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Requirements for resilience and efficiency

CARE: Cooperative Autonomy for Resilience and Efficiency of Robot 
Teams for Complete Coverage in Unknown Environment

❖ Objective: Develop a multi-robot resilient and efficient algorithm for complete coverage in unknown environment.

❖ Challenges:
▪ Scalability: distributed vs. centralized

▪ Dynamically changing conditions 

▪ Resilience: complete coverage under failures

▪ Efficiency: prevent robot idling

▪ Optimization factors during task reallocations:

➢ Task worth (e.g., unfound targets)

➢ Probabilities of success of the available 
robots in finishing the contested tasks

▪ Connection between local and global objectives: 
the local optimization must not only benefit the 
involved robots but also the whole team 

▪ Real-time execution
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❖ The Robot Team 𝑽 = 𝒗ℓ, ℓ = 𝟏,…𝑵
1. Localization system, range detector and tasking sensor.

2. Wireless Communication Device

➢ Allows periodic information exchange between all pairs 
of robots. The communication is assumed to be perfect. 

The CARE Algorithm
The Autonomous Vehicle and the Search Area
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An example of the area ℛ with 𝑀 = 3

❖ Battery Reliability
Each robot 𝑣ℓ ∈ 𝑉 is assumed to carry a battery, whose reliability 
is computed as[1][2]

𝑅𝑣ℓ 𝑡 =
1

1 + 𝑒𝜌0 𝑡−𝜌1

where 𝜌0 and 𝜌1 are determined based on specific batteries.

[1] A. Islam, A. Alim, C. Hyder, and K. Zubaer,“Diggingtheinnatereliabilityofwireless networked systems,” in 2015 International Conference on Networking Systems and Security, pp. 1–10, IEEE, 2015. 
[2] M. Jongerden and B. Haverkort, “Which battery model to use?,” IET software, vol. 3, no. 6, pp. 445–457, 2009. 

❖ Initial Task Allocation
The tiling is grouped into 𝑀 disjoint regions ℛ𝑟 , 𝑟 = 1,…𝑀 , s.t.
ℛ =∪𝑟=1

𝑀 ℛ𝑟. Each robot can work on one task at a time, but one 
task can be assigned to multiple robots.



Objective: To achieve 𝐶𝑅 = 1 (even under a few robot failures), while minimizing 
𝐶𝑇 and 𝑇𝑜𝑇𝐷, and maximizing 𝑅𝑅 and 𝑁𝑜𝑇𝐹 .

❖ Complete Coverage
Let 𝜖ℓ 𝑘 ∈ 𝑇 be the 𝜖-cell that is visited and explored by robot 𝑣ℓ at time 𝑘. Then the team 𝑉 is said to achieve complete 
coverage, if ∃𝐾 ∈ ℕ, s.t. the sequences 𝜖ℓ 𝑘 , 𝑘 = 1,…𝐾 , ∀ℓ = 1,…𝑁, satisfy

ℛ(𝑇𝑎) ⊆ራ
ℓ=1

𝑁

ራ
𝑘=1

𝐾

𝜖ℓ(𝑘)
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❖ Performance Metrics
▪ Coverage Ratio (𝑪𝑹): 

𝐶𝑅 =
ℓ=1ڂ
𝑁 𝑘=1ڂ

𝐾 𝜖ℓ(𝑘) ℛ(𝑇𝑎)ځ

ℛ(𝑇𝑎)
∈ [0,1]

▪ Coverage Time (𝑪𝑻): measured by the last finishing robot

▪ Remaining Reliability (𝑹𝑹): the average remaining reliability of all live robots by the end of the operation

▪ Number of Targets Found (𝑵𝒐𝑻𝑭): total number of targets discovered by the whole team

▪ Time of Target Discovery (𝑻𝒐𝑻𝑫): time for the team to discover a certain percentage of all targets
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❖ Features:

▪ Distributed multi-robot control

▪ Complete coverage under failures

▪ Proactive event-driven task reallocation upon 
robot failures or robot idling

▪ Task reallocation considers various 
optimization factors, including task worth, 
robot remaining energy, and relative locations.

▪ Local task reallocation decision is aligned with 
the global objective of the whole team
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▪ 𝑟𝑐: 𝑉 → 1,…𝑀 is the allocation function that indicates the 
current task allocations of robots

▪ 𝑡𝑐: 1, …𝑀 → [0,∞) is the remaining estimated time to 
finish a given task by its assigned robots 

▪ 𝑛𝑈: 1, …𝑀 → ℕ is the number of unexplored cells in a task

▪ 𝜂 ∈ ℝ+: the threshold to define a task as close-to-finish. 

▪ Failure Detection: use a standard mechanism of heartbeat 
signals[1], where each robot 𝑣ℓ periodically broadcasts 
heartbeat signals indicating its healthiness, and also
listening from others. 

▪ A robot is detected as failed if its heartbeat signal cannot 
be received constantly for a certain period of time.

[1] W. Chen, S. Toueg, and M. Aguilera, “On the quality of service of failure detectors,” IEEE Transactions on Computers, vol. 51, no. 5, pp. 561–580, 2002. 
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When is it triggered?

Upon detection of a neighbor failure (i.e., 𝑒1)

What does it do?

Re-optimize local task allocations to fill coverage gap.

When is it triggered?

Upon completion of own task (i.e., 𝑒2), or a neighbor’s 
task (i.e., 𝑒5)

What does it do?

Compute for new tasks (if available).

Task re-allocation is required!



The CARE Algorithm
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❖ Requirements for Task Reallocation:
▪ Distributed framework for scalability
▪ Optimization over both task worth and 

robot reliabilities
▪ Local reallocation decision must also 

benefit the whole team
▪ Complete coverage under failures

❖ Potential Games

▪ Fits the distributed framework
▪ Utility of each player is perfectly aligned with the global 

potential function 𝜙 for the whole team. 
▪ Existence of solutions: at least one pure Nash Equilibrium exists, 

which is a maximizer to 𝜙
▪ Max-Logit can quickly converge to the (sub-)optimal equilibrium 



Potential Game: a potential game 𝐺 in strategic form is a 
potential game if and only if a potential function 𝜙:𝒜𝒫 → ℝ
exists, s.t., ∀𝒫𝑖 ∈ 𝒫

𝒰𝑖 𝑎𝑖
′, 𝑎−𝑖 −𝒰𝑖 𝑎𝑖

′′, 𝑎−𝑖 = 𝜙 𝑎𝑖
′, 𝑎−𝑖 − 𝜙 𝑎𝑖

′′, 𝑎−𝑖

∀𝑎𝑖
′, 𝑎𝑖

′′ ∈ 𝒜𝑖 and 𝑎−𝑖 ∈ 𝒜−𝑖.

Nash Equilibrium: A joint action 𝑎𝒫
⋆ = 𝑎𝑖

⋆, 𝑎−𝑖
⋆ ∈ 𝒜𝒫 is a 

pure Nash Equilibrium if:

𝒰𝑖 𝑎𝑖
⋆, 𝑎−𝑖

⋆ = max
𝑎𝑖∈ ሚ𝒜

𝒰𝑖 𝑎𝑖 , 𝑎−𝑖
⋆ , ∀𝒫𝑖 ∈ 𝒫

Game Components: 

▪ Players 𝒫 = 𝒫𝑖 ∈ 𝑉, 𝑖 = 1,… 𝒫

➢ The available robots to be reallocated.

▪ Action set 𝒜𝑖 for each player 𝒫𝑖

➢ Each action 𝑎𝑖 ∈ 𝒜𝑖 refers to the index of an 

available task. Also, it has ෨𝒜 = 𝒜𝑖 = 𝒜𝑗 , ∀𝑖 ≠ 𝑗.

▪ The utility function for each player 𝒫𝑖, defined as: 

𝒰𝑖:𝒜𝒫 → ℝ

where 𝒜𝒫 = 𝒜1 ×𝒜2 ×⋯×𝒜 𝒫 denotes the set of 

joint actions for all players, and the joint action 𝑎𝒫 =
𝑎𝑖 , 𝑎−𝑖 ∈ 𝒜𝒫 indicates a task reallocation for the team.

▪ Note: players other than 𝒫𝑖 have joint action 𝑎−𝑖 ∈ 𝒜−𝑖
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❖ No-idling Games

▪ Condition: if some robot 𝑣𝑖𝑑 ∈ 𝑉 completes its current task 
and becomes idle. 

▪ Game Specifics: It calls the 𝜅1 nearest neighbors 𝑁𝜅1
𝑣𝑖𝑑 , that are 

close to finish their tasks to participate.

▪ Players: 𝒫 = 𝑣𝑖𝑑 ∪ 𝑣ℓ ∈ 𝑁𝜅1
𝑣𝑖𝑑: 𝑡𝑐 𝑟𝑐 𝑣ℓ ≤ 𝜂

▪ Actions: 𝒜𝑖 = 𝑟 ∈ 1,…𝑀 : 𝑡𝑐 𝑟 ≥ 𝛾 ∈ ℝ+ , i.e., the 
incomplete tasks with sufficient work left. 

Figure. An example of the no-idling game when 𝜅1 = 3

Players: 𝒫1, 𝒫2, 𝒫3
Actions: ℛ2, ℛ5
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❖ Resilience Games

▪ Condition: if some robot 𝑣𝑓 ∈ 𝑉 fails. 

▪ Game Specifics: the 𝜅2 nearest neighbors of 𝑣𝑓, 𝑁𝜅2
𝑣𝑓

, are involved. 

➢ Players: 𝒫 = 𝑁𝜅2
𝑣𝑓

➢ Actions: 𝒜𝑖 = 𝑟𝑐 𝑣𝑓 } ∪ {𝑟𝑐 𝑣ℓ , 𝑣ℓ ∈ 𝑁𝜅2
𝑣𝑓
: 𝑡𝑐 𝑟𝑐(𝑣ℓ) ≥ 𝜂 , 

i.e., the current tasks of all players and the failed robot.

Figure. An example of the resilience game when 𝜅2 = 3

Players: 𝒫1, 𝒫2, 𝒫3
Actions: ℛ1 , ℛ2, ℛ3, ℛ5
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❖ Potential Function𝝓 𝒂𝓟

𝜙 𝑎𝒫 = ෍

𝑟∈ ሚ𝒜

𝑤𝑟 1 − ෑ

𝒫𝑖∈ 𝒫 𝑟

1 − 𝑝𝑟(𝒫𝑖)

where:

• 𝑤𝑟: estimated worth (i.e., undiscovered number of targets) of 
task 𝑟 ∈ 𝒜𝑖

• 𝒫 𝑟 = 𝒫𝑖 ∈ 𝒫: 𝑎𝑖 = 𝑟 : set of players that choose task 𝑟 in 
the joint action 𝑎𝒫

• 𝑝𝑟(𝒫𝑖): the success probability for player 𝒫𝑖 to finish task 𝑟

❖ Utility Function

The utility function is obtained using Marginal Contribution:

𝒰𝑖 𝑎𝑖 , 𝑎−𝑖 = 𝜙 𝑎𝑖 , 𝑎−𝑖 − 𝜙 ∅, 𝑎−𝑖

= 𝑤𝑎𝑖 ⋅ 𝑝𝑎𝑖 𝒫𝑖 ⋅ ς𝒫𝑗∈ 𝒫 𝑎𝑖
∖𝒫𝑖

1 − 𝑝𝑎𝑖 𝒫𝑖

Where ∅ represents the null action.Joint probability to successfully finish task 𝑟

Joint failure probability for task 𝑟 by other players

Proposition 1: The game with potential function 𝜙 and 
and utility function 𝒰𝑖 constitute a potential game[1].

[1] J. Song and S. Gupta, “CARE: Cooperative Autonomy for Resilience and Efficiency of Robot Teams for Complete Coverage of Unknown Environment under Robot Failures,” Autonomous Robots, Under review, 
2018. 

Physical Meaning of 𝝓 𝒂𝓟 : the total expected worth 
for the joint action 𝑎𝒫 ∈ 𝒜𝒫
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❖ Compute 𝒑𝒓(𝒫𝑖)
It is evaluated based on robot reliability

𝑝𝑟 𝒫𝑖 = 𝑅𝒫𝑖 ǁ𝑡

Where:

▪ Battery reliability: 𝑅𝒫𝑖 𝑡 =
1

1+𝑒𝜌0 𝑡−𝜌1

▪ Expected total time of tasking and traveling:

ǁ𝑡 = 𝑡𝑘 + 𝑡𝑡𝑟 + 𝑡𝑟

o 𝑡𝑘: the total tasking time of 𝒫𝑖 since the beginning until game is initiated.

o 𝑡𝑡𝑟 =
𝐷𝑖𝑠𝑡 𝒫𝑖,𝑟

𝑢
: the traveling time to task 𝑟, and 𝑢 ∈ ℝ+ is the traveling speed.

o 𝑡𝑟 =
𝑁𝑈 𝑟

𝜔
: the estimated time to finish task 𝑟, and 𝜔 ∈ ℝ+ is the speed of tasking a cell.

o Additionally, if a player has small portion of work left in its current task (i.e., 𝑡𝑐 𝑟𝑐(𝒫𝑖) ≤ 𝜂), 
then 𝑡𝑐 is also included into ǁ𝑡.

Success Probability 𝒑𝒓(𝒫𝑖): the probability for player 𝒫𝑖 to successfully finish a contested task 𝑟
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❖ Total Worth of Task 𝒓
▪ Let 𝑥𝑟 be a random variable that denotes the total number 

of targets in task 𝑟. It is assumed to follow the Poisson 
distribution with a known mean 𝜆𝑟:

𝑃𝑟 𝑥𝑟 = 𝑥 = 𝑒−𝜆𝑟⋅
𝜆𝑟
𝑥

𝑥!
, 𝑥 = 0,1,2…

▪ If 𝜉 have already been discovered, then the estimated 
remaining number of undiscovered targets are:

෦𝑤𝑟 = σ𝑥=𝜉+1
∞ 𝑥 − 𝜉 ⋅ 𝑒−𝜆𝑟 ⋅

𝜆𝑟
𝑥

𝑥!

Using σ𝑥=0
∞ 𝑥 ⋅ 𝑒−𝜆𝑟 ⋅

𝜆𝑟
𝑥

𝑥!
= 𝜆𝑟, and σ𝑥=0

∞ 𝑒−𝜆𝑟 ⋅
𝜆𝑟
𝑥

𝑥!
= 1, then:

෦𝑤𝑟 = 𝜆𝑟 − 𝜉 + 𝑒−𝜆𝑟 ⋅෍
𝑥=0

𝜉

𝜉 − 𝑥 ⋅
𝜆𝑟
𝑥

𝑥!

Task Worth 𝒘𝒓: the expected number of undiscovered targets in task 𝑟 that are available to the players.

Robot exploration with target discovery

undiscovered targetsdiscovered targets
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❖ Task Worth 𝒘𝒓 for Players
▪ Let ത𝒫 = 𝑉 ∖ 𝒫 denote the set of non-players. 

▪ Let ത𝒫 𝑟 denote the set of non-players currently in task 𝑟.

▪ These non-players have joint success probability for task 𝑟:

𝑞 𝑟 = 1 −ෑ
𝑣ℓ∈ ത𝒫 𝑟

1 − 𝑝𝑟 𝑣ℓ

▪ The task worth available to the players

𝑤𝑟 = ෦𝑤𝑟 ⋅ 1 − 𝑞(𝑟)

no-idling 
game 

players

available tasks

non-player robots in the available tasks

But… there can be non-player robots currently working in task 𝑟, and 
they are also discovering targets but not participating the game.

hidden 
targets
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❖ Total Team Potential 𝚽(𝒂)

Φ 𝑎 =෍
𝑟=1

𝑀

෦𝑤𝑟 ⋅ 1 − ෑ

𝑣ℓ∈ 𝑉 𝑟

1 − 𝑝𝑟 𝑣ℓ

where:
▪ 𝑎 = 𝑎𝒫, 𝑎 ത𝒫 is the joint action of both players 𝑎𝒫 and non-players 𝑎 ത𝒫

▪ 𝑉 𝑟 = 𝒫 𝑟 ∪ ത𝒫 𝑟 is the set of all robots assigned to task 𝑟

❖ Once local players reach equilibrium 𝑎𝒫
⋆ , denote the new allocation for the whole team as 𝑎⋆ = (𝑎𝒫

⋆ , 𝑎 ത𝒫).

Since the players and non-players are mixed and distributed over different tasks, how 
does the total team potential Φ change when local potential 𝜙 is increased?

Remark: Φ(𝑎) is the potential for the whole team; while 𝜙(𝑎𝒫) is the potential for the local players
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Φ 𝑎 = ෍
𝑟=1

𝑀

෦𝑤𝑟 ⋅ 1 − ෑ

𝒫𝑖∈ 𝒫 𝑟

1 − 𝑝𝑟 𝒫 ⋅ ෑ

𝑣ℓ∈ ത𝒫 𝑟

1 − 𝑝𝑟 𝑣ℓ

= ෍
𝑟=1

𝑀

෦𝑤𝑟 ⋅ 1 − 1 − 𝑝 𝑟 1 − 𝑞(𝑟)

= ෍
𝑟=1

𝑀

෦𝑤𝑟 1 − 𝑞 𝑟 ⋅ 𝑝 𝑟 +෍
𝑟=1

𝑀

෦𝑤𝑟 ⋅ 𝑞(𝑟)

Then, it can be written as

Φ(𝑎) = ෍
𝑟=1

𝑀

𝑤𝑟 ⋅ 𝑝 𝑟 +෍
𝑟=1

𝑀

෦𝑤𝑟 ⋅ 𝑞(𝑟)

= ෍
𝑟∈ ሚ𝒜

𝑤𝑟 ⋅ 𝑝(𝑟) +෍
𝑟∉ ሚ𝒜

𝑤𝑟 ⋅ 𝑝(𝑟) +෍
𝑟=1

𝑀

෦𝑤𝑟 ⋅ 𝑞(𝑟)

= 𝜙 𝑎𝒫 +෍
𝑟∉ ሚ𝒜

𝑤𝑟 ⋅ 𝑝(𝑟) +෍
𝑟=1

𝑀

෦𝑤𝑟 ⋅ 𝑞(𝑟)

❖ Joint success probability for players:

𝑝 𝑟 = 1 − ς𝒫𝑖∈ 𝒫 𝑟
1 − 𝑝𝑟 𝒫

❖ Joint success probability for non-players: 

𝑞 𝑟 = 1 − ς𝑣ℓ∈ ത𝒫 𝑟
1 − 𝑝𝑟 𝑣ℓ

Substitute: 𝑤𝑟 = ෦𝑤𝑟 1 − 𝑞(𝑟)

Substitute: 𝜙 𝑎𝒫 = σ
𝑟∈ ሚ𝒜𝑤𝑟 ⋅ 𝑝(𝑟)

Not affected for non-players
The players should finish their 
current small left-over tasks

Theorem[1]: The optimal equilibrium 𝑎⋆ increases the total team potential Φ(𝑎), i.e., Φ 𝑎⋆ ≥ Φ(𝑎)

Sketch of Proof:

[1] J. Song and S. Gupta, “CARE: Cooperative Autonomy for Resilience and Efficiency of Robot Teams for Complete Coverage of Unknown Environment under Robot Failures,” Autonomous Robots, 
Under review, 2018. 
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Learning for equilibrium 𝒂𝓟
⋆ : Max-Logit can fast converge to the 

optimal equilibrium (i.e., maximizer to 𝜙). 

But… what if multiple robots are assigned to the same task, 
and/or what if there already are some non-player robots there?

Post-game Coordination
▪ First, evenly partition task 𝑟 into 𝑛max ∈ ℕ

+sub-regions
▪ Non-players continues search within the sub-region 

determined by its current location
▪ Each player 𝒫𝑖 ∈ 𝒫𝑖 ∈ 𝒫: 𝑎𝑖

⋆ = 𝑟 chooses the closest sub-
region in an order based on its success probability 𝑝𝑟(𝒫𝑖)

Division into 𝑛max = 4 sub-regions

𝑛max = 4

Theorem 2[1]: Complete coverage is guaranteed as long as at least 
one robot is still alive.

[1] J. Song and S. Gupta, “CARE: Cooperative Autonomy for Resilience and Efficiency of Robot Teams for Complete Coverage under Failures”, Autonomous Robots (Under Review).
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Simulation Validations
❖ The search area is of size 50m × 50m, partitioned into 𝑀 = 10 tasks. A team of 𝑁 = 10 robots are deployed.
❖ Vehicle: battery reliability parameters  𝜌0~𝑁(3 × 10

−3, 7.5 × 10−5) and 𝜌1~𝑁(1400,35); laser range: 5m; 𝑢 = 1m/s; 𝜔 = 0.32
cell/s

❖ Game parameters: 𝜅1 = 6, 𝜅2 = 3, 𝜂 = 30s, 𝛾 = 200s, number of game computation cycles: 50
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Simulation Validations
Coverage Trajectories using Alternative Methods

(a) CARE (b) Non-cooperative Coverage (c) First-responder Coverage (c) Multi-robot Brick-and-Mortar

Incomplete coverage No task partition
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Simulation Validations
Performance Comparison with Alternative Methods
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