5m

❖ Search Area: the search area is of size 50m × 50m, which is partitioned into a 50 × 50 tiling consisting 
of cells of size 1m × 1m.

Scenario 1 Scenario 2
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Fig. The vehicle trajectory showing complete coverage of the search area of scenario 1

Simulation Validations
Simulation Results
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Energy runs low, and 
the vehicle returns to 
the charging station 

The vehicle advances to the 
nearby coverage start point

Complete coverage is achieved, 
and the vehicle returns to the 
charging station
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Simulation Validations
Simulation Results

Fig. The vehicle trajectory showing complete coverage of the search area of scenario 2
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Energy runs low, and 
the vehicle returns to 
the charging station 

The vehicle advances to the 
nearby coverage start point

Complete coverage is achieved, 
and the vehicle returns to the 
charging station



❖ Conclusions
• An online algorithm for complete coverage of unknown environments using energy-constrained vehicle 

is proposed

• The vehicle is able to autonomously navigate in an unknown environment while avoiding the obstacles 
and maintaining the sufficient energy for retreating to the charging station as needed

• The performance of proposed method is validated on two complex scenarios in Player/Stage

❖ Future Work
• Extend the algorithm to the problem to consider kinematic constraints, multi-agent systems, and risk
• Variable-speed and acceleration constraints may be considered to make the vehicle motion more 

realistic
• A sample-based approach for coverage path planning will be investigated to enable faster and more 

adaptive waypoint selection for real-time decision in dynamic environments
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Conclusions & Future Work
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Dynamically Constructed Multi-scale Potential Surfaces (MAPS)

❖ Level 0 of MAPS
• Environmental Information Encoding:
The environmental information is encoded on 
each cell based on its physical state:

▪ U = Unexplored
▪ E = Explored
▪ O = Obstacle

• Construction of Potential Surface: for each 
cell 𝜏𝛼0 with state 𝑆𝛼0 𝑘 at time 𝑘:

ℰ𝛼0 𝑘 = ൞

−1, if 𝑆𝛼0 𝑘 = 𝑂

0, if 𝑆𝛼0 𝑘 = 𝐸

𝐵𝛼0 , if 𝑆𝛼0 𝑘 = 𝑈

where 𝐵 = {
}

𝐵𝛼0 ∈ 1,… , 𝐵max , 𝛼0 =
1,… |𝑇0| is a time-invariant exogenous 
potential field. It is designed offline to have 
plateaus of equipotential surfaces along each 
column of the tiling.

Fig. An example of constructing the potential surface

U
U U U
U U

U UU U
U U

Obstacle Area
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Dynamically Constructed Multi-scale Potential Surfaces (MAPS)

❖ Levels ℓ = 1,2,… 𝐿 of MAPS

• Potential Surfaces ℇℓ, ℓ = 1,… 𝐿, are constructed by assigning 𝜏𝛼ℓ the average potential generated by 

all the unexplored cells within 𝜏𝛼ℓ, such that 

ℇ𝛼ℓ 𝑘 = 𝑝
𝛼ℓ
𝑈 𝑘 ⋅ ത𝐵𝛼ℓ

where ത𝐵𝛼ℓ is the mean exogenous potential of 𝜏𝛼ℓ, and 𝑝
𝛼ℓ
𝑈 𝑘 is the probability of unexplored cells in 𝜏𝛼ℓ.

Note: Higher levels of MAPS are used to prevent the local extrema problem. 
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Updates of MAPS at Level 1
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Updates of MAPS at Level 2
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An Example of using MAPS to Prevent the Local Extrema Situation

Local Extrema: no unexplored cells are 
available in the local neighborhood on 
Level 0.

Low Complexity:  time complexity of 𝑂( 𝑁0 + 𝐿 · 𝑁ℓ ) to compute waypoints, where Nℓ is 

the local neighborhood on Level ℓ of MAPS, ℓ = 0,1,… , 𝐿.


