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Prediction-based Opportunistic Sensing for

Energy-Efficiency and Reliability in Distributed

Sensor Networks

James Zachary Hare

University of Connecticut 2018

Distributed Sensor Networks (DSN) containing a large number of sensors nodes are rapidly ad-

vancing to perform automated tasks for a variety of applications (e.g. Target Tracking). One of

the main problems studied in DSN is the Target Coverage problem, where the objective is to max-

imize the network lifetime while ensuring that all targets are covered during all times. Therefore,

the main challenges in developing a DSN are network control strategies for energy-efficiency and

resilience in the event of sensor failures. This thesis presents the Prediction-based Opportunis-

tic Sensing for Energy-efficiency (POSE) algorithm, which aims to address these challenges by

designing a DSN that minimizes energy consumption while ensuring target coverage. The first

algorithm presents a distributed node-level supervisor that controls each sensor node to allow the

network to self-adapt to the targets’ trajectory via opportunistic sensing. This approach minimizes

the network energy consumption by only enabling high power consuming devices when a target

is predicted to travel within the sensor nodes coverage area, while using low power consuming

devices when a target is absent. The second algorithm, POSE using Distributed Classification,

Clustering and Control (POSE.3C), extends the POSE algorithm to include classification in the

control loop to opportunistically observe targets of interest, while minimizing energy consumption

via distributed clustering. Finally, the third algorithm, POSE for Resilience (POSE.R), extends the

POSE.3C algorithm to incorporate Resilient Target Coverage into the DSN. This approach incor-

porates target and network density predictions to adapt the distributed clustering method to ensure

that a target is covered in the event of sensor failures. The compilation of the three algorithms

presents a distributed control strategy for DSN that performs energy-efficient and resilient target

coverage.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

With the recent developments in semiconductor devices, data processing units, sensor technolo-

gies, and communication systems, Distributed Sensor Networks (DSN) are evolving to perform

many useful tasks in land, air, and sea for a variety of applications. For example, DSN are being

developed to gather intelligence [1–6]; perform surveillance [7, 8]; monitor wildlife habitats [9,

10], potential disasters [11, 12], personal well being [13, 14], traffic conditions [15]; and many

other applications. These networks have evolved to consist of intelligent sensor nodes that each

integrate multiple heterogeneous sensing devices, a transceiver, a data processing unit, and a mem-

ory unit together [16]. Additionally, they are envisioned to operate autonomously to achieve the

desired network objective. This thesis studies the Target Coverage problem, which aims to maxi-

mize the network lifetime while maintaining tracking performance. This requires that the network

is controlled in a resilient and energy-efficient manner. A summary of the objective, challenges,

solution approaches, and research gaps are presented in Fig. 1.1 and discussed next.

The intelligent sensor nodes are typically deployed randomly throughout a Region Of Interest

(ROI) and are envisioned to track targets for long periods of time. However, one major limitation

is the limited availability of energy resources on-board each sensor node [17]. If a few sensor
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Figure 1.1: Challenges and Current Approaches of the Target Coverage Problem

nodes deplete their energy, they fail to collect data, causing missed detections and coverage gaps

[18]. Often, it is difficult and time consuming to charge or replace the depleted nodes due to

the large size and geographical region of deployment. This results in poor network performance,

information delays, equipment loss, and mission failures. Therefore, it is important that the sensor

nodes are controlled in an energy-efficiency manner to improve the network lifetime.

Energy-efficient control strategies presented in literature are typically achieved using one of the

following network control architectures: (i) Centralized, (ii) Cluster-based, and (iii) Distributed.

Centralized networks require each sensor node to communicate their observations to a central

computing station, which calculates and transmits the optimal scheduling decisions to each sensor

node while estimating the target’s trajectory [19]. Although centralized architectures can provide

the optimal solution, these networks are very difficult to implement on large scale network due

to multiple factors, such as communication limitations, transmission delays, and data processing

requirements. To overcome these limitations, cluster-based networks were proposed. These net-

works divide the ROI into several disjoint clusters, where each cluster contains a node that acts

as a central computer, called a cluster head (CH) [20]. The CH receives target measurements

from nodes within the cluster, computes the scheduling actions, performs state estimation, and
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relays the actions to each node. Although this improves the limitations of centralized schemes,

data trasmission between sensor nodes and the CH occur frequently [21] and may lead to energy

wastage. Furthermore, if a CH were to fail, due to defects or energy depletion, the entire cluster

would stop recieving scheduling decisions, rendering a large gap in the coverage area [22]. This

requires implementation of dynamic CH election schemes [23].

Distributed network architectures have also been proposed where each sensor node dynamically

controls its own tasks based on the information measured by its own sensor suite or perceived by

its neighboring nodes [24]. Unlike cluster-based architectures, the distributed networks tend to be

reactive in the sense that they only communicate information when an event has occurred, thus

allowing for savings on transmission costs. Additionally, distributed architectures do not require

sensor or CH selection, thus allowing for less computation requirements.

Within the three network architectures, energy-efficient control is achieved through sensor

scheduling. These methods are categorized as either (i) Passive or (ii) Active strategies. Pas-

sive strategies are typically set up offline where the sensor nodes operate in an On or Off state

based on a fixed or probabilistic manner [25]. Duty-cycle scheduling consists of fixing a time

interval for each operating condition (On/Off), whereas Random scheduling has each sensor node

stay in a particular task for a fixed time interval and transition to a new task based on a predefined

probability. Active scheduling strategies utilize information about the target or the network topol-

ogy to adjust the tasks of each sensor node. One approach to active scheduling is to utilize target

detections to activate a cluster of sensors, known as Trigger-based Activation [26]. This approach

triggers the nodes On once a target is detected within their local area. A more efficient approach to

active scheduling utilizes target information to optimally select the best nodes to be On and cover

the target while conserving energy by turning the remaining nodes Off using a Sensor Selection

method. These methods typically consist of maximizing/minimizing one of the following cost

functions: probability of detection [27], tracking accuracy, [28, 29], energy [30], Kullback-Liebler

distance [31], or other information theoretic measures [32].

Although the above scheduling methods achieve the desired goal of energy-efficient target cov-

erage, there are still some research gaps that were not addressed in their work. First, the above
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scheduling methods are typically for centralized or cluster-based network architectures. There are

a few distributed techniques available, but most of the active scheduling methods are cluster-based.

Second, the scheduling methods proposed consider binary operating conditions (On or Off) and do

not consider multi-modal sensor nodes. When only considering binary operating conditions, en-

ergy consumption can significantly increase due to frequent communication or frequent use of

active sensing devices. Finally, the proposed scheduling methods do not consider the type of target

present in the control algorithm. In practical applications, not all of the targets that pass through

the ROI will be of interest to the network operator. Therefore, if the network does not adapt to the

type of target present, significant energy may be wasted.

Another critical challenge in a DSN is maintaining target coverage in the event of sensor node

failures. Sensor nodes are prone to failures due to component degradation, hardware failure, ma-

licious attacks, or battery depletion [33], which may cause changes to the network topology. If

multiple co-located sensor nodes fail, a sector of the network may be uncovered, causing missed

detections when a target travels through the coverage gap. Furthermore, the sensor nodes may

be non-uniformly distributed causing high and low density regions, and even coverage gaps, due

to geographical conditions and uncertainties [34]. Therefore, the development of a self-adaptive

network that mitigates the formation of coverage gaps is necessary to ensure network resilience.

Handling sensor failures is typically achieved in literature by developing a fault tolerant net-

work. This process consists of (i) fault detection and (ii) fault recovery methods. Fault detection

methods are typically classified as either active or passive. Active fault detection is achieved using

a centralized or cluster-based network topology [35] and consists of requesting constant updates

throughout the network or by utilizing heartbeat signals. Passive monitoring is achieved in central-

ized, cluster-based, or distributed network architectures by observing the traffic already present in

the network to infer the nodes health [36]. Although fault detection is a critical problem in sensor

networks, fault recovery is essential to ensure target coverage.

Fault recovery methods are typically classified into two approaches, proactive and reactive.

Most proactive approaches handle the problem preemptively by deploying redundant sensor nodes

to acheive κ-coverage [37], where κ is the number of nodes that can cover a point/target. This
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approach allows for κ− 1 nodes to fail in any given area before target coverage is lost. However,

this requires significantly more sensor nodes to be deployed, which can increase mission cost.

Additionally, once ≥ κ co-located nodes fail, proactive fault recovery methods fail to meet the

network objective. Reactive methods utilize fault detection information to plan a control action to

fill in the hole created by nodes failures. To fill in the hole, most networks utilize mobile sensor

nodes [33] or redeploy new sensor nodes [38]. For stationary sensor networks without the ability

to redeploy or utilize mobile sensor nodes, only single sensor failure recovery methods have been

proposed and mainly considering data recovery [39] and connectivity [40].

Thus, the following research gaps are present. First, resilient target coverage for stationary

networks does not exist. Although proactive fault recovery methods are robust to sensor failures,

they are not resilient to κ failures in a local area. Therefore, if a target travels into a coverage

gap, the network will not achieve target coverage. Second, a distributed learning mechanism that

identifies low density regions and coverage gaps around the target’s trajectory does not exist. While

passive methods for fault detection exist, none of the proposed methods are formulated to identify

the density of the region that the target is traveling into. If the sensor nodes are aware that the

target is traveling within a coverage gap, an adaptive control decision could be made to ensure

target coverage.

Therefore, the main objective of this thesis is to develop a target coverage control strategy for

a DSN that is energy-efficient and resilient. The following section gives an overview of the three

themes that achieve the primary objective, while their details are presented in Chapters 3, 4, 5.

1.2 Outline and Contributions

This thesis presents a DSN control algorithm for multi-modal sensor nodes that ensures target cov-

erage and extends the network’s lifetime via Opportunistic Sensing. The objective of opportunistic

sensing is to select and activate sensors only in the local region around an event. It is further desired

to do so in a predictive manner to pro-actively prepare for the event in advance. In this regard, this

thesis is split into three themes that allow for energy-efficient control and resilient target coverage.
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Figure 1.2: Outline of the Proposed Thesis Themes

A summary of the three themes and their contributions are presented in Figure 1.2.

1.2.1 Theme 1: Prediction-based Opportunistic Sensing

The first theme of this thesis address the problem of energy-efficiency in DSN by developing

the Prediction-based Opportunistic Sensing (POSE) algorithm [41]. This algorithm manages the

power consumption of each sensor node in a distributed fashion to enable energy-efficient tar-

get coverage. Each multi-modal sensor node consists of multiple devices including high power

sensors, low power sensors, a data processing unit and a communication device. Each node also

contains an embedded distributed supervisor, i.e. a Probabilistic Finite State Automaton (PFSA),

which enables and disables the devices on the node in an opportunistic manner to conserve energy.

The states of the PFSA represent the different activities of the node which correspond to en-

abling/disabling its various sensing and communication devices [8]. The state transition probabil-

ities of the PFSA are dynamically updated based on the information received from neighboring

nodes or from direct observation of a target using the local sensor suite. The probabilities control

the switching of the PFSA states to facilitate opportunistic sensing based on the predicted target(s)

trajectories. For example, the PFSA of a sensor node enables its high power sensing devices when

a target is present within its coverage area, while disabling them and entering into a low power

consuming cycle when it is not present.
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The novel contributions of the first theme are as follows:

• The development of distributed supervisors (i.e. PFSA) for probabilistic control of the devices

enabled on each multi-modal sensor node, and

• A prediction-based scheduling approach that updates the probabilities of the distributed su-

pervisor to enable opportunistic sensing for energy-efficient control.

1.2.2 Theme 2: Prediction-based Opportunistic Sensing using Distributed Classification,

Clustering and Control

The POSE algorithm allows for significant energy savings compared with distributed scheduling

methods while achieving similar missed detection rates as compared to a network that is always

monitoring. However, the POSE algorithm has each sensor node enable its high power sensing

devices when a target is present within its coverage area. This may result in redundant sensor

nodes tracking the target if the network density is high or the sensing radius is large. Additionally,

in practical applications, all of the targets within the field may not be of interest to the network

observer. This results in energy wastage due to sensor nodes tracking the targets not of interest.

To address the above issues, the Prediction-based Opportunistic Sensing using Distributed

Classification, Clustering and Control (POSE.3C) algorithm was developed as the second theme

of this thesis to further improve the energy-efficiency of the DSN [42]. The POSE.3C algorithm

continues using the distributed supervisor (i.e. PFSA) developed in the POSE algorithm, except

the state transition probabilities are updated based on the target’s class as well as the target’s pre-

dicted location. This new algorithm is composed of two additional steps in the control scheme, 1)

Target classification and 2) Sensor selection.

The sensor nodes that are tracking the target perform target classification to identify if the target

is a Target Of Interest (TOI) or a Target Not Of Interest (TNOI). For example, in a boarder surveil-

lance application, the TOIs could be humans and vehicles, while the TNOIs could be animals.

Then, the sensor nodes that use received information to update the PFSA will perform distributed

fusion to identify the type of target present. In this algorithm, a distributed clustering approach is
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employed for sensor selection to select Nsel > 1 sensor nodes to track TOI to improve estimation,

while only selectingNsel = 1 sensor nodes to track TNOI to maintain awareness. In this regard, the

DSN opportunistically senses TOI via classification feedback; minimizes energy wastage through

distributed clustering; and extends the network lifetime using distributed supervisors for control.

The novel contributions of the second theme are as follows:

• Development of a distributed algorithm that facilitates 3C network autonomy with the fol-

lowing attributes:

(i) distributed classification and utilization of the target class information to govern the cluster

size for tracking,

(ii) distributed clustering via a) fusing the target state estimates and predicting the next state,

and b) sensor node selection around the target’s predicted state, and

(iii) distributed supervisory control to enable/disable multi-modal sensing devices for energy-

efficiency.

• Theoretical analysis of the network’s performance characteristics: (i) Expected energy con-

sumption, (ii) Expected network lifetime, (iii) Probability of missed detection for a target

birth and for a mature target.

1.2.3 Theme 3: Prediction-based Opportunistic Sensing for Resilient Target Coverage and

Tracking

The POSE and POSE.3C algorithms improve the energy-efficiency of the DSN, however, they do

not address the problems that occur when sensor nodes fail. Therefore, the third theme of this the-

sis further extends the first and second themes by incorporating resilient target coverage into the

DSN by developing the Prediction-based Opportunistic Sensing for Resilient Target Coverage and

Tracking (POSE.R) algorithm [43]. Here, the multi-modal sensor nodes are assumed to contain a

high power sensing device that can vary it’s sensing range at the cost of consuming more energy.

The POSE.R algorithm extends the POSE and POSE.3C algorithms by incorporating an adaptive

sensor selection approach that selects the optimal sensor nodes and their sensing ranges to track
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the target and ensure target coverage in the presence of failures and non-uniform node locations.

The sensor selection approach adapts to the density of active sensor nodes around the target’s pre-

dicted location. For high density regions with ≥ Nsel nodes, an Energy-based Geometric Dilution

of Precision (EGDOP) sensor selection method is employed to select and activate geometrically

diverse nodes with high remaining energy to cover the target with their minimum sensing range.

When a target is predicted to travel through a low density region, the sensor nodes may need to

expand their sensing range to accommodate for a coverage gap or an insufficient number of nodes.

To identify the best sensing ranges to cover the target while minimizing energy consumption, a

Game Theoretic sensor range selection method is employed using Potential Games. The objective

function of the game selects Nsel nodes and their sensing ranges to cover the target’s prediction

location while minimizing energy wastage by reducing redundant coverage. In this regard, the

DSN becomes resilient to coverage gaps by opportunistically covering the gaps when a target is

predicted to travel through it, while operating in an energy-efficient manner when the target travels

through high density regions.

The novel contributions of the third theme is the development of a distributed algorithm that

facilitates resilient target coverage and tracking with the following attributes:

• distributed coverage gap identification method that does not rely on active or passive moni-

toring methods,

• distributed node selection approach that adapts to the network density around a target’s pre-

dicted location via a) EGDOP selection criteria for high density regions, and b) a Game

Theoretic node and range selection method using potential games for low density regions.

• distributed supervisory control strategy to enable/disable multi-modal sensing devices for

energy-efficiency.
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CHAPTER 2

PROBLEM FORMULATION

Let Ω ⊂ R
2 be the Region Of Interest (ROI) with area AΩ. Let T = {τ1, τ2, ...τm} be the set of

m targets traveling through Ω. Let S = {s1, s2, ...sn} be the set of n multi-modal sensor nodes

randomly deployed throughout Ω. Let the position of a target τℓ ∈ T at time k be denoted as

uτℓ(k) = (xτℓ , yτℓ)(k) ∈ Ω, while that of a node si be denoted as usi = (xsi, ysi) ∈ Ω.

2.1 Sensor Node Description

Definition 2.1.1 (Multi-modal Sensor Node) A multi-modal sensor node, shown in Fig. 2.1, is

an autonomous agent that contains a heterogeneous sensor suite, a data processing unit (DPU),

a transmitter/receiver, and a Global Positioning System (GPS). The sensor suite contains several

Low Power Sensing (LPS) devices, which are passive binary detectors consuming very little energy

(e.g., Passive Infrared (PIR) sensors) with a fixed sensing rangeRLPS. It also contains High Power

Sensing (HPS) devices, which are active sensors providing the range and azimuth measurements of

Figure 2.1: Example of a Multi-modal Sensor Node
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targets (e.g., Laser Range Finders) [44] within a fixed sensing range RHPS. The DPU facilitates

decision-making to enable or disable each device at time k, while the transmitter/receiver are used

to facilitate distributed collaboration.

Definition 2.1.2 (Sensor Node Coverage Area) The coverage area of a sensor node si ∈ S at

time k is defined as

Ωsi(k) , {(x, y) ∈ Ω : ||(x, y)− usi|| ≤ Rsi
HPS(k)}. (2.1)

and is the region where a target may be detected. This is based on the HPS device range at time k,

where Rsi
HPS(k) = 0m if the HPS device is disabled and Rsi

HPS(k) = RHPS if it is enabled.

Definition 2.1.3 (Sensor Node Neighborhood) The neighborhood of a sensor node si ∈ S is

defined as

N si , {sj ∈ {S \ si} : ||usj − usi || ≤ Rc}, (2.2)

where Rc is the communication radius of the node.

The total energy consumed [26] by a sensor node si until time k is computed as

Esi(k) =
∑

k

∑

j

esij .χ
si
j (k)∆T, (2.3)

where esij denotes the rate of energy consumption per unit time by a certain device j ∈ {DPU, LPS,

HPS, transmitter (TX), receiver (RX), clock}; χsij (k) ∈ {0, 1} indicates whether the device is ON

or OFF at time k; and ∆T is the sample time interval. Thus, the total energy consumed by the

entire sensor network until time k is given as Enet(k) =
∑n

i=1E
si(k).
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2.2 Target Detection and Measurement Models

The motion of a target, τℓ, is modeled using a Discrete White Noise Acceleration (DWNA) model

[45] as follows

x(k + 1) = f(x(k), k) + υ(k) (2.4)

where x(k) , [x(k), ẋ(k), y(k), ẏ(k), ψ(k)]′ is the target state at time k, which includes the po-

sition and velocity in x and y and the turning rate ψ(k); f(x(k), k) is the state transition matrix,

υ(k) is the zero-mean white Gaussian process noise. The target is assumed to travel according to

the nearly coordinated turning model. Details are in [45].

A sensor node si can use it’s LPS devices to detect a target τℓ. We adopt the detection model

proposed in [46]:

P si
D,LPS(u

τℓ(k)) =






α ||uτℓ(k)− usi|| < Rr

αe−β(||u
τℓ(k)−usi ||−Rr) Rr ≤ ||uτℓ(k)− usi|| ≤ RLPS

pfa ||uτℓ(k)− usi|| > RLPS

(2.5)

where P si
D,LPS is the detection probability of sensor si; Rr is the reliable sensing radius of the LPS

device; α is the detection probability within reliable range Rr; β is the decay rate of detection

probability with distance; and pfa = 1− e−f∆T is the probability of a false alarm [47] with a false

alarm rate f during a ∆T second scan.

A sensor node si can use it’s HPS devices to collect the range and azimuth measurements

z(k) = {z1(k), ..., zo(k)} of the target at time k. Each measurement is modeled as

zj(k) = h(x(k), k) +w(k) (2.6)

where h(x(k), k) is a nonlinear measurement model [45] and w(k) is the zero-mean white Gaus-

sian measurement noise. The measurements are received with a probability P si
D,HPS = γ if the

target lies within the node’s sensing range RHPS . However, the measurements z(k) may also con-

15



tain some false measurements along with the true target measurements. These false measurements,

known as clutter, are generated according to a Poisson distribution with mean µcl [48].

2.3 Resilient and Energy-efficient Target Coverage Problem

We focus on the target coverage problem whose objective is to maximize the network lifetime

while ensuring that each moving target τℓ is covered by Nsel ≥ 1 nodes using their HPS devices at

all times to facilitate tracking.

To ensure energy-efficiency, our objective is to not cover the whole area but only the areas where

the target is currently present and predicted to be during the next time step, thus enabling oppor-

tunistic sensing. However, the network may develop coverage gaps over time due to non-uniform

node distribution, sensor failures, node drifting, etc., which can affect the tracking performance.

Definition 2.3.1 (Coverage Gap) Given the coverage areas Ωsi(k), ∀si ∈ S , based on their sens-

ing ranges Rsi
HPS(k), a connected region G(k) ⊂ Ω is defined as a coverage gap if

G(k) =

{
(x, y) ∈ Ω : (x, y) /∈

⋃

si∈S

Ωsi(k)

}
. (2.7)

Definition 2.3.2 (Target Coverage) Target coverage is said to be achieved at time k if uτℓ(k) /∈

G(k), ∀τℓ ∈ T , i.e. all targets are covered.

Definition 2.3.3 (Coverage Degree) Let Sc(u
τℓ(k)) = {si ∈ S : uτℓ(k) ∈ Ωsi(k)} denote the set

of all nodes that contain the target τℓ within their coverage areas at time k. Then, the coverage

degree of target τℓ is defined as D(uτℓ(k)) = |Sc(uτℓ(k))|.

2.4 Thesis Objective

The objective of this thesis is to develop a network autonomy approach that utilizes distributed su-

pervisors to probabilistically control multi-modal sensor nodes to meet the following requirements:

(1) improved network life expectancy via opportunistic sensing, (2) resilient target coverage in the
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presence of coverage gaps, and (3) high tracking accuracy and low missed detection rates. The first

two themes of this thesis focus on enabling opportunistic sensing into the network for energy effi-

ciency. Whereas the third theme handles resilient target coverage in the presence of sensor failures

and coverage gaps by enabling opportunistic coverage.
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CHAPTER 3

PREDICTION-BASED OPPORTUNISTIC SENSING (POSE)

3.1 Energy-efficient Target Coverage Introduction

The Target Coverage problem consists of developing a sensor network that maximizes the network

lifetime while ensuring that all targets are observed. Therefore, it is important that the sensor nodes

utilize their difference devices in an energy-efficient manner to improve the network lifetime. A

simple method is random scheduling which turns the devices on and off randomly to conserve

energy [49]. Another simple approach is to schedule the nodes based on a fixed or adaptive duty-

cycle. In contrast, there are other methods that optimize the activity of the network based on the

local spatio-temporally varying demand [50]. These methods fall under the category of Oppor-

tunistic Sensing where the devices are enabled and disabled dynamically for efficient utilization of

energy sources [51]. To perform opportunistic sensing in a pro-active manner, it is desired that the

network has predictive intelligence to allow the sensor nodes to prepare for an event (e.g. target

arrival) in advance.

For prediction-based opportunistic sensing, information must be communicated between sensor

nodes; however, sharing information consumes energy [52], thus making it difficult to balance

communication requirements and energy minimization. Specifically, in the multi-target tracking

application, it is desired to track the targets with high power sensing devices opportunistically, i.e.
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to turn on the HPS devices only on the nodes that are located in the region(s) where the target(s)

are currently present or approaching. This requires accurate predictions of the targets’ paths via

distributed fusion of information received from multiple nodes detecting the targets’. However,

the information received may be associated to different targets [53], corrupted by noise, or provide

false beliefs of targets present in the environment [54]. These issues can drastically increase the

tracking error if data validation, association, and filtering are not incorporated into the DSN.

This chapter addresses these issues by presenting a distributed supervisory control algorithm,

called Prediction-based Opportunistic Sensing (POSE) [41]. This algorithm manages the power

consumption of each multi-modal sensor node in a distributed fashion to enable energy-efficient

target coverage while minimizing tracking error and missed detection rates. Each multi-modal

node consists of multiple devices including HPS, LPS, DPU, TX, and RX, as discussed in Chap-

ter 2.1. Each node also contains an embedded supervisor, i.e. a Probabilistic Finite State Automa-

ton (PFSA), which enables and disables the devices on the node in an opportunistic manner to

conserve energy.

The states of the PFSA represent the different activities of the node which correspond to en-

abling/disabling its various sensing and communication devices [8, 55]. The state transition proba-

bilities of the PFSA are dynamically updated based on the information received from neighboring

nodes or from direct observation of a target using the local sensor suite. These probabilities control

the switching of the PFSA states to facilitate opportunistic sensing based on the predicted target(s)

trajectories. For example, the PFSA of a sensor node enables its high power consuming devices

when a target is present within its coverage region, while disabling them and entering into a low

power consuming cycle when it is not present.

Consider a network shown in Figure 3.1, where the sensor nodes are randomly deployed and

two targets are traveling through the ROI. Also, consider that the orange diamond nodes are the

tracking or HPS state nodes, the green triangles are detection or LPS state nodes, and the white

circles are sleeping nodes. The HPS state nodes are assumed to use their high power consuming

devices to track targets while the LPS nodes use the low power devices for target detection and

energy conservation. As seen in the figure, the sensor nodes form spatio-temporal clusters of HPS
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Figure 3.1: An Illustration of the Prediction-based Opportunistic Sensing Algorithm

state nodes in a distributed manner within the blue circle around the targets predicted position.

Outside of the blue circle, the sensor nodes are conserving energy by staying in a low energy

consuming state, i.e. LPS or Sleep state. The HPS state node clusters broadcast the target state

information to alarm all of the LPS and HPS state nodes within the communication neighborhood.

The LPS and HPS state nodes then use the received information to identify the target’s location,

predict the next position of the target, and accordingly transition to the HPS state during the next

time step if the target is traveling into the node’s HPS device coverage area. This prediction-based

sensor activation method allows for the HPS state clusters to form around the target to track it with

high accuracy in an opportunistic manner, while the remaining network conserves their energy.

The main contribution of this paper is the development of the POSE algorithm that is built upon

distributed supervisors (i.e. PFSA) that enable scheduling of multi-modal sensor nodes consisting

of several sensing devices that consume different amounts of energy. The POSE algorithm is vali-

dated by Monte Carlo simulations for multiple scenarios on a Matlab platform and compared with
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distributed scheduling schemes. The results show that the POSE algorithm provides significant en-

ergy savings and low missed detection rates while improving tracking accuracy via fusion-driven

state initialization.

3.2 Related Work

Energy-efficient target tracking has been studied using various approaches throughout the DSN lit-

erature. To begin with, the sensor nodes must be deployed in a manner that allows for full coverage

of the ROI [56, 57]. This can be achieved by optimally placing sensor nodes to maximize cover-

age [58, 59]; however this becomes impractical for large scale networks, in complex geographical

regions, and due to the deployment time. To overcome this limitation, the κ-coverage problem was

studied [37] to ensures that every point within the ROI is observable by at least κ sensor nodes

at a given time. This assumes that the sensor nodes are deployed according to a random distri-

bution, e.g. Uniform or Poisson [2]. Once the sensor nodes are deployed, energy-efficient sensor

scheduling schemes are employed. In target tracking problems, the highest priority is accurate

state estimation of the target. Therefore, adaptive sampling methods [60, 61] were developed to

adjust the sampling interval to ensure accurate track estimation where the trace of the covariance

matrix is used to represent the estimation accuracy.

Typical sensor scheduling approaches found in the literature are based on three types of network

architectures: (1) Centralized, (2) Cluster-based, and (3) Distributed. Centralized networks require

each sensor node to communicate their observations to a central computing station which calculates

and transmits the optimal scheduling decisions to each sensor node while estimating the target

trajectory [19, 62]. Some of these methods employ sensor selection techniques to minimize the

number of sensors used for data collection [62, 63]. The centralized architectures can guarantee

that the scheduling protocol will minimize the energy consumption of the network; however, these

architectures are not scalable and thus very difficult to implement on large scale networks due

to multiple factors such as communication limitations, transmission delays, and data processing

requirements.
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Cluster-based network architectures were proposed to overcome the limitations of centralized

architectures by identifying a few sensor nodes throughout the ROI, to act as central computers,

called cluster heads (CH) [30] [20]. Each CH forms an independent cluster which consists of

multiple sensor nodes within its communication neighborhood. These sensor nodes send all the

measurement data to their CH for analysis to generate state estimates for target tracking, sensor

scheduling, and even for new cluster head selection [50, 61, 64]. The CH performs sensor schedul-

ing by means of an optimization algorithm which selects the optimal subset of sensors within the

cluster to track the target. This requires the knowledge of the positions of all the sensors within

the cluster as well as their respective energy levels. Since the information measured outside of the

cluster is unobservable, scheduling decisions in hybrid networks are only locally optimal.

The CH based methods allow for controlled energy consumption throughout the network to

maximize its lifetime [65]. These methods eliminate the bandwidth limitation found in central-

ized networks by limiting a cluster’s size to allow for single-hop communications. However, data

transmission between the sensor nodes and the CH occur frequently [21], thus consuming high

energy. Furthermore, if a CH were to fail, due to defects or energy depletion, the entire cluster

would stop receiving scheduling decisions, rendering a large gap in the ROI [22], and requiring the

implementation of dynamic CH election schemes [23].

Distributed network architectures have also been proposed where each sensor node dynamically

controls its own tasks based on the information measured by its own sensor suite or perceived from

its neighboring nodes [24]. The methods reported here deal with partial information broadcasting

[66], adapting sensor frequency [67], and scheduling binary sensor nodes [26] for accurate target

tracking with energy minimization. Unlike most cluster-based approaches, the distributed net-

works tend to be reactive in the sense that they only communicate information when an event has

occurred, thus allowing for savings on transmission costs. Also, distributed architectures do not

require sensor or CH selection, thus allowing for less computation requirements. Similar to cluster-

based networks, the scheduling decisions here are only locally optimal due to limited observation

region, however these architectures are scalable, provide fault tolerant attributes by construction,

and eliminate the bandwidth limitations of centralized networks.

22



Figure 3.2: Probabilistic Finite State Automaton (PFSA)-based supervisor embedded on each multi-modal sensor node

for distributed scheduling

The POSE algorithm developed in this paper utilizes distributed supervisors that rely on target’s

state prediction to probabilistically control the scheduling of multi-modal sensor nodes for energy

minimization. This algorithm provides significant energy savings that extend the network’s lifetime

extension while ensuring low missed detection rates and low tracking errors.

3.3 Distributed Supervisor: Probabilistic Finite State Automaton Overview

The scheduling of each multi-modal sensor node is controlled by a distributed PFSA-based super-

visor, as shown in Fig. 3.2, which controls the devices enabled and disabled based on the informa-

tion available to the sensor node.

Definition 3.3.1 (PFSA) A PFSA [68] is defined as a 3-tuple Ξ = 〈Θ, A, P 〉, where

• Θ is a finite set of states,

• A is a finite alphabet,
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Table 3.1: Devices Enabled(✓)/Disabled(✗) at PFSA States.

States \ Devices DPU LPS HPS Transmitter Receiver

Sleep (θ1) ✓ ✗ ✗ ✗ ✗

LPS (θ3) ✓ ✓ ✗ ✓ ✓

HPS (θ4) ✓ ✗ ✓ ✓ ✓

• p : Θ × Θ → [0, 1] are the state transition probabilities which form a stochastic matrix

P ≡ [pij], where pij ≡ p(θi, θj), ∀θi, θj ∈ Θ, s.t.
∑

θ′∈Θ p(θ, θ
′) = 1, ∀θ ∈ Θ.

The alphabet is defined as A = {ǫ, 0, 1}, where ǫ is the null symbol emitted when no informa-

tion is available, 0 indicates no target detection, and 1 indicates target detection.

The state set Θ consists of three states: (1) Sleep (θ1), (2) LPS (θ2), and (3) HPS (θ3), as shown

in Fig. 3.2. These states have the following attributes:

• Sleep (θ1): Disables all devices on the node to consume minimal energy,

• LPS (θ2): Detects the target while conserving energy using either (i) LPS devices and/or (ii)

information perceived by neighboring sensor nodes, and

• HPS (θ3): Detects the target using the HPS devices, estimates its current state, alerts neighbors

of its whereabouts, and predicts its next position to enable prediction-based opportunistic

sensing.

Table 3.1 shows the various devices that are enabled or disabled for each PFSA state.

Consider a sensor node si ∈ S which can operate in one of the three states at one time. The

PFSA-based supervisor runs a unique algorithm within each state to dynamically update it’s state

transition probabilities based on the information acquired about the targets’ whereabouts. These

probabilities control the transition of the node from one state to another. The algorithms within

each state are described in the following subsections.

3.3.1 Sleep State Description

The Sleep state, θ1, is designed to minimize energy consumption by disabling all devices on

the node when no target is detected nearby. In the Sleep state, the sensor node either stays in

the Sleep state with a probability psi11(k) = psleep or makes a transition to the LPS state with
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Figure 3.3: LPS State Algorithm

a probability psi12(k) = 1 − psleep, where psleep is a design parameter that governs if the node

will remain in the Sleep state. At the Sleep state θ1, the following state transitions are possible:

δθ1 = {(θ1, ǫ, θ1), (θ1, ǫ, θ2)}, where the null symbol ǫ denotes no observation of the target.

3.3.2 Low Power Sensing (LPS) State Description

The LPS state θ2 is designed to conserve energy while enabling target detection. In this state, the

LPS devices, the DPU, TX, and RX are powered on. Fig. 3.3 shows the flowchart of the algorithm

within the LPS state.

• Target Detection: Here a target could be detected either by: (i) using the LPS devices or by

(ii) fusing the information received from neighbors. If a target, τℓ, is present, then the sensor node

si detects it with a probability P si
D,LPS(u

τℓ(k)) as per Eq. (2.5). Then, it checks if it has received

any information from its neighbors. Let N si
HPS ⊆ N si be the set of HPS state sensors that have

broadcasted target state information to si. If N si
HPS = ∅, then none of the node’s neighbors have

detected and tracked a target located in the nodes local neighborhood. Therefore, node si relies on

its own sensor information to govern its control action. If the LPS devices detect the target, then the

node will transition to the HPS state with a probability p23 = P si
D,LPS(u

τℓ(k)). Whereas if a target

is not detected, si will transition to the Sleep state with a probability p21 = 1 − P si
D,LPS(u

τℓ(k)).

In either case, si will not remain in the LPS state because it has directly observed if a target is

present or not. However, if information is received, i.e. N si
HPS 6= ∅, then the node performs the

Distributed Fusion algorithm described next.

• Distributed Fusion: The distributed fusion algorithm, shown in Fig. 3.4, fuses the received
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Figure 3.4: Distributed Fusion Algorithm

information to obtain joint estimates of the targets located within its communication neighborhood.

Consider a neighboring sensor node sj ∈ N si and consider that a target is present within

its HPS sensing radius RHPS. If this node is in the HPS state at time k, then it observes the

target and generates estimates of the target state x̂sj (k|k), its covariance Σ̂sj(k|k), and the filter

gain matrix Ŵsj(k) (For details see Section 3.3.3). Then, it broadcasts the information packet

(x̂sj(k|k), Σ̂sj(k|k),Ŵsj(k)) to its neighbors (assuming a single-hop network) within the com-

munication radius, Rc. Since node si has its receiver enabled, it receives these packets with a

probability P si
RX = 1 − pdrop. A realistic communication model based on channel properties will

be considered in future work. Let N si
HPS ⊆ N si be the set of neighbors in the HPS state from

which packets are successfully received. Then the following information ensemble is constructed:

Îsi(k) =
{(

x̂sj(k|k), Σ̂sj(k|k),Ŵsj(k)
)
, ∀sj ∈N si

HPS

}
, (3.1)

This information is then combined using the following steps.

1) Trustworthy Set Formation: Since some of the received estimates might be poor due to noise

and other factors, the information received must first be validated. This is done by forming a set of

trustworthy neighbors N si
T ⊆N si

HPS by evaluating the sum of the position error as follows

N si
T = {sj ∈N si

HPS : Trace(H(k)Σ̂sj(k|k)H(k)′) ≤ ξ} (3.2)

where H(k) is the Jacobian of the measurement model defined in Section 2.2 and ξ is the maxi-

mum tolerance of the estimate. In this thesis, ξ =
R2

HPSσ
2

φ
+σ2R

2
, where σφ and σR are the standard

deviations in the azimuth and range measurements of the HPS sensor. This tolerance is dervived
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from the state initialization method used in this work. If the position covariance error increases

above the initialized value, then the estimation error is not decreasing and may be a track generated

by false measurements. Finally, node si receives the following trustworthy information:

Î
si
T (k) =

{(
x̂sj (k|k), Σ̂sj(k|k),Ŵsj(k)

)
, ∀sj ∈N si

T

}
, (3.3)

Remark 3.3.1 Forming the Trustworthy Information Ensemble, Î
si
T (k) allows for the following

advantages:

i False tracks and poor state estimates are eliminated,

ii State estimation and fusion are enhanced by combining accurate estimates, and

iii the computational complexity is reduced by filtering out unnecessary date.

2) Track Association: Since there could be multiple targets within a close proximity of ea-

chother, the trustworthy information, ÎsiT (k), may contain information related to different targets.

Therefore, the estimates must be associated together to improve state vector fusion, while allow-

ing node si to understand how many targets are located within its local neighborhood. Since each

sensor node in the network uses the same process noise in the motion model [69], each estimate re-

ceived is correlated and the traditional Mahalanobis Distance Metric cannot be used. To overcome

this, Bar-shalom [69] proposed the Track-to-Track Association (T2TA) algorithm which associates

the tracks using the following metric

̺2jh =
(
x̂sj (k|k)− x̂sh(k|k)

)′[
Σ̂sj(k|k) + Σ̂sh(k|k)− Σ̂sj ,sh(k|k)− Σ̂sh,sj(k|k)

]−1

·
(
x̂sj(k|k)− x̂sh(k|k)

)
(3.4)

where ̺2jh is the association metric between sensors sj and sh which belong to the set of trustworthy

neighbors N si
T ; and

(
x̂sj(k|k), Σ̂sj(k|k)

)
∈ ÎsiT (k) and

(
x̂sh(k|k), Σ̂sh(k|k)

)
∈ ÎsiT (k) are the state

and covariance estimates for a target at time k, for sensors sj and sh respectively. The cross

covariance term Σ̂sj ,sh(k|k) in Eq. (3.4), between sensor sj and sh is computed as follows.
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(a) Example of fusion without association (b) Eample of fusion with association

Figure 3.5: Benefits of state association

Σ̂sj ,sh(k|k) =
[
I− Ŵsj(k) ·H(k)

]
F(k) · Σ̂sj ,sh(k − 1|k − 1) · F(k)′

[
I− Ŵsh(k) ·H(k)

]′

+
[
I− Ŵsj(k) ·H(k)

]
·Q ·

[
I− Ŵsh(k) ·H(k)

]′
(3.5)

where Ŵsj(k) ∈ ÎsiT (k); Ŵ
sh(k) ∈ ÎsiT (k); I is an identity matrix; H(k) is the Jacobian of the

measurement model; F(k) is the Jacobian of the state transition matrix; Q is the process noise

covariance matrix; and Σ̂si,sj(k−1|k−1) is the previous cross covariance between sensors sj and

sh.

To implement T2TA, the sensor node si forms groups by associating the estimates received from

its trustworthy neighbors using the χ2-Test [69], as shown in Fig. 3.5b on the left. This is done in a

manner such that any two sensors, say sj and sh, within a group, must satisfy ̺2jh ≤ χ2
d(γ), where

d = 2 is the number of measurements and γ = 0.05 is the level of significance.

Thus each sensor from the set of trustworthy neighbors is assigned to one of the groups N si,c
T , c =

1, 2, ...C, such that

C⋃

c=1

N si,c
T = N si

T (3.6)

and the intersection between any two groups is empty. An example of 3 groups of associated

trustworthy tracks are shown in Fig. 3.5b. Note that C may not necessarily be equal to the total

number of targets m in the ROI. This is because not all targets may have been observed by the

same group of sensors.
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The corresponding estimates within the trustworthy information are grouped to form the infor-

mation ensembles, Î
si,c
T (k) ⊆ Î

si
T (k), ∀c = 1, ...C.

This procedure is a very important step for each sensor node since it needs to develop a reliable

state estimate corresponding to every target that is in its neighborhood. If the sensor node were

to bypass this association, the fused state estimate would be inaccurate and lead to poor control

strategies. For example, consider the trustworthy state estimates shown in Fig. 3.5a on the left. If

the association step is not implemented, all of the state estimates would be fused together to form

the single estimate shown in Fig. 3.5a on the right. Whereas if association is included, as shown in

Fig. 3.5b, the resulting fused state estimates represent the number of disjoint tracks present and an

accurate representation of the true target locations.

3) Track Fusion: Once the information received from neighbors is filtered and associated to

form C trustworthy information ensembles, Î
si,c
T (k) ⊆ ÎsiT (k), ∀c = 1, ...C, the next step is to fuse

the associated information to generate a total of C target state estimates, as seen in Fig. 3.5b on the

right. This paper uses the Track-to-Track Fusion algorithm [70], which combines multiple state

estimates into a single estimate.

For fusion, the following procedure is performed. For each group c = 1, 2, ...C, the cross

covariance matrix Σ̃si,c(k) between all sj, sh ∈N si,c
T is constructed as follows

Σ̃si,c(k) =




...
...

...

· · · Σ̂sj ,sh(k|k) · · ·
...

...
...



, where Σ̂sj ,sh(k|k) =





Σ̂sj(k|k) if sj = sh

Σ̂sj ,sh(k|k) otherwise

, (3.7)

Σ̂sj(k|k) ∈ Î
si,c
T (k), and Σ̂sj ,sh(k|k) is given in Eq. 3.5. Then, the node si computes the fused

state and covariance estimates from its trustworthy associated groups as follows

Σ̂si,c(k|k) =
(
Ĩ(Σ̃si,c(k))−1Ĩ′

)−1

(3.8)
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Figure 3.6: Visual representation of the probability P siHPS(k)

x̂si,c(k|k) = Σ̂si,c(k|k)̃I(Σ̃si,c(k))−1




...

x̂sj (k|k)
...




(3.9)

where Ĩ =
[
I...I

]
consists of |N si,c

T | n × n identity matrices and x̂sj(k|k) ∈ Î
si,c
T (k). In this

manner single estimates are produced for each associated group in the trustworthy set.

• One-Step Prediction: Once all the received state information is fused, node si computes a

one-step prediction [45] of the target’s state using the Extended Kalman Filter:

x̂si,c(k + 1|k) = f(x̂si,c(k|k), k)

Σ̂si,c(k + 1|k) = F(k)Σ̂si,c(k|k)F(k)′ +Q, (3.10)

where F(k) is the Jacobian of the state transition matrix evaluated at x̂si,c(k|k) and Q is the process

noise covariance. This predicted state is used to computed the probability that the target is traveling

within the node’s coverage area, Ωsi(k).

• Computation of P si
HPS(k): If the target is predicted the travel into the coverage area of node

si, i.e. Ωsi(k), then, node si should transition to the HPS state to track the target. However, if the

target is not traveling within Ωsi(k), the node should not waste its energy by transitioning to the

HPS state. This is achieve by using the probability of detecting the target with the HPS device,

P si
HPS(k), as shown in Fig. 3.6, to influence the node’s state transition and enable opportunistic

sensing.

Therefore, once the one-step predictions are obtained for the C tracks, the sensor node si com-
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putes the probability of each target traveling through its HPS device coverage area at time k + 1,

as follows:

Λsi,c(k + 1) =

∫ ∫

Ωsi (k+1)

N
(
ẑsi,c(k + 1|k), Σ̂si,c

z
(k + 1|k)

)
dxdy (3.11)

where Ωsi(k + 1) is the nodes coverage area, ẑsi,c(k + 1|k) = h(x̂si,c(k + 1|k), k) is the predicted

location of the target, and Σ̂si,c
z

(k + 1|k) = H(k)Σ̂si,c(k + 1|k)H(k)′ is the predicted position

covariance error of the target. Then the maximum probability of target detection over all tracks is

P si
HPS(k) = max

c
{Λsi,c(k + 1)} , (3.12)

which it uses to update the node’s state transition probabilities.

• Updating the State Transition Probabilities: Finally, node si updates it’s PFSA probabilities

as follows:

- if (N si
HPS = ∅), i.e. Information was not received by node si, then:

psi21(k) = 1− P si
D,LPS(u

τℓ(k)); psi22(k) = 0; psi23(k) = P si
D,LPS(u

τℓ(k))

- if (N si
HPS 6= ∅), i.e. Information was received by node si, then:

psi21(k) = 0; psi22(k) = 1− P si
HPS(k); p

si
23(k) = P si

HPS(k)

To summarize, if information is not received by node si, the node will transition to the HPS

state if a target is detected with the LPS devices. If a target is not detected, then it will transition

to the Sleep state. The node will not remain in the LPS state because it has already observed that

a target is not located in it’s local neighborhood. Furthermore, it’s neighbors have not transmit-

ted information, thus indicating to node si that a target is not located within it’s communication

neighborhood. Therefore, it would be a waste of energy to continue in the LPS state.

However, if information is received from it’s neighbors, the node should remain aware in the

LPS or HPS state and not transition to the Sleep state. This is because the target is located within

it’s communication neighborhood and could be traveling through it’s coverage area in the future.

If the target is predicted to travel within it’s HPS device coverage area during the next time step,
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Figure 3.7: High Power Sensing state algorithm

i.e. P si
HPS(k) is close to 1, the node should transition to the HPS state to track the target. However,

if P si
HPS(k) is low, then the node should remain aware in the LPS state in case the target travels in

it’s coverage area during a future time step.

3.3.3 High Power Sensing (HPS) State Description

The HPS state, θ3, is designed to estimate the state of the target and track it when it is located

within its sensing radius RHPS. Here, the HPS device, DPU, TX, and RX are enabled and the

LPS device is disabled. In this state, the sensor node will use the measurements obtained by the

HPS devices to update it’s target state estimates. Then, the node validates the updated tracks to

ensure that it is not a false track. The validated target state x̂si(k|k), covariance Σ̂si(k|k), and filter

gain matrix Ŵsi(k) are then broadcasted to the nodes within its neighborhood. Since this state

uses more energy than any other state of the PFSA, it should only be enabled when the target is

predicted to travel within its sensing radius RHPS . Fig. 3.7 shows the various steps of the HPS

state.

• Data Association and State Estimation: In the HPS state, node si first receives a set of

measurements, z(k), from its HPS devices. Subsequently, the previous state estimates x̂si(k −

1|k−1), Σ̂si(k−1|k−1) are updated using the Joint Probabilistic Data Association (JPDA) filter

[48] to generate x̂si(k|k), Σ̂si(k|k). For details on the JPDA algorithm, please see Appendix B.

If the received measurements do not associate to the previous state estimate (e.g., when the target
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Figure 3.8: Markov chain model for track validation [72]

state is not initialized), then the node si must first perform state initialization. An example of

the state initialization method used in the thesis is the Automatic Track Formation method [71]

(described in Appendix A). However, other initialization method could be supplemented.

The JPDA filter was chosen in this thesis because it allows the sensor node, si, to update mul-

tiple state estimates at once. If multiple targets are located within Ωsi(k), then the JPDA will

identify the measurements that relate to each target using measurement association. Therefore, the

state estimates are only updated with the associated measurements, thus improving state estimation

in the presence of clutter. It should also be noted that if the user prefers a different state estimation

algorithm, the JPDA block in the HPS state algorithm (shown in Fig. 3.7) can be substituted with

their preferred method.

In addition to the target range and azimuth measurements, z(k) may contain false alarms due to

clutter, which can generate false tracks at each node. To ensure that false tracks do not propagate

throughout the network, node si utilizes the M-of -N Track Confirmation Logic [72] to allow the

network to be robust to false alarms. This approach has the node si maintain a Markov chain

model, as shown in Fig. 3.8, that governs if the the state estimate is an active track or not. This

approach ensures thatM out ofN consecutive time steps have a measurement associated to a target

state estimate before the node confirms that it is an active track. Furthermore, once the target track

has been confirmed, the node can only drop the track if M consecutive time steps so not have a
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measurement associate to it. However, if< M out ofN time steps have measurements associate to

the target, the track is considered a false track and dropped from consideration. Once a target state

estimate is classified as a valid track, node si will broadcast the target state x̂si(k|k), covariance

Σ̂si(k|k), and filter gain matrix Ŵsi(k) to the other sensor nodes within its neighborhood.

• Distributed Fusion: Since si is in the HPS state and has broadcasted information to it’s

neighbors, we define N si
HPS = N si

HPS ∪ {si}. However, if si has not confirmed a target track,

then N si
HPS does not include si. Then, if N si

HPS 6= ∅, it will run the distributed fusion algorithm

(please see Section 3.3.2 for details) in the same manner as in the LPS state. This generates the

fused state estimates, x̂si,c(k|k) and Σ̂si,c(k|k), that allow the node to understand the location of

targets within their communication neighborhood.

• One-Step Prediction: Next, the node computes the predicted target state estimates according

to Equation 3.10 in Section 3.3.2.

• Computation of P si
HPS(k): Then, node si computes the probability of the target traveling

within si’s coverage area Ωsi(k) during the next time step using Equation 3.12 in Section 3.3.2.

• Updating the State Transition Probabilities: Finally, node si updates it’s PFSA probabilities

as follows:

- if (N si
HPS = ∅), si has not received target information and has not validated a track, then:

psi31(k) = 0; psi32(k) = 1− P si
D,HPS(u

τℓ(k)); psi33(k) = P si
D,HPS(u

τℓ(k))

- if (N si
HPS 6= ∅), si has validated a track and/or has received target information from neigh-

bors, then:

psi31(k) = 0; psi32(k) = 1− P si
HPS(k); p

si
33(k) = P si

HPS(k)

In summary, information is not receive by node si if its neighbors have not validated that a target

is located within their coverage area, and node si has not validated a target track yet. In this con-

dition, the node is desired to stay in the HPS state with the detection probability P si
D,HPS(u

τℓ(k))

if the HPS devices have provided measurements of a target. This is because node si might have a

target state initialized, but the state may not be considered a valid track yet. Therefore, the node

should remain tracking the uncertain target. However, if a target is not located within its cover-
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age area and information is not received, then the node should transition to the LPS state. This

is because node si does not want to waste energy, but wants to be aware of its communication

neighborhood since a target detection drove the node to be in the HPS state during the previous

time step.

Alternatively, if node si receives information from it’s neighbors, distributed fusion, one-step

prediction, and computation of P si
HPS(k) has occurred. Therefore, the node should transition to

the HPS state if the probability of the target traveling through its coverage area, P si
HPS(k), is high.

Whereas if P si
HPS(k) is low, the node should transition to the LPS state to stay aware of its commu-

nication neighborhood. In both conditions, the node should not transition to the Sleep state because

a target has been detected within the nodes communication neighborhood. Therefore, the target

could travel toward the node in future time steps, requiring the node to maintain awareness in the

LPS state.

3.4 POSE Algorithm Performance

To validate that the first theme of this thesis achieves energy-efficient target coverage, the POSE

algorithm is compared against existing distributed scheduling methods. The POSE algorithm was

simulated for 500 Monte Carlo runs in a 500m × 500m Matlab environment with a single target

traveling through the region. During each Monte Carlo run, the location of each sensor node is

regenerated according to a uniform distribution. Each multi-modal sensor node is assumed to pos-

sess Passive Infrared (PIR) sensors as the LPS devices and a laser range finder as the HPS devices.

The simulation energy costs, process noises (συ,x, συ,y, συ,ψ), measurement noises (σR, σφ), and

sensing range parameters are presented in Table 5.1.

Table 3.2: Simulation Parameters

eclock = 0.01W ∆T = 0.5s α = 0.95
eLPS = 115mW Rr = 15m β = 0.0036
eHPS = 12W RLPS = 30m σφ = 0.25◦

eTX = 1.26W Rc = 120m σR = 0.075m
eRX = 0.63W RHPS = 55m συ,x = συ,y = 0.1m
eDPU = 1W µcl = 0.025 συ,ψ = 0.1◦

E0 = 137592J pfa = 0.01 γHPS = 0.95
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(a) Example of POSE Algorithm PFSA (b) Eample of Random Scheduling (c) Eample of LPS-HPS Scheduling

Figure 3.9: Distributed scheduling methods

First, we obtain the missed detection and percent energy savings characteristics of the POSE

network as compared to two distributed scheduling methods, Random Scheduling and LPS-HPS

Scheduling. The Random Scheduling method, as shown in Fig. 3.9b, is a distributed method where

the sensor nodes probabilistically cycle between actively sensing (HPS) and sleeping. Thus, during

each time step the nodes sleep with a probability prand, while they sense the environment in the

HPS state with a probability 1 − prand. When prand = 0, the sensor nodes are always sensing,

while for prand = 1 the nodes are always sleeping. The LPS-HPS Scheduling method, as shown in

Fig. 3.9c, is another distributed approach that falls under the category of trigger-based activation.

Here, the sensor nodes remain in the passive (LPS) state until a target is detected. Once a node

detects a target, it switches to the active (HPS) state for further interrogation. Note that in both

the LPS-HPS and Random Scheduling methods, the sensor nodes do not collaborate their target

information together.

To present the missed detection characteristics of the POSE, Random, and LPS-HPS schedul-

ing methods, a single target was simulated to travel through the ROI. Each network was run for

a varying network density, ρ, between ρ = [0.6e−3, 1.4e−3]Nodes
m2 or n = [150, 350] nodes. The

POSE algorithm was simulated for various psleep values between psleep = [0, 0.75], while the Ran-

dom Scheduling method was simulated for a prand = [0, 0.5]. Figure 3.10a presents the missed

detection probability, Pm, of the POSE network. This result shows that as the psleep parameter

increases, the probability of missed detection, Pm, increases. This is because the psleep parameters

governs if the node will stay in the Sleep state. Therefore, the higher the value of psleep, the more

likely a node within the detection region of the target will be in the Sleep state. However, even for
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Figure 3.10: Missed Detection Characteristics

high values of psleep, the POSE algorithm is able to achieve< 5% missed detections for low densi-

ties. Furthermore, as the network density increases, the probability of missed detection decreases

to almost 0. This is because the sensor nodes are able to use information from their neighbors to

predict where the target is heading. Then, the nodes are able to pro-actively transition to the HPS

state to prepare for the target in advance. Therefore, as long as the network density is sufficiently

large, there will always be a node aware of the target’s location and ready to cover it.

The missed detection characteristics of the Random and LPS-HPS Scheduling methods are

presented in Figure 3.10b. As seen, the always sensing network, i.e. RAND, prand = 0, achieves

a very low probability of missed detection. Then, as the probability prand increases, the network

starts to miss the target more frequently. This is because in the Random Scheduling network,

the sensors are not worried about tracking the target. They are more concerned with covering the

entire ROI to facilitate target coverage. Therefore, as the probability prand increases, this method of

scheduling requires a larger network density to achieve the same missed detection characteristics.

Additionally, Fig. 3.10b shows the probability of missed detection for the LPS-HPS network. This

method produces the highest missed detection probability because the nodes are mainly in the LPS

state. These passive sensors have a smaller sensing range than the HPS devices and cannot cover

as much of the ROI. Therefore, in order for the LPS-HPS method to achieve as low of a missed

detection probability as the other methods, the network must deploy a larger network density.
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Figure 3.11: Percent Energy Savings of the POSE network

Additionally, as seen in Figures 3.10a and 3.10b, the characteristic curves for most of the psleep

values (say 0 ≤ psleep ≤ 0.5) of the POSE network are similar to RAND, prand = 0.25; thus

are close to the always monitoring network. However, the don’t go below the always monitoring

network which is obvious. The performance of the POSE network approaches the all on scheme as

the node density increases. As also seen, the POSE network beats the performance of the LPS-HPS

and Random networks with prand ≥ 0.25.

While achieving a performance close to that of the always monitoring network, the POSE net-

work results in significant energy savings, as shown in Figure 3.11. This is because only a small

fraction of HPS nodes are enabled during each time step around the target. This leads to > 80%

energy savings as compared to the Random Scheduling method with prand ≤ 0.5. As compared to

the LPS-HPS method, the POSE network is able to achieve> 30% energy savings. This is because

the sensor nodes away from the target are able to conserve energy by cycling between the Sleep and

LPS state, while the LPS-HPS method has all of the sensors away from the target in the LPS state.

The percent energy savings over the POSE network compared to the other networks is defined as

%EnergySavings = 1− Enet(k,POSE)
Enet(k,∗)

, where Enet(k, ∗) is the total network energy consumption

for the network ∗ ∈ {POSE, RAND prand = 0, RAND prand = 0.25, RAND prand = 0.5, LPS-

HPS}. Thus, the following trade off exists: for energy savings, the value of psleep should be large,

while for reducing the Pm, the value of psleep should be small. Based on the results in Figure 3.10a,
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Figure 3.12: Root Mean Squared Error

the network density of ρ = 1.4e−3 is chosen for further validation studies.

Next, the tracking performance of the three algorithm was studied and is presented in Figure

3.12. As seen in Fig. 3.12, the parameter psleep does not affect the Root Mean Squared Error

(RMSE) in both position and velocity. This is because even though some sensors might be in the

Sleep state around the target, a cluster of HPS state nodes is still tracking it. Additionally, it can

be seen that the RMSE of the POSE algorithm is much lower then the other distributed methods.

This is because the LPS and HPS nodes in the POSE network are able to collaborate and improve

their state estimates through distributed fusion. Therefore, the POSE algorithm is able to achieve

accurate state estimation, low missed detection rates, and significant energy savings.

3.5 Conclusion and Limitations

This chapter presented a novel distributed supervisory control algorithm, called Prediction-based

Opportunistic Sensing (POSE), that facilitates probabilistic control of multi-modal sensor nodes.

Each sensor node is controlled using a Probabilistic Finite State Automaton (PFSA), which dynam-

ically adapts its state transition probabilities to control the communication and sensing devices

on the node based on the targets information. Simulation results verify that the POSE network

performs opportunistic sensing, significantly reduces energy consumption, achieves low missed

detection rates, and accurate state estimate as compared to Random Scheduling and LPS-HPS

methods.
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However, there are two main drawbacks of the POSE algorithm that can improve the energy-

efficiency of the network. First, the HPS sensors around that target consist of every sensor node

located within the detection region of the target. Although this is providing accurate state estima-

tion, the energy consumption around the target is far too high due to redundant HPS state nodes.

Therefore, if a distributed sensor selection method is implemented to select a subset of the sen-

sors around the target, energy wastage would be minimized. The second major drawback of this

approach is that the network assumes that all targets located within the ROI are of interest to the

network operators. In practical applications, many different types targets will pass through the

network and only a hand full of them will be of interest to the network operator. Therefore, if the

target class was used to control the number of sensors active in the HPS state around the target,

significant energy could be saved.

To overcome the above limitations, the Prediction-based Opportunistic Sensing using Dis-

tributed Classification, Clustering and Control (POSE.3C) algorithm was developed and is dis-

cussed in the next chapter.
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CHAPTER 4

PREDICTION-BASED OPPORTUNISTIC SENSING USING DISTRIBUTED

CLASSIFICATION, CLUSTERING AND CONTROL (POSE.3C)

4.1 3C Network Autonomy Introduction

Chapter 3 developed an advanced distributed supervisory control approach that probabilistically

controls the multi-modal devices on each node. This approach ensures that the nodes around the

target autonomously activate their HPS (e.g. active) devices to track the target, while the nodes

away from the target either enable their LPS (e.g. passive) devices to stay aware, or Sleep to

preserve energy.

This supervisory control approach requires predictive intelligence of a target’s whereabouts to

form clusters of HPS state nodes around the target. In this regard, the first issue addressed in this

chapter is distributed clustering via efficient sensor node selection. Current clustering approaches

typically select sensors based on their distance to the target or detection capability [31]. However,

in applications where targets may frequently travel in the same section of the network multiple

times (e.g., multiple targets trespassing through a lane), these approaches will select the same sen-

sor nodes again and again, thus depleting their energies and creating holes or energy depleted lanes

in the network. Thus, uniform spatial distribution of remaining energy resources around regions

with frequent target visits is a desired feature. In our approach, we pursue a multi-step filtering
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process for node selection which considers factors including distance to the target, the remain-

ing energies, and the geometric distribution around the target. This clustering process enables

the network to track the target accurately while maintaining a uniform energy distribution, hence

minimizing holes and further improving longevity.

Furthermore, it is observed that within the above opportunistic sensing paradigm, energy wastage

may still occur if clusters are formed around a Target Not of Interest (TNOI) to the mission oper-

ator. Therefore, it is desired that distributed classification is incorporated into the control strategy,

such that energy resources are dynamically allocated primarily around a Target of Interest (TOI).

For example, in a border surveillance application, the TOIs could be humans and vehicles, while

the TNOIs could be animals. In our approach, we adapt the cluster size based on the classification

decisions, such that Nsel > 1 sensor nodes are activated around a TOI to improve the estimation

accuracy via fusion, while only 1 sensor node is activated around a TNOI to maintain awareness.

This classification-enabled network control approach drastically improves the network lifetime by

performing opportunistic sensing only around mission specific events.

To address the above issues of Classification→Clustering→Control (3C network autonomy),

this chapter presents a distributed algorithm, called Prediction-based Opportunistic Sensing using

Distributed Classification, Clustering and Control (POSE.3C), which manages the different multi-

modal devices on each sensor node for opportunistic energy-efficient operation of the network.

As shown in Fig. 4.1, a distributed supervisor designed as a PFSA is embedded on each node to

enable/disable its different sensing and communication devices. The states of the PFSA include: 1)

Sleep, 2) LPS, and 3) HPS. The Sleep state disables all devices to minimize energy consumption.

The LPS state enables the LPS devices for target detection, while the HPS state enables the HPS

devices for state estimation and classification of the target. The TX and RX are turned on in both

LPS and HPS states for sensor collaboration.

The state transition probabilities of the PFSA are dynamically updated based on the information

regarding the target’s class and predicted location. This information could be either measured and

computed locally by the node and/or received from the neighbors. If it is received, the nodes will

perform distributed fusion to identify the target’s class (TOI or a TNOI) and predict its state during
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Figure 4.1: Illustration of the POSE.3C algorithm with a PFSA-based distributed supervisor acting on each node.

the next time interval. This fused information is then used to form clusters of optimal sensors. The

selected nodes probabilistically transition to the HPS state while nodes not selected cycle between

the low power consuming states (i.e Sleep and LPS) to stay aware while preserving energy. Fig. 4.1

illustrates this approach with three targets traveling through the network. As illustrated, Nsel = 3

sensors are activated in the HPS state around the TOIs, while only 1 sensor is activated around the

TNOI. Ideally, 0 sensors should be activated around the TNOI, however, if there is not a HPSstate

node tracking the TNOI, then all of the LPS state nodes surrounding the target will not receive any

information about it. Therefore, following the LPS state control design in Chapter 3.3.2, the LPS

state nodes will immediately switch to the HPS state and redundant sensor nodes will be active in

a similar manner as the POSE algorithm. Therefore, if 1 HPS state node is actively tracking TNOI,

then the LPS state nodes will be alerted that a TNOI is present and will not waste their energy

by transition to the HPS state. Thus, a POSE.3C network opportunistically self-adapts around the

TOIs, providing significant energy savings.

The main contributions of this Chapter are as follows:

• Development of a distributed algorithm that facilitates 3C network autonomy with the fol-

lowing attributes:
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(i) distributed classification and utilization of the target class information to govern the cluster

size for tracking,

(ii) distributed clustering by fusing the target state estimates, predicting the next state, and per-

forming sensor node selection around the target’s predicted state based on the targets class,

and

(iii) distributed supervisory control to enable/disable multi-modal sensing devices for energy-

efficiency.

• Theoretical analysis of the network’s performance characteristics: (i) Expected energy con-

sumption, (ii) Expected network lifetime, (iii) Probability of missed detection for a target

birth and for a mature target.

4.2 Related Work

The following subsections describe the existing classification and scheduling methods employed

in sensor networks.

4.2.1 Classification Methods in Networks

Several pattern recognition methods, such as κ-Nearest Neighbors, Support Vector Machines, and

Symbolic Feature Extraction, are popular for computing classification decisions based on sensor

data. Examples of these approaches include classifying vehicles, soldiers, and pedestrians [73],

trespassers [7, 74], mines [75], submarines, and sea animals [24]. Typically, these approaches re-

quire the nodes to be equipped with sensors that measure acoustic signals, magnetic fields, and/or

images, that provide distinguishing features between target classes. Several target tracking net-

works only measure the range and azimuth of the target, thus kinematic feature based classification

methods were developed. These methods compute the posteriori probability of the target motion

model given the observed track, known as Joint Tracking and Classification [32, 76]. These meth-

ods are typically used in radar/sonar applications (e.g., classifying commercial aircraft vs. fighter

jets) and have a high computational complexity which may not be suitable for DSN. Since central-
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ized classification is impractical for large DSN, most networks perform classification at the cluster

head by fusing local decisions or features that were computed on each sensor node [24, 73, 74].

The above approaches only deal with the classification problem and do not address the inte-

grated 3C network autonomy problem which is the focus of this chapter.

4.2.2 Network Control and Scheduling

Typical methods of network control deal with minimizing the number of active nodes around the

target via sensor selection. This is achieved by Centralized or CH-based approaches. CH-based ap-

proaches are more popular due to their feasibility in large networks, where the Cluster Head (CH)

selects the optimal set of sensors to track the target [23, 32, 50, 64]. The optimization usually con-

sists of maximizing/minimizing one of the following cost functions: probability of detection [27],

tracking accuracy [77], energy [30], Kullback-Liebler distance [31], or other information theoretic

measures [32, 78]. The above methods are not practical for DSN due to the heavy communication

and computation requirements of searching the entire network/cluster. Furthermore, if a CH were

to fail, the entire cluster would stop receiving scheduling decisions, rendering a large gap in the

ROI. This requires implementation of dynamic CH election schemes [23]. Thus, for DSN, Kaplan

[29] proposed a local node selection algorithm based on a cost function that minimizes the Mean

Squared Error of the target state. This approach was extended by utilizing the innovation of the

estimate [79] and using mutual information [80].

Although these methods performed sensor selection, they neither performed the multi-modal

probabilistic control of the selected nodes nor addressed the integrated 3C network autonomy

problem for energy-efficient target tracking.

4.3 POSE.3C Algorithms

As shown in Fig. 4.1, each sensor node is controlled by a distributed PFSA-based supervisor as

defined in Chapter 3.3.

Consider a sensor node si ∈ S . The operations within each state of its distributed PFSA-based
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Figure 4.2: Low Power Sensing State Algorithm

supervisor and how the node updates its state transition probabilities are discussed below.

4.3.1 Sleep State Description

The Sleep state, θ1, is designed to minimize the energy consumption of the node si when the target

is away or if the node is not selected to track the target. It disables all sensing and communication

devices on the node except the clock. After every time interval ∆T , the node can make a transition

to the LPS state with a probability psi12(k) = 1 − psleep or it can stay in the Sleep state with a

probability psi11(k) = psleep, where psleep is a design parameter.

4.3.2 Low Power Sensing (LPS) State Description

The LPS state, θ2, is designed to conserve energy while enabling target detection. In this state, the

LPS devices, the DPU, TX, and RX are powered on. Fig. 4.2 shows the flowchart for the algorithm

within the LPS state.

• Target Detection: Here a target, τℓ, could be detected either by: (i) using the LPS devices or

by (ii) fusing the information received from neighbors. If a target is present, then the sensor node

si detects it with a probability P si
D,LPS(u

τℓ(k)) as per Eq. (2.5).

• Distributed Collaboration: Next, it checks if it has received any information from its neigh-

bors. Let N si
HPS ⊆ N si be the set of HPS state sensors that have broadcasted the target state and

class information to si. If information is received, i.e. N si
HPS 6= ∅, then the node si uses a collab-

oration algorithm (see Section 4.4 for details), which fuses the received information to obtain the

fused state prediction and classification decision. The fused information is used to form a cluster
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Figure 4.3: High Power Sensing State Algorithm

of optimal sensors, S ∗, to track the target. If si ∈ S ∗, then it computes a probability P si
HPS(k)

(see Eq. (3.12)) to transition to the HPS state. On the other hand, if no information is received, i.e.

N si
HPS = ∅, then the node relies on its own detection probability P si

D,LPS(u
τℓ(k)) to transition to

the HPS state.

• Updating the State Transition Probabilities: The node si updates it’s PFSA probabilities as

follows:

• if (N si
HPS 6= ∅ and si ∈ S ∗), node si is selected, then:

psi21(k) = 0; psi22(k) = 1− P si
HPS(k); p

si
23(k) = P si

HPS(k)

• if (N si
HPS 6= ∅ and si /∈ S ∗), node si is not selected but has received information, then:

psi21(k) = 1− P si
D,LPS(u

τℓ(k)); psi22(k) = P si
D,LPS(u

τℓ(k)); psi23(k) = 0

• if (N si
HPS = ∅), node si does not receive information, then:

psi21(k) = 1− P si
D,LPS(u

τℓ(k)); psi22(k) = 0; psi23(k) = P si
D,LPS(u

τℓ(k))

4.3.3 High Power Sensing (HPS) State Description

The HPS state, θ3, is designed to estimate the target’s state and class by using measurements from

its HPS devices and broadcast this information to alert its neighbors of a targets presence. Here,

the HPS devices, DPU, TX and RX are all enabled. Fig. 4.3 shows the flowchart for the algorithm

within the HPS state.

• Data Association and State Estimation: In HPS state, the node si first receives a set of

measurements, z(k), from its HPS devices. Subsequently, the previous state estimate x̂si(k −

1|k − 1), Σ̂si(k − 1|k − 1) are updated using the Joint Probabilistic Data Association (JPDA)
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method [48] to generate x̂si(k|k), Σ̂si(k|k) (please see Appendix B for details). If the received

measurements do not associate to the previous state estimate (e.g., when the target state is not

initialized), then the node si must first perform state initialization [71].

The measurements received may contain false alarms, due to clutter, which can generate false

tracks at each node. To ensure that false tracks do not propagate throughout the network, node

si utilizes the M-of -N Track Confirmation Logic [72] to allow the network to be robust to false

alarms. This approach ensures that M out of N consecutive time steps have measurements that are

associated to a target state estimate before the node confirms that it is not a false track. Furthermore,

once the target track has been confirmed, the node can drop the track if M consecutive time steps

have measurements that do not associate to it.

• Target Classification: Next, node si performs target classification to determine the target

class. To keep our control algorithm general, it is assumed that the network designer has devel-

oped a classifier (similar to those reported in Section 4.2.1) for the particular application and its

performance is represented by a Confusion Matrix B, as shown in Table 4.1. Then, node si will

Table 4.1: Confusion Matrix

Estimated Class

TOI TNOI

True Class
TOI b11 b12

TNOI b21 b22

classify the target as TOI with a probability

P̂ si
TOI(k) =






b11
b11+b12

Given TOI

b21
b21+b22

Given TNOI
(4.1)

which leads to a class decision D̂si(k) ∈ {0, 1}, where 0 and 1 correspond to TNOI and TOI,

respectively.

• Distributed Collaboration: Next, if a target has been detected, then node si broadcasts its

target state estimates x̂si(k|k) and Σ̂si(k|k), the filter gain matrix Ŵsi(k), and the classification

decision D̂si(k). Since si is in the HPS state and has broadcasted information to it’s neighbors, we

define N si
HPS = N si

HPS ∪ {si}. However, if si has not confirmed a target track, then N si
HPS does
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Figure 4.4: Distributed Sensor Collaboration Algorithm

not include si. Then, if N si
HPS 6= ∅, it will run the collaboration algorithm (please see Section 4.4

for details) in the same manner as in the LPS state. This generates the fused state and class decision,

which are then used to form the cluster of optimal sensors S ∗ to track the target during the next

time step. If si ∈ S ∗, then it computes P si
HPS(k) in Eq. (3.12) to stay in the HPS state.

• Updating the State Transition Probabilities: Finally, the PFSA probabilities are updated as

follows:

• if (N si
HPS 6= ∅ and si ∈ S ∗), node si is selected, then:

psi31(k) = 0; psi32(k) = 1− P si
HPS(k); p

si
33(k) = P si

HPS(k)

• if (N si
HPS 6= ∅ and si /∈ S ∗), node si is not selected but has received information or verified

a target track, then:

psi31(k) = 1− P si
D,HPS(u

τℓ(k); psi32(k) = P si
D,HPS(u

τℓ(k); psi33(k) = 0

• if (N si
HPS = ∅), node si has not verified a track or received information, then:

psi31(k) = 0; psi32(k) = 1− P si
D,HPS(u

τℓ(k)); psi33(k) = P si
D,HPS(u

τℓ(k)

4.4 Distributed Sensor Collaboration

The distributed sensor collaboration algorithm, shown in Fig. 4.4, consists of distributed fusion,

sensor selection, and computation of the HPS state transition probability, which are described

below:
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4.4.1 Distributed Fusion

Similar to Chapter 3, distributed fusion consists of combining the received state estimates together

into one estimate per target located in the nodes communication neighborhood. However, in this

chapter, classification decision are also transmitted. Therefore, the distributed fusion algorithm

must incorporate a method to combine target class decisions as well.

Consider a node si which could be in the LPS or HPS state. The information ensemble it

receives consists of

Îsi(k) =
{(

x̂sj (k|k), Σ̂sj(k|k),Ŵsj(k), D̂sj(k)
)
, ∀sj ∈N si

HPS

}
, (4.2)

where x̂sj (k|k), Σ̂sj(k|k), Ŵsj(k), and D̂sj(k) correspond to the state estimate, covariance, filter

gain, and class decision, of the node sj at time k.

However, due to noise and other factors, the information received must first be validated to

ensure that it is accurate and reliable before processing. This is done by forming a set of trustworthy

neighbors N si
T ⊆N si

HPS by evaluating the sum of the position error as follows

N si
T = {sj ∈N si

HPS : Trace(H(k)Σ̂sj(k|k)H(k)′) ≤ ξ} (4.3)

where H(k) is the Jacobian of the measurement model defined in Chapter 2.2 and ξ is the maxi-

mum tolerance of the estimate. In this work, ξ =
R2

HPSσ
2

φ
+σ2R

2
, where σφ and σR are the standard

deviations in the azimuth and range measurements of the HPS sensor. For more details, see Chap-

ter 3.3.2. Finally, node si receives the following trustworthy information:

Î
si
T (k) =

{(
x̂sj(k|k), Σ̂sj(k|k),Ŵsj(k), D̂sj(k)

)
, ∀sj ∈N si

T

}
, (4.4)

Next, the trustworthy information is associated to ensure that it is related to the same target. In

this work, the Track-to-Track Association Method (T2TA) [69] is used for this purpose. Details

of the T2TA method are presented in Chapter 3.3.2. This method associates the trustworthy infor-

mation into C different groups which correspond to the C different targets that could be present
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within the node si’s neighborhood; thus forming the information ensembles: Î
si,c
T (k) ⊆ ÎsiT (k),

where c = 1, ..., C. Subsequently, for each c, the state information in Î
si,c
T (k) is fused to form

a single state (x̂si,c(k|k)) and covariance (Σ̂si,c(k|k)) estimate, using the Track-to-Track Fusion

(T2TF) algorithm [70]. Details of the T2TF method are presented in Chapter 3.3.2. Once all the

received state information are fused, node si computes a one-step prediction [45] of each target’s

state using the Extended Kalman Filter:

x̂si,c(k + 1|k) = f(x̂si,c(k|k), k)

Σ̂si,c(k + 1|k) = F(k)Σ̂si,c(k|k)F(k)′ +Q, (4.5)

where F(k) is the Jacobian of the state transition matrix evaluated at x̂si,c(k|k) and Q is the process

noise covariance matrix. This predicted state is used in the distributed sensor selection algorithm

to select the sensors to track the target during next time step for opportunistic sensing.

Furthermore, the associated target class decisions in Î
si,c
T (k) are also fused together as follows.

D̂si,c(k) =





1 if 1

|̂I
si,c

T
(k)|

∑
D̂sj (k)∈Î

si,c

T
(k) D̂

sj(k) ≥ 0.5

0 else
(4.6)

which will be used to determine the number of sensors selected to track the target depending on its

class.

4.4.2 Distributed Sensor Selection

The Distributed Sensor Selection algorithm employs a multi-step filtering process performed at

each sensor node to identify the optimal sensors to track the target in the HPS state during the next

time step. These steps are described below.

Step 1: The node si first locates the sensors within it’s neighborhood that can detect a target c

in the detection region around the target’s predicted position during the next time step to form a

candidate set Sdet, such that

Sdet = {sj ∈ (N si ∪ si) : ||usj − ẑsi,c(k + 1|k)|| ≤ RHPS} (4.7)
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where ẑsi,c(k + 1|k) = h(x̂si,c(k + 1|k), k).

Step 2: Then, N ′
sel ≥ Nsel sensors are filtered from Sdet that have the highest energy remain-

ing. At this state, if node si ∈ Sdet, then it will broadcast it’s energy consumption Esi(k) to it’s

neighbors. Then, the node si computes the predicted remaining energy for each node in Sdet as

follows:

E
sj
R = 1−

(
Esj(k) + EHPS∆T

E0

)
, ∀sj ∈ Sdet (4.8)

where Esj(k) is the energy already consumed by sj; EHPS = (eHPS + eRX + eTX + eDPU) is the

energy consumed per unit time in the HPS state; ∆T is the time duration for which the node sj

will be in the HPS state if selected; and E0 is the node’s initial energy. Next, each sensor sj ∈ Sdet

is ranked in descending order based on their energy remaining. Then the set SE ⊆ Sdet is selected

to consist of the top ranked N ′
sel sensors. Note that N ′

sel is determined based on the target class

decision as follows:

N ′
sel =





≥ Nsel ifD̂si(k) = 1

1 ifD̂si(k) = 0
(4.9)

Therefore, if the target is a TNOI, the node with the highest energy remaining is selected to track

the TNOI. Whereas for a TOI, a designed value ≥ Nsel is selected to reduce the computational

complexity. If N ′
sel = |Sdet|, then the sensor selection process will select sensors purely based

on their geometric diversity and to minimize the state covariance error. However, if N ′
sel = Nsel,

the sensors selected will be purely based on energy remaining. Therefore, by choosing a value

between Nsel < N ′
sel < |Sdet|, the sensor selection process will select sensors are geometrically

diverse and allow for uniform energy depletion.

Step 3: Finally, Nsel sensors are selected from the set SE that are geometrically distributed

around the target’s predicted position using the reciprocal of the Geometric Dilution Of Precision

(GDOP) measure [29]. This measure selects nodes that minimize the measurement covariance
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error to ensure accurate tracking accuracy and is defined as

µ(S̃ ) =
det(J(S̃ ))

trace(J(S̃ ))
, (4.10)

J(S̃ ) =
∑

sj∈S̃

1

σ2
φr

2
sj


 sin2φsj −sinφsjcosφsj
−sinφsjcosφsj cos2φsj


 ,

where rsj is the range of sensor sj to the target’s predicted position; φsj is the azimuth angle

between sensor sj and the target’s predicted position; and S̃ ⊆ SE , s.t. |S̃ | = Nsel. The optimal

set S ∗ ⊆ SE ⊆ Sdet is generated as

S ∗ = argmax
S̃⊆SE

(µ(S̃ )) (4.11)

Note that S ∗ is computed for each target track c. Furthermore, note that Nsel adapts based on the

target class decision. If D̂si(k) = 1, then Nsel > 1, and if D̂si(k) = 0, then Nsel = 1.

4.4.3 Computation of the HPS Transition Probability

If si ∈ S ∗ for any target track, then it should transition to the HPS state to track the target during

the next time step. Node si first computes its expected probability of detecting the target based on

target’s predicted position according to Equations 3.11 and 3.12. This is then used to transition to

the HPS state as described in the computation of state transition probabilities in Section 4.3.

4.5 Network Characteristics

This section presents the characteristics of the POSE.3C network in terms of the expected energy

consumption, network lifetime, and the missed detection probabilities.

Consider that m TOIs (or TNOIs) are present in Ω during a time interval ∆T . We partition Ω
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Figure 4.5: Illustration of regions around a single target.

into three regions as follows:

Ω1 =
⋃

τℓ

{
(x, y) : ||(x, y)− uτℓ|| ≤ RHPS

}

Ω2 =
⋃

τℓ

{
(x, y) : ||(x, y)− uτℓ|| ≤ Rc

}
\ Ω1

Ω3 = Ω \ (Ω1 ∪ Ω2) ; (4.12)

where Ω1 is the detection region around the targets, Ω2 is the region outside of the detection region

but within the communication region around the targets, and Ω3 is the remaining region away from

the targets, as shown in Fig. 4.5. The areas of these regions are denoted by AΩ1
, AΩ2

, and AΩ3
.

To be conservative, we assume that the targets have disjoint detection regions. Furthermore, Ω1

consists of two sets of sensors: Ω∗
1 that contains the sensors selected for tracking, and Ω∗′

1 that

contains the sensors not selected for tracking.

The energy consumed per node in a ∆T time interval in the above regions depends on its state

and is given as

ESleep = eclock∆T,

EΩ1

LPS = (eLPS + eTX + eRX + eDPU)∆T,

EΩ1

HPS = (eHPS + eTX + eRX + eDPU)∆T,

EΩ2,Ω3

LPS = (eLPS + eRX + eDPU)∆T, and

EΩ2,Ω3

HPS = (eHPS + eRX + eDPU)∆T,

Note that the nodes in regions Ω2 and Ω3 do not broadcast any information since they do not
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detect the target; however they can still receive the information from broadcasting nodes in their

neighborhood.

4.5.1 Energy Consumption and Lifetime Characteristics

Theorem 4.5.1 The expected energy consumption of the POSE.3C network during a ∆T time

interval is given as

E∆T = NselmE
Ω∗

1 + (ρAΩ1
−Nselm)E

Ω∗
′

1 +

ρAΩ2
E

Ω2

+ ρAΩ3
E

Ω3

where ρ is the sensor network density; E
Ω∗

1 , E
Ω∗

′

1 , E
Ω2

, and E
Ω3

are the expected energy consump-

tions in regions Ω∗
1,Ω

∗′

1 ,Ω2, and Ω3, respectively, given as

E
Ω∗

1 = EΩ1

LPSp
Ω∗

1

2 + EΩ1

HPSp
Ω∗

1

3 ,

E
Ω∗

′

1 = ESleepp
Ω∗

′

1

1 + EΩ1

LPSp
Ω∗

′

1

2 ,

E
Ω2

= ESleepp
Ω2

1 + EΩ2,Ω3

LPS pΩ2

2 ,

E
Ω3

= ESleepp
Ω3

1 + EΩ2,Ω3

LPS pΩ3

2 + EΩ2,Ω3

HPS p
Ω3

3 ,

[p1, p2, p3] are the steady state probabilities that a nose is in the Sleep, LPS, and HPS states within

each region, respectively, and are given as follows:




p1

p2

p3




Ω∗

1

=




0

1− α

α



,




p1

p2

p3




Ω∗
′

1

=




1−α
2−psleep−α

1−psleep
2−psleep−α

0



,
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


p1

p2

p3




Ω2

=




1−pfa
2−psleep−pfa

1−psleep
2−psleep−pfa

0



,




p1

p2

p3




Ω3

=




(1−2pfa)

2−psleep−2pfa

(1−pfa)(1−psleep)

2−psleep−2pfa

pfa(1−psleep)

2−psleep−2pfa




Proof: The state transition probability matrices for nodes in Ω∗
1, Ω∗′

1 , Ω2, and Ω3 are given as

PΩ∗

1 ,




1 0 0

0 1− α α

0 1− α α



,

PΩ∗
′

1 ,




psleep 1− psleep 0

1− α α 0

1− α α 0



,

PΩ2 ,




psleep 1− psleep 0

1− pfa pfa 0

1− pfa pfa 0



,

PΩ3 ,




psleep 1− psleep 0

1− pfa 0 pfa

0 1− pfa pfa



, (4.13)

where the operator PΩ∗

1 is for a selected node, i.e. if si ∈ S ∗, while PΩ∗
′

1 is for a node that is not

selected, i.e. if si /∈ S ∗. Note that α is chosen as the best case conservative estimate of P si
HPS.

Similar to PΩ∗
′

1 , PΩ2 is generated by putting P si
D,LPS(u

τℓ(k)) = pfa; while PΩ3 is constructed for

N si
HPS = ∅.

Based on the above operators, the steady-state probabilities of each state within each region are

computed as follows

[
p1, p2, p3

]
=

[
p1, p2, p3

]
P

s.t. p1 + p2 + p3 = 1 (4.14)
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For PΩ∗

1 :

p
Ω∗

1

1 = 0, since a sleeping sensor cant be selected

p
Ω∗

1

2 = (1− α)(pΩ
∗

1

2 + p
Ω∗

1

3 ),

p
Ω∗

1

3 = α(p
Ω∗

1

2 + p
Ω∗

1

3 ), p
Ω∗

1

3 = 1− pΩ
∗

1

2 ,

⇒ p
Ω∗

1

2 = 1− α, pΩ
∗

1

3 = α. (4.15)

For PΩ∗
′

1 :

p
Ω∗

′

1

1 = psleepp
Ω∗

′

1

1 + (1− α)(pΩ
∗
′

1

2 + p
Ω∗

′

1

3 ),

p
Ω∗

′

1

2 = (1− psleep)pΩ
∗
′

1

1 + α(p
Ω∗

′

1

2 + p
Ω∗

′

1

3 ),

p
Ω∗

′

1

3 = 0, p
Ω∗

′

1

1 = 1− pΩ
∗
′

1

2 ,

⇒ p
Ω∗

′

1

1 =
1− α

2− psleep − α
, and

p
Ω∗

′

1

2 =
1− psleep

2− psleep − α
. (4.16)

For PΩ2: By replacing α with pfa in Eq. (4.16), we find the steady-state probabilities as pΩ2

1 =

1−pfa
2−psleep−pfa

, pΩ2

2 =
1−psleep

2−psleep−pfa
, and pΩ2

3 = 0.

For PΩ3:

pΩ3

1 = psleepp
Ω3

1 + (1− pfa)pΩ3

2 ,

pΩ3

2 = (1− psleep)pΩ3

1 + (1− pfa)pΩ3

3 ,

pΩ3

3 = pfa(p
Ω3

2 + pΩ3

3 ), pΩ3

1 = 1− pΩ3

2 −
pfap

Ω3

2

1− pfa
,
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Solving the above and assuming p2fa << 1, we get

pΩ3

1 =
1− 2pfa

2− psleep − 2pfa
,

pΩ3

2 =
(1− pfa)(1− psleep)
2− psleep − 2pfa

,

pΩ3

3 =
pfa(1− psleep)
2− psleep − 2pfa

. (4.17)

Next, we compute the expected number of sensor nodes in each state per region. Since a total

of Nselm sensor nodes are selected around m targets in region Ω∗
1 we get:

N
Ω1

Sleep = (ρAΩ1
−Nselm)p

Ω∗
′

1

1 ; N
Ω2

Sleep = ρAΩ2
pΩ2

1 ;

N
Ω3

Sleep = ρAΩ3
pΩ3

1 ; N
Ω1

LPS = Nselmp
Ω∗

1

2 + (ρAΩ1
−Nselm)p

Ω∗
′

1

2

N
Ω2

LPS = ρAΩ2
pΩ2

2 ; N
Ω3

LPS = ρAΩ3
pΩ3

2

N
Ω1

HPS = Nselmp
Ω1,∗
3 ; N

Ω2

HPS = 0; N
Ω3

HPS = ρAΩ3
pΩ3

3 . (4.18)

Now, the average energy consumed by the network is

E∆T = ESleepN
Ω1

Sleep + EΩ1

LPSN
Ω1

LPS + EΩ1

HPSN
Ω1

HPS +

ESleepN
Ω2

Sleep + EΩ2,Ω3

LPS N
Ω2

LPS + EΩ2,Ω3

HPS N
Ω2

HPS +

ESleepN
Ω3

Sleep + EΩ2,Ω3

LPS N
Ω3

LPS + EΩ2,Ω3

HPS N
Ω3

HPS (4.19)

Thus, putting the number of sensors derived above into Eq. (4.19), we obtain the result of the

theorem. �

Definition 4.5.1 (Network Lifetime) Consider a path γ of lengthL in the region Ω that is taken by

the maximum number of targets. Now consider a cylindrical tube Ωγ ⊂ Ω of radius RHPS around
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Figure 4.6: Illustration of the tube Ωγ with 2 targets.

this path, which consists of sensors Sγ ⊂ S that will die earliest in the network. The expected

network lifetime, TLife, is then defined as the time when the energy of sensor nodes within Ωγ

reduces to a certain fraction η ∈ [0, 1), s.t.

∑
sj∈Sγ

(E0 − Esj(TLife))∑
sj∈Sγ

E0

= η

Theorem 4.5.2 The expected lifetime of a POSE.3C network is

TLife =
2ρRHPSLE0∆T (1− η)

E∆T

Proof: Let the number of TOIs or (TNOIs) traveling through Ωγ per ∆T time interval be repre-

sented by a Poisson process given by

P (Nγ = mγ) = e−λ∆T
(λ∆T )

mγ

mγ !
. (4.20)

Then, the average number of targets in Ωγ is Nγ = λ. Let the average velocity of a target is V .

Also, let L be the tube length which the target travels. Then the expected number of time intervals

that a target spends in Ωγ is T = L/V∆T .

Let TLife be the expected life of the network. Now, consider multiple TOIs (or TNOIs) trav-

elling in the tube Ωγ . These targets lead to a partition of the tube into three regions, Ω1γ , Ω2γ ,

and Ω3γ , as shown in Fig. 4.6. Note that these regions are similar in characteristics to the regions

Ω1, Ω2, and Ω3, respectively, except that these are defined within the tube Ωγ . To be conserva-
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tive, we assume that the targets have disjoint detection and communication regions. Therefore,

the expected energy consumption of the sensor nodes in ∆T time interval is as given in Theo-

rem 4.5.1, where the areas therein are replaced by the corresponding areas AΩ1γ , AΩ2γ , and AΩ3γ .

Here, AΩ1γ = λπR2
HPS; AΩ2γ = λ (π(R2

c − R2
HPS)−R2

c(δ − sinδ)), is the sector area as shown

in Fig. 4.6, where δ =

(
π − 2tan−1

(
RHPS√
R2

c−R
2

HPS

))
; and AΩ3γ = 2LRHPS − (AΩ1γ + AΩ2γ ).

Now, for the life time intervals the total energy consumed is given as E∆T
TLife

∆T
.

Using Defn. 4.5.1, we can solve for TLife as follows:

∑
sj∈Sγ

(E0 − Esj(TLife))∑
sj∈Sγ

E0
= η (4.21)

⇒ 1− E∆TTLife
∆Tρ2RHPSLE0

= η (4.22)

⇒ TLife =
2ρRHPSLE0∆T (1− η)

E∆T

(4.23)

�

4.5.2 Missed Detection Characteristics

Definition 4.5.2 (Target Birth) A target birth is the time instance when a target first appears in

the deployment region Ω.

Definition 4.5.3 (Mature Target) A mature target is a target that has travelled inside the region

Ω for sufficient time such that sensor collaboration has taken place to track it.

Theorem 4.5.3 The missed detection probability characteristics of a POSE.3C network are given

as follows:

a) For a target birth:

Pm,bir ≥ exp

(
−πR

2
rαχρ(1− psleep)

2− psleep − 2pfa

)
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b) For a mature target:

Pm,mat ≥ exp



−
πR2

rαχρ
[
(1− psleep) + Nsel

ρπR2

HPS

(1− α)
]

2− psleep − α





where χ = 1 + 2(1+βRr)
β2R2

r

(
1− (1+βRHPS)e

−βRHPS

(1+βRr)e−βRr

)

Proof: The probability q that an individual sensor si sampled from the deployment region Ω de-

tects the target, is represented by a spatial Poisson process [47], such that

q = Pr {Deti = 1} = 1− e−ϕ(p2+p3), (4.24)

where Deti = 1 denotes a detection, and ϕ is the coverage factor for the sensor which is computed

as:

ϕ =
1

AΩ

(∫ Rr

0

2πrαdr +

∫ RHPS

Rr

2πrαe−β(r−Rr)dr

)
(4.25)

Using integration by parts and simplifying we get:

ϕ =
πR2

rα

AΩ

[
1 +

2(1 + βRr)

β2R2
r

(
1− (1 + βRHPS)e

−βRHPS

(1 + βRr)e−βRr

)]
(4.26)

Since the term within the square brackets in Eq. (4.26) is equal to χ, ϕ = πR2
rαχ
AΩ

. Here p2+p3 is

the probability that the sensor is in the LPS or HPS state, and thus capable of detecting the target.

Since each sensor is statistically independent and identical, the probability of exactly κ sensor

detections [47] is given by Bernoulli trials as follows

Pr
{∑

Deti = κ
}

=

(
n

κ

)
qκ(1− q)n−κ (4.27)

Then the probability of missed detections is given as

Pm = Pr
{∑

Deti = 0
}
=

(
n

0

)
q0(1− q)n = e−ϕ(p2+p3)n (4.28)

a) For a target birth: Since a target has just taken birth, the entire deployment region follows
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the state transition probabilities corresponding to the matrix PΩ3 , as given in Eq. (4.13). Also,

n = ρAΩ. Substituting for ϕ, n, and pΩ3

2 + pΩ3

3 in Eq. (4.28), the lower bound on Pm for a target

birth is given as

Pm,bir ≥ exp

(
−πR

2
rαχρ(1− psleep)

2− psleep − 2pfa

)

b) For a mature target: Since the target is mature, sensor collaborations are taking place to select

the optimal sensors for target tracking. Thus, the chosen sensor could be a selected sensor or a not

selected sensor. Therefore, it follows the state transition probabilities corresponding to the matrix

PΩ⋆
1 or PΩ∗

′

1 , respectively. Thus the probability p2 + p3 to find a sensor in the LPS or HPS state is

given as

p2 + p3 =
Nsel

ρπR2
HPS

(p
Ω⋆

1

2 + p
Ω⋆

1

3 ) +
ρπR2

HPS −Nsel

ρπR2
HPS

(p
Ω∗

′

1

2 + p
Ω∗

′

1

3 )

⇒ p2 + p3 =
Nsel

ρπR2
HPS

+
ρπR2

HPS −Nsel

ρπR2
HPS

(
1− psleep

2− psleep − α

)

⇒ p2 + p3 =
Nsel(1− α) + ρπR2

HPS (1− psleep)
ρπR2

HPS(2− psleep − α)
(4.29)

Substituting for ϕ, n, and p2 + p3 in Eq. (4.28), the lower bound on Pm for a mature target is given

as

Pm,mat ≥ exp


−

πR2
rαχρ

[
(1− psleep) + Nsel

ρπR2

HPS

(1− α)
]

2− psleep − α




�
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4.5.3 Theorem Validations

In order to validate the theorems, the POSE.3C algorithm was simulated in a 1km x 1km deploy-

ment region. For a thorough analysis, 500 Monte-Carlo simulation runs were conducted where the

distribution of sensor nodes was regenerated during each run according to a uniform distribution.

Table 5.1 lists the different simulation parameters.

To validate Theorems 4.5.1 and 4.5.2, the network characteristics in terms of expected energy

consumption and lifetime, were evaluated against the number of targets present and the design

parameter psleep. The network density was chosen to be ρ = 4e−4 nodes
m2 . For Theorem 4.5.1, m

targets were deployed throughout Ω according to a uniform distribution. Subsequently, the average

network energy consumption was acquired over the different simulation runs. Fig. 4.7a shows the

comparison of the simulated vs theoretical results of the average energy consumption for different

number of targets and for various psleep values. For Theorem 4.5.2, a tube Ωγ ⊂ Ω was considered

of length L = 600m and width 2RHPS = 180m. The targets were simulated with an arrival

rate such that an average of λ targets are traveling through the tube during each time interval. The

simulations were run until the network reached its lifetime according to Defn. 4.5.1. In this manner

the network lifetime TLife(λ, psleep) was computed for different values of λ and psleep. The lifetime

is normalized by the expected lifetime for λ = 0 and psleep = 0.75. Fig. 4.7b shows the comparison

of the simulation and theoretical results for the expected lifetime. As seen in both Figs. 4.7a and

4.7b, the simulation results match the theoretical results. It is observed that as we increase psleep,

the expected energy consumption decreases while the expected lifetime increases.

To validate Theorem 4.5.3 Part a, a random target birth was generated in the region Ω at each

time instance, while to validate Part b, a moving target was generated traveling through the region

Table 4.2: Simulation Parameters

eclock = 0.01W Rr = 60m b11 = b22 = 0.9
eLPS = 2.5mW RHPS = RLPS = 90m b12 = b21 = 0.1
eHPS = 22W Rc = 180m N ′

sel = 5
eTX = 1.26W L = 600m σφ = 1◦

eRX = 0.63W α = 0.95 σR = 1m
eDPU = 1W β = 0.00171 συ,x = συ,y = 1m
E0 = 1.08MJ η = 0.05 συ,ψ = 1◦

∆T = 0.5s pfa = 0.01 µcl = 0.025
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Figure 4.7: Validation of: (a) Theorem 4.5.1, (b) Theorem 4.5.2, (c) Theorem 4.5.3 Part a, and (d) Theorem 4.5.3 Part

b.

according to the DWNA model. The probabilities of missed detection for target births and mature

targets were computed over the Monte Carlo runs by counting the number of detections and misses.

The simulations were repeated for various network densities and psleep values. The probabilities
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Figure 4.9: Distribution of Energy Remaining around a TOI

are plotted in Figs. 4.7c and 4.7d, which show that the simulation results match the theory. It

is also seen that Pm,mat is significantly lower than Pm,birth. This is because sensor collaborations

allow the network to activate their LPS and HPS devices in advance to detect and track the target.

4.6 POSE.3C Algorithm Performance

To verify that the proposed network meets thesis objective, this section presents the results of the

POSE.3C algorithm compared with existing methods. Specifically, POSE.3C is compared with the

following distributed scheduling methods: (1) Autonomous Node Selection (ANS), (2) LPS-HPS

Scheduling, and (3) Random Scheduling. The ANS algorithm [29] is a distributed sensor selec-

tion method that utilizes a cost function that minimizes the Mean Square Error (MSE) based on

the GDOP. Here, the sensors collaborate in a distributed manner to make the scheduling decision;
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however the sensor states are only binary, i.e. passive (LPS) and active (HPS). Thus, if a sensor

node is selected, it switches to the active state, while if it is not selected, it remains in the passive

state. The LPS-HPS Scheduling method is a distributed trigger-based activation method where the

sensor nodes remain in the passive (LPS) state until a target is detected. Once a node detects a tar-

get, it switches to the active (HPS) state. The Random Scheduling method is a distributed method

where the sensor nodes probabilistically cycle between actively sensing (HPS) and sleeping. Thus,

during each time step the nodes sleep with a probability Prand, while they sense the environment

in the HPS state with a probability 1 − Prand. Thus, for Prand = 0, the sensor nodes are always

sensing, while for Prand = 1 they are always sleeping. Note that in both the LPS-HPS and Random

Scheduling methods, the sensor nodes do not collaborate.

The sensor nodes are assumed to have a hydrophone array [81] as the LPS device and an active

sonar [82] as the HPS device. Table 5.1 lists the different simulation parameters including energy

costs, sensing parameters, process noise parameters (συ,x, συ,y, συ,ψ), and measurement noise pa-

rameters (σφ, σR). The network density, ρ = 4e−4, and design parameter, psleep = 0.5, are chosen

to ensure that the probability of missed detection for a mature target is less than 0.01. The number

of sensor nodes selected to track a TOI is chosen to be Nsel = 3, while for a TNOI Nsel = 1.

First, the network life expectancy of the POSE.3C and the other methods is computed by vary-

ing the expected number of targets, λ, that travel within a tube Ωγ ∈ Ω. The results achieved are

presented in Fig. 4.8 where each bar is normalized by the life expectancy of the POSE.3C net-

work for λ = 0. As seen, the life expectancy of the POSE.3C network is higher than all of the

other scheduling methods. Also, as expected the lifetime achieved by the POSE.3C network while

tracking TNOIs is higher than that for TOIs. Additionally, it can be concluded that if there is a mix

of TOIs and TNOIs within the network, then the life expectancy of the POSE.3C network will lie

between the POSE.3C TNOI and TOI values.

Next, the distribution of energy remaining around the targets within a tube Ωγ ∈ Ω of the

POSE.3C network is compared with that of the ANS algorithm. For this comparison, the expected

number of targets within the tube is chosen as λ = 1. Fig. 4.9 shows several snapshots of the

remaining energy distribution within Ωγ until TLife of the POSE.3C is reached. As seen, the
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Figure 4.10: Root Mean Squared Error of (a) Position Estimate and (b) Speed Estimate

distribution of energy within the tube is much more uniform for the POSE.3C network as compared

to that of the ANS network. This is because the ANS network depletes the energy rapidly near the

track by always selecting the closest sensors to minimize the tracking error, while the POSE.3C

network allows for energy based ranking while maintaining tracking accuracy. A slight increase in

energy on the sides of the tube is seen due to boundary effects. Also, the ANS network dies much

more rapidly as compared to the POSE.3C network.

Additionally, the tracking accuracy is evaluated for each network according to the Root Mean

Squared Error (RMSE) and is presented in Fig. 4.10. As seen in the figure, the POSE.3C and ANS

networks have very low tracking errors as compared to the Random and LPS-HPS methods due to

distributed fusion and collaboration between neighbors.

The complexity of the POSE.3C algorithm arises from the JPDA, Distributed Fusion, and Dis-

tributed Sensor Selection algorithms within the HPS and LPS states. The computational complex-

ity was analyzed by measuring the average times taken for each of these processes and the results

are shown in Table 4.3. These average times were generated in a Matlab environment on a i5 3.1

GHz CPU computer.
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Table 4.3: Computation Times of the POSE.3C Components

JPDA Distributed Fusion Distributed Sensor Selection

TOI 1.4 ms 2.6 ms 0.37 ms

TNOI 1.3 ms 2.37 ms 0.36 ms

4.7 Conclusion and Limitations

This chapter developed the POSE.3C algorithm for controlling a distributed sensor network for

energy-efficient target tracking. The underlying network control approach consists of detecting,

classifying, and predicting the targets location as they travel through the deployment region. The

information obtained is then used to classify the type of target to allow the network to opportunis-

tically cluster HPS nodes that are the most reliable and optimal sensor nodes around targets of

interest. The multi-modal states of each sensor node are probabilistically controlled using dis-

tributed PFSA-based supervisors. Theoretical properties of the POSE.3C network characteristics

have been established and validated to show that the POSE.3C network significantly increases the

network lifetime while providing high tracking accuracy and a low probability of missed detection.

However, there are two limitations that were not addressed in this chapter. First, this approach

does not discuss the issues that arise when multiple co-located sensor nodes fail. Although the

POSE.3C algorithm is robust to single sensor node failures, if multiple co-located sensor nodes

fail, a coverage gap is formed. If the target travels through the coverage gap, then the POSE.3C

network will miss the target. Additionally, this approach does not discuss how to ensure target

coverage when the network density is non-uniform. Since the sensor nodes may be air dropped

or thrown into the ROI, the nodes may end up clustering together to form high and low density

regions. If a target travels into a low density region, the network must be able to adapt to ensure

target coverage. Therefore, the next chapter presents the Prediction-based Opportunistic Sensing

for Resilience (POSE.R) algorithm to address the above issues.

68



CHAPTER 5

PREDICTION-BASED OPPORTUNISTIC SENSING FOR RESILIENCE

(POSE.R)

5.1 Resilient Target Coverage Introduction

A critical challenge in Distributed Sensor Networks (DSN) that perform various intelligence,

surveillance, and reconnaissance (ISR) operations, is to maintain Target Coverage in the event of

sensor node failures. Sensor nodes are prone to failures due to component degradations, hardware

failures, malicious attacks, or battery depletions [33] causing changes in the network topology. If

multiple co-located sensors fail, a sector of the network may be uncovered, causing missed detec-

tions when a target travels through this coverage gap. This results in poor network performance,

information delays, and mission failures. Additionally, the sensor nodes may be non-uniformly

distributed causing high and low density regions and even coverage gaps due to environmental

conditions and uncertainties [34]. Therefore, the development of a self-adaptive network that mit-

igates the formation of coverage gaps is necessary to ensure network resilience.

To account for node failures, two proactive approaches have been proposed in literature: (i)

redundant node deployment and (ii) intelligent network control for energy-efficiency and life-

extension. The former approach deploys redundant sensor nodes throughout the Region Of Interest

(ROI) to ensure that every point is observed by κ > 1 nodes [37, 83]. This creates a fault-tolerant
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network that allows for κ − 1 nodes to fail before a coverage gap is formed; however, it is costly.

Moreover, this approach does not provide resilience if multiple spatially co-located nodes fail, for

example, an attack in a battlefield scenario.

The second proactive approach incorporates an intelligent network control strategy that min-

imizes node failures caused by energy depletion. One control strategy, known as Opportunistic

Sensing [84], consists of selecting and activating sensor nodes only in the local regions around

target predictions, while the nodes not selected are deactivated to conserve energy. This method

allows for accurate state estimation of dynamic targets while maximizing the network lifetime.

Another control strategy is achieved by adjusting the nodes sensing range [85]. This approach

assumes that the node’s sensing range can vary based on the amount of power supplied and aims

to optimize the node’s range and activation time to minimize energy consumption and missed de-

tections. However, theses approaches assume that the target’s are fixed and known a priori and do

not consider tracking dynamic targets. Although intelligent control strategies allow the network

to preserve energy, they only study energy-efficient control and do not address the problem of

resiliency.

Therefore, this chapter proposes a distributed supervisory control algorithm, called Prediction-

based Opportunistic Sensing for Resilience (POSE.R), for energy management and resiliency that

adjusts the node’s sensing range between [R1, RL] based on predicted target locations. This al-

gorithm extends the POSE and POSE.3C algorithms [84] by incorporating an adaptive distributed

sensor selection approach that selects the best sensor nodes and their sensing ranges to track the

target and ensure target coverage in the presence of failures and non-uniform node locations. The

sensor selection approach adapts to the density of active sensor nodes around the target’s predicted

location as seen in Fig. 5.1. For high density regions with ≥ Nsel nodes, an Energy-based Geo-

metric Dilution of Precision (EGDOP) sensor selection method is employed to select and activate

geometrically diverse nodes with high remaining energy to cover the target with their minimum

sensing range, R1.

When a target is predicted to travel through a low density region, the sensor nodes may need to

expand their sensing range to accommodate for a coverage gap or an insufficient number of nodes.
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Figure 5.1: Illustration of the POSE.R algorithm

To identify the best sensing range to cover the target while minimizing energy consumption, a

Game Theoretic sensor selection method is employed using Potential Games. This approach to

sensor selection provides the following advantages: (1) Non-cooperative games allow for scalable

distributed computing necessary in DSN; (2) Potential games ensure that an equilibrium exists;

and (3) maximizing the local objective function guarantees that the global objective is maximized.

The objective function is select Nsel nodes and their sensing ranges to cover the target’s predicted

location and minimize energy consumption.

To manage the networks energy consumption, a Probabilistic Finite State Automaton (PFSA) is

embedded on each sensor node to control the nodes multi-modal operating states by enabling/disabling

its devices at each time step. The states of the PFSA include: 1) Sleep, 2) LPS, and 3) HPS. The

Sleep state consumes minimal energy by disabling all devices. The LPS state utilize the LPS de-

vices for target detection while conserving energy, and the HPS state enables the HPS devices for

state estimation. The range of the HPS devices is varied between [R1, RL] based on the adaptive

sensor selection algorithm to ensure target coverage while minimizing redundant coverage and en-

ergy consumption. The transceiver is enabled in the LPS and HPS states for information sharing

and collaboration.

The state transition probabilities of the PFSA are dynamically updated based on the adaptive

sensor selection results and the information observed with the on-board sensing suite. The proba-
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bilities are designed to transition the node to the HPS state only when it is selected and a target is

predicted to travel within it’s coverage areas, while the node transitions between low power con-

suming states, LPS or Sleep, to conserve energy when not selected. This is illustrated in Fig. 5.1,

where Nsel = 3 nodes are selected to be in the HPS state around the targets predicted locations to

ensure target coverage, while the remaining sensors conserve energy. Even in low density regions

that contain a coverage gap, the POSE.R network is able to adapt the node’s sensing characteristics

to fill the gap, thus adding resiliency while providing significant energy savings.

The main contributions of this chapter is the development of a distributed algorithm that facili-

tates resilient target coverage and tracking with the following attributes:

I distributed coverage gap identification method that does not rely on active or passive moni-

toring methods,

II distributed node selection approach that adapts to the network density around a target’s pre-

dicted location via a) EGDOP selection criteria for high density regions, and b) a Game

Theoretic node and range selection method using potential games for low density regions.

III distributed supervisory control strategy to enable/disable multi-modal sensing devices for

energy-efficiency.

5.2 Related Work

The problem that this chapter aims to solve encompasses three main research topics discussed

throughout literature. The first topic studied handles network control protocols when sensors have

failed within the network. The next approach proposed is to schedule the sensor nodes to maximize

the network lifetime while ensuring target coverage. The following subsections describe the state-

of-the-art research and the limitations that will be addressed in this work.

5.2.1 Fault-tolerant WSN

Since sensor networks are deployed in harsh environments (such as battlefields), they are prone

to attacks that can lead to sensor failures. This may result in a lose of coverage, connectivity,
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and in extreme cases, mission operation. The literature typically models the types of failures as

either, (1) single node failure or (2) multiple node failure where the latter can compose of spatially

independent single node failures or co-located single node failures [33]. A single node can fail

due to energy depletion, hardware degradation, environmental hazards, etc, leading to a loss of

data and small holes in the network. Whereas multiple nodes spatially co-located can fail due

to malicious attacks, such as bombings, which can create large holes in the network requiring

recovery mechanisms.

For both failure models, it is critical that the network detects and locates the failed nodes in order

to enable fault recovery mechanisms. Fault detection methods proposed are typically achieved

through active or passive monitoring. Active monitoring is achieved using a centralized or cluster-

based network topology [35] and consists of requesting constant updates throughout the network or

using heartbeat signals. Passive monitoring is achieved in centralized, cluster-based, or distributed

network topologies, by observing the traffic already present in the network to infer the nodes

health [36]. Since this paper focuses on a distributed network control strategy, passive monitoring

methods are only considered.

One approach to detect faulty nodes is to assume that the healthy measurements are spatially

correlated while faulty measurements are uncorrelated. This was achieved using a Bayesian [86]

and Naymen-Pearson [54] formulation, where the likelihood of the sensor data was tested against

neighboring data hypotheses. A variation of these approaches was presented by Ding et al. [87]

where the median of the neighborhood measurements was used as a validation criteria for the

sensor data. An approach to weighting the faulty measurements was presented by Sridhar et. al.

[88] that does not eliminate faulty sensor data but gives it less weight during data fusion. When the

measurements are uncorrelated the weight decreases while it increases when they are correlated.

Based on sensor node health status, a Markov model for characterizing the networks reliability and

Mean Time To Failure (MTTF) was presented by Munir et. al. [89]. Further understanding of the

different fault detection methods can be found in [89]. Although these methods identify nodes that

are providing faulty measurements, they cannot identify failed sensor nodes without probing the

network. Therefore, the development of a passive fault detection method is necessary to identify
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coverage gaps caused by failed nodes.

To achieve passive fault detection in this work, a distributed filter-based sensor selection method

is employed that selects the best healthy sensors to track the target. Sensor node, si, initially

assumes that all of the sensors that can detect the target are asleep or have failed. Then, each sensor

(including si) that is awake or healthy (that can detect the target) will transmit information to si

and their neighbors. This allows each sensor to identify the healthy nodes in their neighborhood

and identify if they are the best sensor to cover the target. Additionally, this allows for a passive

method to identify coverage gaps based on the number of nodes available.

To handle faulty sensor data, three approaches are used in this work. First, false alarms are

minimized by employing the M − of − N track validation method [72]. Then, the target state

information received by each sensor node is validated based on the target state estimation error and

faulty (high error) information is disregarded [84]. Finally, the healthy (trustworthy) information

received is then correlated to ensure accurate data fusion. This multi-stage process prevents faulty

data from passing through the network and enhances the target state estimates.

Once the faulty nodes are detected, it is critical that the network performs a recovery mech-

anism. This can be broken down into two approaches, proactive and reactive. One proactive

approach for a target tracking application proposes that transmitting target state information to

regions along the track of the target leads to fault tolerant tracking [90]. This approach is uti-

lized in this work by incorporating opportunistic sensing into the DSN. By transmitting target state

information along the target path, the sensors can proactively prepare for the target allowing for

fault-tolerance. However, these approaches are not fault-tolerant if a coverage gap is formed along

the target’s trajectory.

Therefore, most proactive approaches try to handle the problem during deployment by inserting

redundant sensing nodes throughout the network. The number of nodes deployed are typically

computed to achieve κ-coverage [37, 83, 91] or κ-connectivity [92–94] where κ is the number of

sensors that can cover a point/target or is the number of communication paths. Other deployment

topology methods utilize sensor placement models of four, six, and eight nodes that provide fault

tolerant properties [95]. These network topologies allow for κ − 1 sensors to fail without losing
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coverage or connectivity. However, they require significantly more sensor nodes to be deployed,

and in the event of multiple co-located failures, this approach will fail to ensure coverage.

Reactive approaches aim to recover coverage or connectivity that was lost due to the failed

nodes. For a single and multiple spatially independent node failures, many approaches have been

proposed that utilize mobile sensor nodes that can re-position themselves to ensure that connec-

tivity is maintained. A summary of these approaches are presented in [33] and consist of re-

positioning nodes based on minimizing the distance traveled, coverage loss, message overhead,

recovery time, length of data paths, and number of relocated nodes. However, these approaches

focus on a mixed network of mobile and stationary nodes, which are related to mobile sensor

networks and not DSN.

For stationary sensor networks, single sensor failure recovery methods have been proposed.

These include, storing redundant data for data recovery [39]; re-routing connectivity paths around

the failed node or adjusting packet size sent to the failed node [40]; or re-configuring clusters to

recover child nodes from a failed cluster head [21, 96–98]. However, these methods do not address

the problem of recovering the coverage gap created by the failed node.

To recover the coverage gap, this chapter aims to utilize adjustable sensing ranges to expand

the nodes coverage capabilities to ensure that the coverage gap is filled only when a target is

traveling through it, thus allowing for Opportunistic Coverage. Additionally, the distributed filter-

based sensor selection method aims to select κ nodes to cover the target even in the presences of

coverage gaps.

When multiple co-located nodes fail in a stationary network, the network can be partitioned

into multiple divisions. To reconnect the network, heuristic approaches have been proposed to find

the optimal stationary relay node placement that will ensure that the partitions are connected for

data aggregation [33, 38]. The stationary relay nodes are only used to transmit information and

do not have any sensing capabilities. These approaches aim to minimize the number of stationary

relays deployed, the quality of the topology, and to guarantee link bandwidth. Although these

approaches ensure that the network can transmit data to a base station, they do not address the

coverage problem and are mainly concerned with large scale failures.
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The proposed control methodology in this paper aims to incorporate coverage resiliency into

the DSN to overcome coverage gaps imposed by multiple co-located node failures. It will be

shown that as long as the size of the coverage gap is ≤ RL, the nodes in the POSE.R network will

opportunistically expand their sensing ranges when a target is traveling into the coverage gap to

ensure target coverage at the expense of energy consumption. Although the connectivity problem

is not addressed in this work, it is assumed that frequent fly-bys with UAV’s could gather target

information in the event of network partitioning.

5.2.2 Maximum Network Lifetime Problem

The second problem that the POSE.R network aims to solve is the Maximum Network Lifetime with

Adjustable Range (MNLAR) problem for target coverage. The objective of the MNLAR problem

is two fold: (1) scheduling the sensor nodes within the network for energy efficiency by activating

and deactivating them periodically, and (2) selecting the active sensors and their adjustable sensing

range to ensure that every target in the network is covered. More formally, the MNLAR problem

is defined as:

Definition 5.2.1 (Maximum Network Lifetime with Adjustable Ranges Problem) Given n sen-

sor nodes and m targets, determine a set of sensor, their sensing range, and their activation time

such that:

1. The network lifetime is maximized,

2. The set of active sensors covers all of the targets,

3. The sensor nodes cannot consume more than their initial energy, E0, and

4. Each sensor can only select one sensing range at each time step.

This problem has been formulated as an optimization problem in the form of Integer Program-

ming [85, 99, 100], Linear Programming [101–103], and Voronoi Graphs [104, 105]. This problem

is NP-complete [99] making it very difficult to perform in real-time. Therefore, many of the solu-

tions presented are based on centralized or distributed heuristics.
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For centralized heuristics, many approaches aim to identify the family of set covers that allow

for all of the targets to be covered. Each set cover consists of a subset of sensor nodes that will be

active and can over the targets. The goal is the maximize the number of cover sets and each nodes

sensing range to maximize the network lifetime. The scheduling sequence only activates one set

cover at a time while all other covers are inactive. This was solved using the Adjustable Range Set

Covers (AR-SC) algorithm [99] which develops a Linear Programming heuristic to approximate

the Integer Programming solution. The Sensor Network Lifetime Problem (SNLP) formulation

[101] utilized the Garg-Konemann algorithm to approximate the optimal linear programming so-

lution within a small factor, while the Column Generation algorithm was used by Cerulli et. al.

[102]. The greedy heuristic proposed by Cerulli et. al. was adjusted by Mohamadi et. al. [106] by

developing a learning automata-based algorithm to find the optimal cover sets. Additionally, the

MLAR problem was extended to directional (such as camera) sensor networks [103].

For distributed heuristics, many approaches follow a greedy-based scheme. AR-SC [99] has

each sensor operate in rounds. During each round, a sensor node si computes its wait time, which is

a representation of how much energy and contribution the sensor adds to the group. The shorter the

wait time, the more contribution the sensor has. During the wait period, si may receive decisions

from neighbors about the sensing range they will choose. The decisions are then used to update si’s

uncovered target set and wait time. Once si’s wait time is up, si will select the minimum sensing

range that can cover all of the uncovered targets and transmit this information to its neighbors.

This approach was then extended in the Adjustable Sensing Range Connected Sensor Cover (ASR-

CSC) algorithm [100] to allow for connectivity. Here, si first constructs a virtual backbone of the

network and determines its responsibility. The sensor may choose to be active only for transmission

purposes. Then the AS-RC heuristic is used to determine the nodes sensing range. Therefore, the

sensor could be inactive, active, or active only for transmission.

The Variable Radii Connected Sensor Cover (VRCSC) algorithm [104] uses a Voronoi-based

algorithm that partitions the region into a Voronoi Graph and selects the sensing and communica-

tion ranges of each node to ensure κ-coverage and κ-connectivity. This is a localized algorithm

where each sensor makes decisions based only upon local neighborhood information. Each node
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computes its local and neighbors voronoi cells. Then, the node computes its sleeping benefit based

on whether it decides to sleep or be active. Next, it checks whether it can be removed from the

communication graph. If it can be removed and the node maximizes the sleep benefit, the node will

become inactive. If not, the node will select the minimum sensing range to occupy the Voronoi cell.

A similar approach was presented in the Sensor Activation and Radius Adaptiation (SARA) algo-

rithm [105], however, this problem utilized Voronoi-Laguerre diagrams. Each node first constructs

their Voronoi-Laguerre polygon, which represents the nodes coverage area that is not covered by

its neighbors. Combining the polygon and the energy gain, the sensor node then determines if

it is a redundant sensor, its sensing range is too small or its sensing range is too large. Once it

determines the best sensing range to cover the polygon, it transmits its decision to its neighbors.

Two more distributed heuristics, Adjustable Range Load Balancing Protocol (ALBP) and Ad-

justable Range Deterministic Energy Efficient Protocol (ADEEPS), were presented by Dhawan et.

al. [107] that incorporate three operating conditions for each node, active, idle, or deciding. Idle is

used to conserve energy when other sensors are covering the target; Deciding is a transition phase

between active and idle where the sensing range can be adjusted; and Active has the sensor use its

maximum range to cover any remaining uncovered targets. The ALBP heuristic aims to balance

the energy depletion while ADEEPS utilizes load balancing and reliability.

Encompassed in all of the MNLAR proposed solutions is the assumption that all of the targets in

the network are fixed and their locations are known a priori by all of the nodes. However, in target

tracking applications, the targets are dynamic and may randomly appear and disappear within

the network. If the targets present were to change their locations in the network, the proposed

solutions would be activating the incorrect sensor nodes and the objective of the mission would

be compromised since target estimation is nonexistent. Therefore, this paper aims to solve the

MNLAR problem for dynamic targets where the target locations are unknown a priori.

Additionally, the proposed MNLAR problems presented above do not consider sensor failures.

Fault-tolerance is only proactive where the network deploys redundant sensor nodes. Thus, if a

single node or multiple co-located nodes fail and create a coverage gap around the targets loca-

tions, the network will fail to meet it’s objective causing a significant decrease in network lifetime.
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Therefore, this chapter aims to identify coverage gaps to ensure target coverage.

Also, some of the approaches formulate the cover sets such that only κ = 1 sensors are ob-

serving each target. This formulation is appropriate when the target locations are fixed and known,

however, once the targets become dynamic, less sensors covering the target results in increase es-

timation error. Therefore, this paper develops a distributed sensor selection method that activates

κ > 1 nodes to cover the target during each time step for accurate state estimation.

5.2.3 Gaps in the literature

The following gaps have been found in the literature that are addressed in this chapter.

1. A passive coverage gap identification method that does not utilize data traffic does not exist,

2. A reactive fault recovery method for stationary DSN that is resilient to single node and mul-

tiple co-located node failures that create coverage gaps ≤ RL,

3. A solution to the MNLAR problem for dynamic targets with unknown location a priori, and

4. Using network density information to adapt the network control strategy does not exist.

5.3 Problem Formulation - New Features

The POSE.R algorithm is setup in the same manner as described in Chapter 2. However, there are

a few new features that are included for the POSE.R algorithm.

First, the range of HPS devices on each multi-modal sensor node can be adjusted by controlling

the amount of power supplied to the sensors [99]. Thus, each node si can adjust the range of it’s

HPS device from L levels depending on need, such that Rsi
HPS(k) ∈ {R1, R2, ...RL}, where R1 <

R2 < ... < RL and R1 is the default sensing range under normal conditions. Here, R1 = RHPS as

described in the previous chapters.

Second, the total energy consumed [26] by a sensor node si until time k is computed as

Esi(k) =
∑

k

∑

j

esij .χ
si
j (k)∆T, (5.1)
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where esij denotes the rate of energy consumption per unit time by a certain device j ∈ {DPU,

LPS, HPS, TX, RX, clock}; χsij (k) ∈ {0, 1} indicates whether the device is ON or OFF at time

k; and ∆T is the sample time interval. The energy rates esij are assumed constant for all devices

except for the HPS devices, where esiHPS(k) depends on the sensing range as follows [44]

esiHPS(k) = wRsi
HPS(k) (5.2)

where w is the proportionality constant. Thus, the total energy consumed by the entire sensor

network until time k is given as Enet(k) =
∑n

i=1E
si(k).

Finally, to ensure energy-efficiency, our objective is to not cover the whole area but only the

areas where the target is currently present and predicted to be during the next time step, thus

enabling opportunistic sensing and coverage. However, the network may develop coverage gaps

over time due to non-uniform node distribution, sensor failures, node drifting, etc., which can affect

the tracking performance. Therefore, the network must cover the coverage gap, G(k), defined in

Chapter 2.

To achieve resilience, that is to track the target even when it passes through a coverage gap, we

perform distributed optimization to extend the sensing ranges of selected HPS state sensors around

the coverage gap where the target is approaching.

Remark 5.3.1 By optimally extending the ranges of HPS sensors around the coverage gap, the

coverage gap can reduce or disappear at the time when target is passing by.

Definition 5.3.1 (Target Coverage) Target coverage is said to be achieved at time k if uτℓ(k) /∈

G(k), ∀τℓ ∈ T , i.e. all targets are covered.

Definition 5.3.2 (Coverage Degree) Let Sc(u
τℓ(k)) = {si ∈ S : uτℓ(k) ∈ Ωsi(k)} denote the set

of all nodes in whose coverage areas the target falls in at time k. Then, the coverage degree of

target τℓ is defined as D(uτℓ(k)) = |Sc(uτℓ(k))|.

Definition 5.3.3 (Base Coverage Degree) Let Sc,R1
(uτℓ(k)) = {si ∈ Sc(uτℓ(k)) : Rsi

HPS = R1}

be the set of nodes covering τℓ with their base sensing range R1. Then, the base coverage degree

of a target τℓ is defined as DR1
(uτl(k)) = |Sc,R1

(uτℓ(k))|.
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Figure 5.2: Low Power Sensing State Algorithm

Therefore, the objective of this chapter is to develop a network autonomy approach that employs

a distributed node-level supervisor that probabilistically controls the multi-modal sensor node’s de-

vices to meet the following requirements: (1) improved network life expectancy via opportunistic

sensing, (2) resilient coverage of the targets in the presence of coverage gaps, and (3) high tracking

accuracy and low missed detection rates.

5.4 POSE.R Algorithms

Consider a sensor node si ∈ S that has a PFSA-based supervisor as described in Chapter 3.3,

except that the algorithms within the states now perform the following algorithms.

5.4.1 Sleep State Description

The Sleep state, θ1, is used to minimize energy consumption by disabling all devices on si except

for a clock to allow for state transitions. A node si probabilistically switches to this state if a target

is located far away from this node or if this node is not selected for tracking. After every time

interval ∆T , si may continue in the Sleep state with a probability psi11 = psleep or transition to the

LPS state with psi12 = 1 − psleep, where psleep ∈ [0, 1] is a design parameter. From the Sleep state,

node si cannot go the HPS state directly, i.e. psi13 = 0 because it does not have any information

about the targets location.
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5.4.2 Low Power Sensing (LPS) State Description

The LPS state, θ2, is designed to allow for target detection while conserving energy. In this state,

the DPU, TX, RX, and the LPS devices are enabled. The flowchart for the algorithm is shown in

Fig. 5.2 and described below.

• Target Detection: Target detection is achieved by either (i) using the LPS devices or (ii) fusing

the information received from neighbors. If a target is located within RLPS, si detects it with a

probability P si
D,LPS(u

τℓ(k)) according to Eq. (2.5).

Next, si checks if it has received any information from HPS state sensors in its neighborhood.

Let N si
HPS ⊆ N si be the set of nodes in the HPS state that have broadcasted target state infor-

mation to si. If no information is received, i.e. N si
HPS = ∅, then si will transition to the HPS

state solely based on its own P si
D,LPS(u

τℓ(k)). If information is received, i.e. N si
HPS 6= ∅, then si

performs distributed sensor collaboration to make an informed switching decision as summarized

below.

• Distributed Sensor Collaboration: This consists of three steps (full details are in Section 5.5)

as follows:

1. Distributed Fusion: This step fuses the received information and obtain a target state esti-

mates and predictions.

2. Adaptive Sensor Selection: The predicted state estimate, x̂si(k + 1|k), is used to i) select

the optimal set of sensors, S ∗, to track the target during the next time step, and (ii) select

their optimal sensing ranges, R ∗ = {Rsj
HPS(k + 1)∗, ∀sj ∈ S ∗}, to ensure target coverage.

Additionally, the base coverage degree, DR1
(Hx̂si(k + 1|k)), is computed to identify if the

selected sensors must expand their sensing ranges to achieve Nsel-coverage.

3. Computation of State Transition Probability to HPS state: If si ∈ S ∗, the node computes a

probability P si
HPS(k) (see Eq. 3.12) to transition to the HPS state. However, if si /∈ S ∗, this

implies that there are other better sensors to track the target. In this case, si will probabilis-

tically stay in LPS state to stay aware of the target and participate in sensor selection during

the next time step if applicable. When the node is located within R1 of the target’s predicted
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Figure 5.3: High Power Sensing State Algorithm

location, si should stay aware in the LPS state. However, if the node is located a distance

> R1 from the target, si should only stay aware if the base coverage degree is insufficient, i.e.

DR1
(Hx̂si(k + 1|k)) < Nsel. This indicates that the selected nodes within RL of the target

must expand their sensing ranges to achieve D(Hx̂si(k + 1|k)) = Nsel. Therefore, the nodes

not selected within RL should maintain awareness in the LPS state in case they are a future

candidate to track the target.

The probabilistic control of the LPS state, θ2, is described in Alg. 1.

5.4.3 High Power Sensing (HPS) State Description

The HPS state, θ3, is designed to cover and estimate the target’s state using measurements from its

HPS devices. In θ3, si enables the HPS devices, DPU, TX, and RX and performs the algorithm

shown in Fig. 5.3.

• Data Association and State Estimation: In the HPS state, node si first receives a set of

measurements, z(k), from its HPS devices of a target or clutter within a range Rsi
HPS(k), where

Rsi
HPS(k) was selected during the previous time step in the LPS or HPS state. Subsequently, the

previous state and covariance estimates, x̂si(k− 1|k− 1), Σ̂si(k− 1|k− 1), are updated using the

Joint Probabilistic Data Association (JPDA) method [48] to generate x̂si(k|k) and Σ̂si(k|k). If the

measurements do not associate to a previous state estimate, si initializes a new state estimate [71].

Details are presented in Chapter 3.3.2.

•M-of-N Track Confirmation: The measurements of the HPS devices may contain false alarms

due to clutter. This causes si to initialize a new state estimate when clutter does not associate to
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input : usi , N si
HPS , Îsi(k), Nsel, θ

si(k), and H
output: psiidx,1(k), p

si
idx,2(k), and psiidx,3(k)

if θsi(k) = θ2 then // si is in the LPS state

idx← 2
else if θsi(k) = θ3 then // si is in the HPS state

idx← 3
end

if N si
HPS = ∅ then // Information was not received by si

if idx = 2 then // si is in the LPS state

psiidx,1(k)← 1− P siD,LPS(Hx̂
si(k + 1|k)),

psiidx,2(k)← 0,

psiidx,3(k)← P siD,LPS(Hx̂
si(k + 1|k))

else if idx = 3 then // si is in the HPS state

psiidx,1(k)← 0,

psiidx,2(k)← 1− P siD,HPS(R
si
HPS(k)),

psiidx,3(k)← P siD,HPS(R
si
HPS(k))

end

else if N si
HPS 6= ∅ then // Information was received by si

// Call distributed sensor collaboration algorithm

[x̂si (k + 1|k), S ∗,R ∗]← DSC(Îsi(k))
Compute DR1

(Hx̂
si(k + 1|k)) using S ∗ and R ∗

if si ∈ S ∗ then // Node si was selected

psiidx,1(k)← 0,

psiidx,2(k)← 1− P siHPS(k,R
si
HPS(k + 1)),

psiidx,3(k)← P siHPS(k,R
si
HPS(k + 1))

else if si /∈ S ∗ then // Node si was not selected

if ||usi −Hx̂
si(k + 1|k)|| ≤ R1 then // The target’s predicted position is within R1 of si

psiidx,1(k)← 1− P siD,LPS(Hx̂
si(k + 1|k)),

psiidx,2(k)← P siD,LPS(Hx̂
si(k + 1|k)),

psiidx,3(k)← 0

else if ||usi −Hx̂
si(k + 1|k)|| > R1 then // The target’s predicted position is further than R1 of si

if DR1
(Hx̂

si(k + 1|k)) = Nsel then // Base coverage degree is sufficient

psiidx,1(k)← 1,

psiidx,2(k)← 0,

psiidx,3(k)← 0

else if DR1
(Hx̂

si(k + 1|k)) < Nsel then // Base coverage degree is insufficient

psiidx,1(k)← 1− P siD,HPS(R
si
HPS(k)),

psiidx,2(k)← P siD,HPS(R
si
HPS(k)),

psiidx,3(k)← 0

end

end

end

end

Algorithm 1: Probabilistic Control of LPS and HPS states

a previous estimate. To account for false alarms and ensure that a false track is not propagated

throughout the network, si utilizes the M − of − N Track Confirmation Logic [72] (presented in

Chapter 3.3.2) to allow the network to be robust to false alarms.

Subsequently, the confirmed target track’s state and covariance estimates, x̂si(k|k) and Σ̂si(k|k),
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and filter gain matrix, Ŵsi(k), are broadcasted to its neighbors. Next, si checks if it has re-

ceived any information from HPS state sensors N si
HPS in its neighborhood. Since si is in the

HPS state and has broadcasted information to its neighbors, the set of HPS state sensors becomes

N si
HPS = N si

HPS ∪ {si}. However, if si has not transmitted a confirmed track, N si
HPS does not

include si. If no information is received, i.e. N si
HPS = ∅, then si will rely on it’s own probability

of detection, γHPS, to remain in the HPS state. If information is received, i.e. N si
HPS 6= ∅, then si

performs the distributed sensor collaboration to make an informed switching decision.

• Distributed Sensor Collaboration: Collaboration is achieved using the same process as Sec-

tion 5.4.2. This includes distributed fusion, adaptive sensor selection, and computation of state

transition probabilities.

The probabilistic control at the HPS state, θ3, is described in Alg. 1.

5.5 Distributed Sensor Collaboration

The distributed sensor collaboration algorithm, consists of distributed fusion, adaptive sensor se-

lection, and computation of the probability of detecting the target’s predicted location using the

HPS devices as follows:

5.5.1 Distributed Fusion

The first step in sensor collaboration consists of fusing the transmitted target state information

together to allow node si an understanding of the target’s location. This allows for (1) improved

state estimation and (2) target detection without sensing (if node si is in the LPS state). Consider a

node si which could be in the LPS or HPS state. The information ensembles it received consists of

Îsi(k) = {(x̂sj(k|k), Σ̂sj(k|k),Ŵsj(k)), ∀sj ∈N si
HPS}, (5.3)

where x̂sj(k|k), Σ̂sj (k|k), and Ŵsj(k) correspond to the target state, covariance, filter gain esti-

mates of sj at time k.

• Trustworthy Set Formation Due to noise and other factors, the information received must first
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be validated to ensure that it is accurate and reliable before processing. Since false tracks produced

by clutter typically deviate from the target motion model, the covariance of the estimate may be

very high. Therefore, this step aims to further reduce false tracks by forming a set of trustworthy

neighbors N si
T ⊆N si

HPS . This is achieved by evaluating the sum of the position error as follows

N si
T = {sj ∈N si

HPS : Trace(Σ̂si,c
z (k + 1|k)) ≤ ξ} (5.4)

where Σ̂si,c
z (k+1|k) = H(k)Σ̂sj(k|k)H(k)′ is the target’s predicted location; H(k) is the Jacobian

of the measurement model defined in Eq. (2.6); and ξ is the maximum tolerance of the estimate.

In this paper, ξ =
R2

1
σ2
φ
+σ2

R

2
, where σφ and σR are the standard deviations in the azimuth and range

measurements of the HPS sensor. Finally, node si receives the following trustworthy information:

ÎsiT (k) =
{(

x̂sj (k|k), Σ̂sj(k|k),Ŵsj(k)
)
, ∀sj ∈N si

T

}
, (5.5)

• Track-to-Track Association and Fusion Next, the trustworthy information is associated to

ensure that it is related to the same target to further improve fusion. In this work, the Track-to-

Track Association Method [69] is used for this purpose. Details are presented in Chapter 3.3.2.

This method associates the trustworthy information into C different groups which correspond to

the C different targets that could be present within the node si’s neighborhood; thus forming the

information ensembles: Î
si,c
T (k) ⊆ ÎsiT (k), where c = 1, ..., C. Subsequently, for each c, the state in-

formation in Î
si,c
T (k) is fused to form a single state (x̂si,c(k|k)) and covariance (Σ̂si,c(k|k)) estimate,

using the Track-to-Track Fusion (T2TF) algorithm [70]. Details are presented in Chapter 3.3.2.

• Target Prediction Once all the received state information is fused, node si computes a one-

step prediction [45] of the target’s state using the Extended Kalman Filter:

x̂si,c(k + 1|k) = f(x̂si,c(k|k), k)

Σ̂si,c(k + 1|k) = F(k)Σ̂si,c(k|k)F(k)′ +Q, (5.6)

where F(k) is the Jacobian of the state transition matrix evaluated at x̂si,c(k|k) and Q is the process

noise covariance error.
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Figure 5.4: Adaptive Sensor Selection Algorithm

5.5.2 Adaptive Sensor Selection

Next, the predicted state of each target is used to select Nsel nodes and their sensing ranges to

track the target in the HPS state during the next time step to ensure target coverage. Let N si
dsc ⊆

N si ∪ {si} be the set of nodes that are in either the LPS or HPS state who have received target

information and are performing sensor collaboration. Each sj ∈ N si
dsc will perform the adaptive

sensor selection algorithm, shown in Fig. 5.4, which is a multi-stage filter process that identifies

the optimal sensors and their sensing ranges for resilient coverage. Therefore, the following steps

are computed by node si for each target τc.

• Candidate Identification: First, node si uses the target’s predicted state and covariance esti-

mates, x̂si,c(k+1|k) and Σ̂si,c(k+1|k), to identify the nodes that can completely cover the target’s

predicted location. Let Ωcan ∈ Ω be the region surrounding the target’s predicted location s.t. if

any node lies within Ωcan, it can cover 6σ of the predicted target distribution with a sensing range

Rdet. More formally,

Ωcan = {(x, y); (x−x̂si,c(k+1|k)
Rdet−3σx

)2 + (y−ŷ
si,c(k+1|k)
Rdet−3σy

)2 ≤ 1} (5.7)

where σx and σy are the x and y position standard deviations of the uncertainty estimate Σ̂si,c
z (k +

1|k), while x̂si,c(k+1|k) and ŷsi,c(k+1|k) are the x and y predicted position estimates of x̂si,c(k+

1|k).

Initially,Rdet = R1 is used to identify if there are a sufficient number of nodes available to cover

the target with the minimum HPS sensing range to minimize energy consumption. Therefore, the
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set of sensors that can cover the target’s predicted location distribution are defined as:

Scan = {sj ∈ (N si ∪ si);usj ∈ Ωcan}. (5.8)

Next, let Sdet = {N si
dsc ∩ Scan} be the set of nodes that are in the LPS or HPS state. If node

si ∈ Sdet, then it will broadcast it’s percent energy remaining,Esi
R (k) =

E0−Esi(k)
E0

, to it’s neighbors

to indicate that it is available for tracking, where E0 is the node’s initial energy and Esi(k) is given

in Eq. (2.3). Additionally, the remaining nodes in Sdet broadcast their energy remaining, and

node si receives their energy information and forms the set Edet = {Esj
R (k), ∀sj ∈ Sdet}. The set

Sdet is identified dynamically by node si based on it’s neighbors that have transmitted their energy

information.

• Energy-based Geometric Dilution of Precision: Next, node si computes the best set of sen-

sors around the target’s predicted position that maximizes the energy remaining while minimizing

the mean squared error of the target estimate. However, maximizing the energy remaining typically

does not guarantee that the mean squared error will be minimized (and vice versa). Therefore, to

jointly optimize these two criteria, the Energy-based Geometric Dilution of Precision (EGDOP)

measure is proposed.

First, si identifies the node sj s.t. sj = argmaxsh∈Sdet
(Esh

R (k)) and creates the set S ∗ = {sj}.

Then, node si incrementally adds a node sh /∈ S ∗, one at a time, to the set S ∗ s.t. the following

utility function is maximized and |S ∗| = min(Nsel, |Sdet|).

µ(S ∗) =
det(J(S ∗))

trace(J(S ∗))
, (5.9)

J(S ∗) =
∑

sh∈S ∗

Esh
R (k)

σ2
θ,nr

2
sh,n


 s2φsh −sφshcφsh
−sφshcφsh c2φsh


 , (5.10)

where s ≡ sin and c ≡ cos; rsj ,n = (x−x̂
si,c(k+1|k)

Rdet−3σx
)2 + (y−ŷ

si,c(k+1|k)
Rdet−3σy

)2 is the normalized range of

sensor sj to the target’s predicted position; σθ,n = σθ
2π

is the normalized measurement angle stan-

dard deviation; and φsj is the azimuth angle between sensor sj and the target’s predicted position.
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• Coverage Degree Identification: Next, node si determines the coverage degree of the target’s

predicted position and utilizes this information to adapt the sensor selection algorithm. First, si

determines the coverage degree by computing the length of the set S ∗. If |S ∗| = Nsel, the adaptive

sensor selection algorithm is complete since the base coverage degree, DR1
(uτℓ(k)), is satisfied.

Therefore, the sets S ∗ and R ∗ are outputted where each sensor in S ∗ uses the HPS range R1.

However, if |S ∗| < Nsel, the region Ωcan must be expanded to identify nodes that can extend their

sensing range to ensure that the coverage degree is D(uτℓ(k)) = Nsel.

Consequently, node si restarts the adaptive sensor selection algorithm and expands the candidate

region, Ωcan, to include nodes that can detect the target with the maximum sensing range RL.

This results in a larger candidate set that consists of nodes that can detect the target with sensing

ranges between [R1, RL]. Therefore, the new sensor selection approach increases the complexity

by jointly optimizing the sensing ranges, number of sensors selected, geometric diversity, and

network energy consumption. However, solving the joint optimization problem is very complex

and may not be achieved in real time. To simplify this, a multi-stage filtering process is employed,

that first selects N ′
sel > Nsel sensors that have the most energy remaining and are geometrically

diverse using EGDOP; then, si selects the optimal sensing ranges for theN ′
sel nodes using potential

games s.t. the coverage degree of the target is D(uτℓ(k)) = Nsel.

Therefore, si restarts the Candidate Identification and EGDOP processes with the following

new inputs: x̂si(k+1|k); Σ̂si(k+1|k); Rdet = RL; and Nsel = N ′
sel where N ′

sel > Nsel is a design

parameter. This then produces a new set of candidates, Sdet, and optimal sensors, S ∗, that are

geometrically diverse, have sufficient energy, and can cover the target’s predicted location. Then,

if node si /∈ S ∗, si quits the sensor selection process and continues to update its state transition

probabilities. However, if node si ∈ S ∗, the node moves forward to select it’s optimal sensing

range.

• Leader Identification The first step in range selection is to identify the best node in S ∗ to

compute the optimal sensing ranges for the group. A leader is selected because a game requires

frequent communication between the players which costs high energy. Therefore, one node is

selected to perform sensor range selection to reduce energy consumption. Leader selection is per-

89



Figure 5.5: Target Coverage Partition Region

formed independently on each node in S ∗ and is found based on the maximum energy remaining.

Therefore, node si identifies the leader sL as such:

sL = arg max
sj∈S ∗

(E
sj
R (k)). (5.11)

If si = sL, node si is the range selection leader and will continue to the next step, while if si 6= sL,

si waits until node sL computes the optimal ranges and transmits the result.

• Partition Target Coverage Area: To identify the optimal ranges, the leader sL first identifies

the target coverage area based on the target’s predicted state and covariance estimates, x̂sL,c(k +

1|k) and Σ̂sL,c(k + 1|k). As shown in Fig. 5.5, let Ωg ∈ Ω be the target coverage area which is

modeled as the rectangular area that contains 6σ of the target’s predicted location defined as:

Ωg = {(x, y) ∈ Ω;−3σx ≤ ||x− x̂sL,c(k + 1|k)|| ≤ 3σx,

−3σy ≤ ||y − ŷsL,c(k + 1|k)|| ≤ 3σy}. (5.12)

Therefore, optimizing over the target coverage area ensures that the target will be covered.

Then, Ωg is partitioned into V · V cells, where each cell is defined as Ωvj,h , ∀j = h = 1, ..., V .

Next, each Ωvj,h is assigned a worth based on the multivariate normal probability density function.

vj,h = N ([xcj,h, y
c
j,h]

′, ẑsL,c(k + 1|k), Σ̂sL,c
z (k + 1|k))/c1 (5.13)
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where [xcj,h, y
c
j,h] is the center point of the cell Ωvj,h ; and

c1 =
V∑

j=1

V∑

h=1

N ([xcj,h, y
c
j,h]

′, ẑsL,c(k + 1|k), Σ̂sL,c
z (k + 1|k))

is a normalizing constant s.t.
∑V

j=1

∑V
h=1 vj,h = 1. The worth represents the probability of the

target being located in the cell Ωvj,h , as shown in Figure 5.5 on the right. The partition region, Ωg,

cell location, [xcj,h, y
c
j,h]

′, and worth, vj,h, are then used to identify the optimal sensing ranges to

ensure that the target coverage area is covered.

• Optimal Range Selection using Potential Games: Next, the leader sL computes the optimal

sensing range for each node sj ∈ S ⋆, such that Nsel sensors are covering each cell of the partition

region Ωg while minimizing sj’s sensing range, i.e. redundant coverage. However, it is difficult to

optimize over all combination of joint ranges in real time. Therefore, to achieve range selection,

this work implements a game-theoretic approach using the concept of Potential Games.

The use of potential games provides the following advantages: (i) at least one pure Nash Equi-

librium is guaranteed to exist; (ii) there exist learning algorithms that can asymptotically converge

to the optimal equilibrium with a fast convergence rate, e.g., the Max-Logit algorithm; and (iii)

the utility of each player is perfectly aligned with a global objective function, namely the potential

function, such that when the players negotiate to maximize their own utilities, the global potential

function is also maximized.

Preliminaries: A game G in strategic form [108] consists of:

• A finite set of players. In this work, the set of players are the sensor nodes selected using

EGDOP, S ⋆.

• A non-empty set of actions A i associated to each player si ∈ S ⋆. In this paper, each action

ai ∈ A i indicates a different sensing range. Specifically, the action set A i = {R0, R1, ..., RL},

where R0 represents a sensing range R
sj
HPS(k + 1) = 0m implying a state transition to LPS

or Sleep state. The action set is assumed to be identical for all players, i.e., A i = A j ,

∀si, sj ∈ S ⋆.
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• The utility function associated with each player si, defined as U i : AS ⋆ → R, where AS ⋆ =

A 1 × . . .× A |S ⋆| denotes the set of joint actions for all players.

The utility function computes the payoff that a sensor node si ∈ S ⋆ can expect by choosing

an action ai ∈ A i, given that the rest of the players jointly select a−i ∈ A−i, where A−i :=

A 1 × . . . × A i−1 × A i+1 × . . . × A |S ⋆|. A joint action of all players a ∈ A is often written as

a = (ai, a−i).

Definition 5.5.1 (Nash Equlibrium) A joint action a = (a⋆i , a
⋆
−i) ∈ A is called a pure Nash

Equilibrium if

U i(a
⋆
i , a

⋆
−i) = max

ai∈A i

U i(ai, a
⋆
−i), ∀si ∈ S ⋆ (5.14)

Definition 5.5.2 (Potential Games) A gameG in strategic form with action sets {A i}|S
⋆|

i=1 together

with utility functions {U i}|S
⋆|

i=1 is a potential game if and only if, a potential function Φ : A → R

exists, s.t. ∀ si ∈ S ⋆

U i(a
′
i, a−i)−U i(a

′′
i , a−i) = Φ(a′i, a−i)− Φ(a′′i , a−i) (5.15)

∀ a′i, a′′i ∈ A i and ∀ a−i ∈ A−i.

A potential game requires the perfect alignment between the utility of each player and the

globally shared potential function Φ for all players, i.e., the change in U i by unilaterally deviating

the action of player si is equal to the amount of change in the potential function Φ. In this regard,

as the players negotiate towards maximizing their individual utilities, the global objective is also

optimized.

The Sensor Range Selection Game: In order to find the joint action that maximizes coverage

of the partition region, Ωg, while minimizing redundant coverage, the potential function is designed

as follows.

Φ(a) =
V∑

j=1

V∑

h=1

vj,hBj,h(a)−
∑

sj∈S ∗ Ec(aj)

|S ∗|Ec(RL)
(5.16)

where vi,j is given in Eq. (5.13), Bj,h(a) is the coverage function, and the energy cost by taking
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the action aj is

Ec(aj) =





∆T · esjHPS(aj) if aj 6= R0

∆T · eLPS if aj = R0

(5.17)

The first term on the right hand side of Eq. 5.16 computes the target coverage, while the second

term evaluates redundant coverage achieved with the joint action a ∈ A . Depending on the re-

quirements of the DSN, the design of the coverage function may vary. Since the objective of the

coverage function in this work is to select Nsel = 3 nodes to cover the target during each time step,

the coverage function is defined as

Bj,h(N Bj,h
(a)) =





b1N Bj,h
(a) if N Bj,h

(a) ≤ Nsel

b1(6−N Bj,h
(a)) if N Bj,h

(a) > Nsel

(5.18)

where N Bj,h
(a) is the number of nodes that can the cell Ωvj,h with the joint action a ∈ A , and b1

is a design constant.

Based on the potential function defined in Eq. (5.16), the utility function for each player is

computed based on the concept of Marginal Contribution.

U (ai, a−i) = Φ(ai, a−i)− Φ(∅, a−i)

=
V∑

j=1

V∑

h=1

vj,h(Bj,h(ai, a−i)− Bj,h(∅, a−i))−

Ec(ai)− Ec(∅)
|S ∗|Ec(RL)

(5.19)

where ∅ represents player si’s null action. In this work, it indicates the action R0.

Proposition 5.5.1 The game with potential function Φ of Eq. (5.16) and the utility function U i of

Eq. (5.19) is a potential game.
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Figure 5.6: Illustrative Example for Lemma 1

Proof: Given a joint action a−i, the difference in Φ for sensor node si ∈ S ⋆ to deviate its action

from a′i to a′′i is:

Φ(a′i, a−i)− Φ(a′′i , a−i)

= (Φ(a′i, a−i)− Φ(∅, a−i))− (Φ(a′′i , a−i)− Φ(∅, a−i))

=U i(a
′
i, a−i)−U i(a

′′
i , a−i)

Thus game G satisfies Eq. (5.15) and it is a potential game. �

Coverage Function Design: In order to ensure that the game’s equilibrium solution achieves a

coverage degree of Nsel, the following conditions must be satisfied.

Lemma 1 A node si will deviate from action a′i to a′′i if the coverage function Bj,h(N Bj,h
(a′′))

satisfies the following

Bj,h(N Bj,h
(a′′))−Bj,h(N Bj,h

(a′′)− 1) ≥ Ec(a
′′
i )− Ec(a′i)

W |S ∗|Ec(RL)
, (5.20)

where W is the sum of the worth gained by taking action a′′i .

Proof: Suppose that node si is considering deviating from action a′i to a′′i s.t. a′′i > a′i, as shown in

Fig. 5.6. Let the set of cells in Ωg covered by each joint action be Ωvc(a
′) ⊂ Ωvc(a

′′) ⊆ Ωg. Also,

let the number of nodes covering the cells Ωvj,h ∈ Ωvc(a
′) and Ωvj,h ∈ Ωvc(a

′′) be a constant, N B ,

94



while the remaining cells are covered by N B− 1 nodes. Then, node si will choose the action a′′i if

U i(a
′′
i , a−i)−U i(a

′
i, a−i) ≥ 0. (5.21)

Using Eq. (5.19), the above condition becomes

V∑

j=1

V∑

h=1

vj,h(Bj,h(a
′′)− Bj,h(a

′))− Ec(a
′′
i )− Ec(a′i)

|S ∗|Ec(RL)
≥ 0. (5.22)

Then, for action a′i, the following target coverage is achieved

V∑

j=1

V∑

h=1

vj,hBj,h(a
′) = B(N B)

∑

Ωvj,h
∈Ωvc (a

′

i)

vj,h(Ωvj,h) +

B(N B − 1)
∑

Ωvj,h
/∈Ωvc(a

′

i)

vj,h(Ωvj,h)

= W ′B(N B) + (1−W ′)B(N B − 1), (5.23)

where W ′ is the sum of the worth in Ωvc(a
′). Similarly, action a′′i results in the following target

coverage

V∑

j=1

V∑

h=1

vj,hBj,h(a
′′) =W ′′B(N B) + (1−W ′)B(N B − 1). (5.24)

Finally, substituting Eq. (5.23) and (5.24) into Eq. (5.22) results in Eq. (5.20) as follows

(W ′′ −W ′)(B(N B)−B(N B − 1)) ≥ Ec(a
′′
i )−Ec(a′i)

|S ∗|Ec(RL)
(5.25)

B(N B)−B(N B − 1) ≥ Ec(a
′′
i )−Ec(a′i)

W |S ∗|Ec(RL)

where W =W ′′ −W ′. �

Remark 5.5.1 Lemma 1 provides a criteria that allows the network designer to construct the cov-

erage function in terms of the sum of the worth gained, W , between two actions.

Theorem 5.5.1 Given that the coverage function is already designed, the total coverage worth
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achieved by a node si’s best action a∗i is

V∑

j=1

V∑

h=1

vj,h ≥ 1− ∆R

∆B(a∗)|S ∗|RL

, (5.26)

where ∆R is the range difference between two consecutive actions, ∆B(a∗) = Bj,h(N Bj,h
(a∗))−

Bj,h(N Bj,h
(a∗)− 1), and a∗ = (a∗i , a

∗
−i).

Proof: Suppose that node si is trying to deviate from it’s best action a∗i which achieves a total

coverage worth
∑V

j=1

∑V
h=1 vj,h = W ∗. Additionally, suppose that node si is considering taking

an action a′i > a∗i or a′′i < a∗i . If action a′i is considered, a total coverage worth W ′ is achieved.

Then, plugging in a∗i for a′′i in Eq. (5.25), the following condition is achieved.

(W ∗ −W ′)(B(N B)−B(N B − 1)) ≥ Ec(a
∗
i )−Ec(a′i)

|S ∗|Ec(RL)

(W ∗ −W ′)(∆B(a∗)) ≥ esiHPS∆T (a
∗
i − a′i)

|S ∗|esiHPS∆TRL

(W ∗ −W ′) ≥ (a∗i − a′i)
∆B(a∗)|S ∗|RL

W ∗ ≥ W ′ +
(a∗i − a′i)

∆B(a∗)|S ∗|RL

. (5.27)

Here, a∗i − a′i < 0 and in order to maximize the right side of the Eq. (5.27), a∗i − a′i = −∆R and

W ′ = 1. Therefore, as long as the total coverage worth achieved by action a∗i meets the following

condition:

W ∗ ≥ 1− ∆R

∆B(a∗)|S ∗|RL

, (5.28)

then a∗i is a better action than a′i.

Similarly, if si is considering taking an action a′′i < a∗i , the following condition is derived from
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Eq. (5.27)

(W ∗ −W ′′) ≥ (a∗i − a′′i )
∆B(a∗)|S ∗|RL

(W ∗ −W ′′) ≥ ∆R

∆B(a∗)|S ∗|RL
. (5.29)

This states that the sum of the worth gained by taking action a∗i must be greater than the right hand

side of Eq. (5.29). Therefore, as long as W ∗ meets the condition of Eq. (5.27), action a∗i is node

si’s best choice.

Therefore, the total worth achieved by a node si is bounded according to Eq. (5.27). �

Remark 5.5.2 Theorem 5.5.1 provides a criteria that allows a node si to take an action that covers

Ωg. However, this design does not ensure that the coverage degree of the target’s predicted position

is Nsel.

Theorem 5.5.2 The coverage degree of the target’s predicted position is Nsel, given that the cov-

erage function is designed as follows:

∆B(a) ≥ ∆R

W |S ∗|RL
, ∀N Bj,h

(a) ≤ Nsel

∆B(a) <
∆R

W |S ∗|RL

, ∀N Bj,h
(a) > Nsel, (5.30)

where ∆B(a) = Bj,h(N Bj,h
(a))− Bj,h(N Bj,h

(a)− 1).

Proof: Suppose that node si is considering deviating from action a′i to a′′i in the same manner as

Lemma 1. Here, the goal of the game is to selectNsel nodes to cover the target’s predicted location.

Therefore, if there are less than Nsel nodes covering Ωg, node si should be motivated to take action

a′′i . However, if there are already Nsel or more nodes covering Ωg, the node should not take the

action a′′i . To ensure this occurs, the following conditions must be satisfied.

1. U i(a
′′
i , a−i)−U i(a

′
i, a−i) ≥ 0, if N Bj,h

(a′′i ) ≤ Nsel

2. U i(a
′′
i , a−i)−U i(a

′
i, a−i) < 0, if N Bj,h

(a′′i ) > Nsel

97



Using Lemma 1, the following conditions are derived.

B(a′′) ≥ B((a′′)− 1) + b2, ifN Bj,h
(a′′i ) ≤ Nsel, (5.31)

B(a′′) < B((a′′)− 1) + b2, ifN Bj,h
(a′′i ) > Nsel. (5.32)

where b2 =
Ec(a′′i )−Ec(a′i)

(W ′′−W ′)|S ∗|Ec(RL)
= ∆R

W |S ∗|RL
is the energy cost term. Therefore, as long as the cover-

age function satisfies the above conditions, the target’s predicted position will achieve a coverage

degree equal to Nsel. �

Remark 5.5.3 Theorem 5.5.2 ensures that if a node si is trying to deviate from its current action a′i

to a′′i , it will only be motivated to select the action a′′i if N Bj,h
(a′′) ≤ Nsel. Once N Bj,h

(a′′) > Nsel,

the node will not be motivated to take the action a′′i . However, this does not guarantee that the

resulting equilibrium will have Nsel nodes completely covering all of the cells in Ωg. To achieve

close theNsel nodes completely covering all of the cells, ∆B(a) should be increased (or W should

be decreased) until the desired condition in Theorem 5.5.1 is reached.

• Achieving the Optimal Equilibrium: The sensor range selection game may contain more

than one equilibrium, so it becomes imperative to employ an efficient learning algorithm to rapidly

converge to the optimal equilibrium that can maximize the potential function Φ. For this purpose,

the game leader sL will utilize the Max-logit learning algorithm [109][110] to find the best joint

action.

The Max-Logit algorithm adopts a repeated learning framework. At each iteration mg ∈ N
+,

one player si ∈ S ⋆ is randomly selected and is allowed to alter its current action ai(mg), while

other players must repeat their actions, i.e., a−i(mg). Then si randomly selects an alternative action

âi(mg) ∈ A i with equal probability, and the associated utility U i(âi(mg), a−i(mg)) is computed.

Finally, it updates its action to ai(mg + 1) in a probabilistic manner such that [109]:

ai(mg + 1) =





âi(mg), with Pr
(
ai(mg + 1) = âi(mg)

)
= µ

ai(mg), with Pr
(
ai(mg + 1) = ai(mg)

)
= 1− µ
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where µ = ψ(âi)
max{ψ(ai),ψ(âi)}

, ψ(âi) = eUi(âi,a−i)/τ , and τ > 0. The learning process stops when a

predefined maximum learning steps K ∈ N
+ is reached.

Upon reaching the equilibrium a⋆ ∈ A , the joint action is broadcast to each players and their

sensing range is modified accordingly. This process outputs R ∗ = a∗ and S ∗.

• Computation of the HPS State Transition Probability: If si ∈ S ∗, then it has received or

computed it’s optimal sensing range, Rsi
HPS(k + 1) ∈ R ∗. Then, it computes the probability of

the target traveling into the HPS devices coverage area, P si
HPS(k), according to Equation 3.12,

however, the HPS sensing range is now Rsi
HPS(k + 1). This probability is then used to update the

state transition probabilities of the PFSA as described in Section 5.4.

5.6 POSE.R Algorithm Performance

To validate that the proposed algorithm facilitates resilient target coverage and tracking in the pres-

ence of coverage gaps, this section presents the POSE.R algorithm characteristics and compares

them to existing methods. The POSE.R algorithm was simulated for 500 Monte Carlo runs in a

500m× 500m Matlab environment with a single target traveling through the region. During each

Monte Carlo run, the location of each sensor node is regenerated according to a uniform distri-

bution. Each multi-modal sensor node is assumed to possess Passive Infrared (PIR) sensors as

the LPS device and a laser range finder as the HPS device. The simulation energy costs, sens-

ing ranges, process noises (συ,x, συ,y, συ,ψ), measurement noises (σR, σφ), and sensor selection

parameters are presented in Table 5.1.

Table 5.1: Simulation Parameters

eclock = 0.01W Rr = 15m α = 0.95
eLPS = 115mW RLPS = 30m β = 0.0036
eHPS = 0.2W

m
Rc = 120m Nsel = 3

eTX = 1.26W R1 = 30m N ′

sel = 5
eRX = 0.63W RL = 60m σφ = 0.25◦

eDPU = 1W ∆R = 6m σR = 0.075m
E0 = 137592J µcl = 0.025 συ,x = συ,y = 0.1m
∆T = 0.5s pfa = 0.01 συ,ψ = 0.1◦

γHPS = 0.95 W = 0.1
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Figure 5.7: POSE.R Network Characteristics

5.6.1 POSE.R Characteristics

This subsection presents the POSE.R algorithm characteristics to validate the control requirements

of this thesis. Additionally, the POSE.R characteristics are presented to determine the design

parameters ρ, psleep, and N ′
sel.

5.6.2 Missed Detection and Energy Characteristics

First, the POSE.R algorithm’s missed detection and energy consumption characteristics are pre-

sented in Fig. 5.7. To understand the effects of the network density, ρ, and sleeping probability,

psleep parameters, the POSE.R algorithm was simulated with a combination of the following pa-

rameters: ρ = [0.6e−3, 1.4e−3](nodes
m2 ) and psleep = [0, 0.25, 0.5, 0.75]. Figure 5.7a presents the

probability of missed detection, Pm, vs network density for various psleep values. This result shows

that for a low density network, the POSE.R algorithm is able to obtain a Pm < 0.02 while for

medium to high density networks, the algorithm is able to achieve a Pm < 0.002. This indicates
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that the POSE.R algorithm is able to achieve low missed detection rates by selecting at least 1 node

to be in the HPS state around the target’s predicted position, thus enabling opportunistic sensing.

The energy characteristics of the POSE.R algorithm are presented in Figures 5.7b and 5.7c. In

Fig. 5.7b, the average energy consumption per sensor node located within a distance of RL of the

target’s location is presented for various network densities and psleep values. This result shows that

as the network density increases, the average energy consumption per sensor node decreases. This

is because for low density networks, the base coverage degree is insufficient, i.e. DR1
(uτℓ) < Nsel,

and the adaptive sensor selection method triggers a game to adjust the selected nodes HPS range.

This causes the selected nodes to increase their energy consumption to ensure target coverage, thus

adding resilience to the network. Additionally, the nodes not selected that are located a distance

> R1 away from the target are more likely to be in the LPS state to maintain awareness. For high

density networks, the selected nodes can cover the target with a sensing range Rsi
HPS(k) = R1

which reduces each nodes energy consumption. The nodes not selected transition between the

Sleep and LPS state based on the LPS detection model which further reduces the average energy

consumption.

Additionally, Fig. 5.7c presents the average energy consumption per sensor node located a

distance > RL away from the target’s location. This shows that the average energy consumption

slightly increases with density but is mainly affected by the parameter psleep. This is because the

nodes located away from the target are cycling between the low power consuming states (Sleep

and LPS) where the psleep parameter controls the frequency of each node being in the Sleep state.

Additionally, this shows that the nodes away from the target are very energy efficient and are only

utilizing their energy reserves when a target is located within a distance RL of the nodes, thus

opportunistically sensing.

Finally, Fig. 5.7d presents the network lifetime defined in Definition 4.5.1. The network lifetime

is computed over a tube with radius RLPS because once the nodes within the tube die, a new target

will never be detected and initialized by nodes transitioning between the Sleep and LPS states.

Therefore, the POSE.R algorithm was simulated in a 2RL × 600m tube with targets traveling

through the center of the tube in a straight line. The number of targets, λ, located within the
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Table 5.2: Energy Geometric Dilution Of Precision (EGDOP) Measures

Energy Distribution among sensor nodes

[0.5E0, E0] [0.6E0, E0] [0.7E0, E0] [0.8E0, E0] [0.9E0, E0] [E0, E0]
Ē%,increase (%) 7.301 5.692 3.920 2.482 1.177 0.004

Ēeff (EGDOP ) 0.962 0.968 0.977 0.985 0.992 1.00

Ēeff (GDOP ) 0.933 0.946 0.962 0.976 0.988 1.00

DKL(GDOP ||EGDOP ) 0.0315 0.0317 0.0309 0.0307 0.0309 0.0424

DKL(GDOP ||MaxEnergy) 0.3190 0.3278 0.3205 0.3154 0.3138 0.4093

tube during every time step is varied between λ = [0, 3] and the network lifetime is presented in

Fig. 5.7d for various values of psleep. As seen, psleep drastically changes the network lifetime when

λ < 1 targets are within the tube at the same time. This is because the nodes are mainly cycling

between Sleep and LPS states and consuming energy similar to Fig. 5.7c. However, as λ increases,

the number of nodes within RL of the targets becomes all of the nodes in the tube, resulting in the

nodes consuming energy similar to Fig. 5.7b. Therefore, utilizing the missed detection, energy,

and network lifetime characteristics, the network designer can choose the appropriate values of the

parameters ρ and psleep to meet their requirements.

5.6.3 Adaptive Sensor Selection Characteristics

Next, the Adaptive Sensor Selection characteristics are presented to show the benefits of EGDOP

and potential games. First, the average number of sensor nodes in the HPS state are presented in

Fig. 5.7e. This result shows that Nsel = 3 nodes are selected to track the target during each time

step which allows for a coverage degreeD(uτℓ) = Nsel. As seen in Fig. 5.7e, for network densities

ρ ≥ 0.8e−3, the number of HPS nodes is slightly larger than Nsel. This is due to the false alarm

probability pfa causing sensors away from the target to transition to the HPS state. This effect is

minimized for higher psleep values since the sensors away from the target are more likely to be in

the Sleep state. For low network densities ρ < 0.8e−3, the number of HPS state sensors is slightly

below Nsel. This is because sensor nodes along the targets path may get stuck in the Sleep state

for values of psleep > 0. Therefore, for low density networks, the number of candidates for sensor

selection may be < Nsel. Based on the missed detection, energy consumption, and number of HPS

state nodes characteristics, the parameters ρ = 1.4e−3 and psleep = 0.5 were chosen to ensure low

missed detection rates and energy consumption.
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Next, the properties of the EGDOP selection method are studied in Table 5.2 by comparing

EGDOP selection with GDOP selection and Max Energy selection. The GDOP selection method

[29] selectsNsel sensors from the set Sdet that are geometrically diverse and minimize the predicted

state covariance error. The Max Energy selection method selects Nsel sensors from the set Sdet

that have the maximum energy remaining. To validate that EGDOP selection selects nodes that

are geometrically diverse and energy efficient, each selection method is simulated with a varying

initial energy distribution. Here, each sensor is initialized with a random initial energy according

to a uniform distribution. This simulates the effects of a network being deployed for a long period

of time where targets have passed through the network and each node possess a different remaining

energy. The columns of Table 5.2 represent the lower and upper bounds of the uniform distribution

used to initialize each nodes energy, while the rows of correspond to the following:

• Average Percent Energy Increase:

Ē%,increase =
∑

si∈S ∗

Êsi
R (k)−

∑

si∈S ∗

GDOP

Êsi
R (k), (5.33)

where Êsi
R (k) = E0−Esi(k)−ωR1∆T

E0
and S ∗

GDOP consists of Nsel nodes selected using GDOP

selection.

• Average EGDOP Energy Efficiency:

Ēeff(EGDOP ) =

∑
si∈S ∗ Ê

si
R (k)∑

si∈S ∗

MaxEnergy
Êsi
R (k)

, (5.34)

where S ∗
MaxEnergy consists of Nsel nodes selected using Max Energy selection.

• Average GDOP Energy Efficiency:

Ēeff(GDOP ) =

∑
si∈S ∗

GDOP
Êsi
R (k)

∑
si∈S ∗

MaxEnergy
Êsi
R (k)

, (5.35)

• Amount of information lost when the predicted state distribution N (†) achieved using †

sensor selection is used to approximate the predicted state distribution N (†′) achieved using
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†′ sensor selection (Kullback-Leibler Divergence):

DKL(N (†)||N (†′)) =
∫ ∞

−∞

∫ ∞

−∞

N (†)log(N (†)
N (†′))dydx (5.36)

where N (†) = N (Hx̂si(k + 1|k), Σ̂(†)), N (†′) = N (Hx̂si(k + 1|k), Σ̂(†′)), and

Σ(†) = (
∑

sh∈†

1

σ2
θr

2
sh



 sin2(φsh) −sin(φsh)cos(φsh)

−sin(φsh)cos(φsh) cos2(φsh)



)−1 (5.37)

is the state covariance error achieved with the set of sensors, †, and no prior information; σθ

is the measurement angle standard deviation; rsh is the range between node sh and the target;

and φsh is the angle between node sh and the target.

As seen in Table 5.2, the average percent energy increase of EGDOP vs GDOP in always

positive and increases as the variation of initial energy increases. This shows that by incorporating

energy into the cost function, the EGDOP selection method selects nodes with a higher energy

remaining than GDOP selection. Then, comparing the energy efficiency of EGDOP vs. Max

Energy and GDOP vs. Max Energy, EGDOP is able to achieve a higher energy efficiency than

GDOP. This further justifies the benefits of adding energy remaining into the cost function.

The Kullback-Leibler (KL) divergence is presented to justify that the sensors selected using

EGDOP are geometrically diverse. The geometric diversity is measured based on the predicted

state covariance error. When the covariance error is minimized, the sensors selected are geomet-

rically diverse. This is because sensors that are geometrically diverse create a circular covariance

error while sensor that are co-located create an elliptical error with more uncertainty. Since the

GDOP selection method minimizes the covariance error, the EGDOP selection method should

provide a better approximation of the covariance error than the Max Energy selection method.

Therefore, the results presented in rows 4 and 5 of Table 5.2 show that the KL divergence from

EGDOP to GDOP is much smaller than the divergence from Max Energy to GDOP. This indicates

that EGDOP is a better approximation of the predicted state covariance error than Max Energy.

Additionally, the values in row 4 of Table 5.2 are very small which indicates that the predicted co-
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Table 5.3: Game Results

N ′

sel

3 4 5 6 7∑V

j,h

∑V

j,h vj,h (%) 99.81 99.95 99.96 99.97 99.98

N̄(a∗ ≥ R1) 2.999 3.005 3.015 3.036 3.056

φ̄increase (%) 48.9 51.7 52.7 51.7 55.4
φGame

φOpt
0.999 0.980 0.976 0.974 0.973

tGame(s) 0.050 0.065 0.079 0.098 0.129

tOpt(s) 0.088 0.808 8.137 56.300 517.957

variance error achieve using EGDOP selection is a very good approximation for the predicted co-

variance error of GDOP selection. Therefore, the results presented in Table 5.2 show that EGDOP

selection selects nodes that are geometrically diverse and energy efficient.

Finally, the potential game characteristics are presented in Table 5.3. Here, the number of

players, N ′
sel, were varied between N ′

sel = [3, 7] and the following measures are presented.

• Average coverage worth achieved by the equilibrium:
∑V

j,h

∑V
j,h vj,h,

• Average Number of sensors whose action is greater than or equal to R1: N̄(a∗ ≥ R1),

• Average potential function gain: φ̄increase = φ(a∗)−φ(a0), where a0 is the initial joint action,

• Potential function efficiency: φGame

φOpt
= φ(a∗)

φ(a∗opt)
, where a∗opt is the globally optimal joint action

achieved through exhaustive search,

• Potential Game Computation Time: tGame,

• Exhaustive Search Computation Time: tOpt.

The first two rows of Table 5.3 are presented to validate Theorem 5.5.1 and Theorem 5.5.2.

Here, the average sum of the worth achieved by the game exceeds the lower bound of Theo-

rem 5.5.1 and the average coverage degree achieved is equal to Nsel, thus validating the properties

presented in Theorem 5.5.1 and Theorem 5.5.2. Additionally, row 3 in Table 5.3 shows that the

potential function always increases from the initial joint action, thus satisfying the property of a

potential game. Furthermore, the game efficiency as compared to the optimal solution, shown in

row 4 of Table 5.3, is very close to 1. This indicates that the Maxlogit learning algorithm is very

efficient in searching for the Nash equilibrium. Finally, the computation time between the game
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and the exhaustive search are presented in rows 5 and 6 of Table 5.3. This shows that the game

significantly decreases the computation time, making the sensor range selection game practical for

real-time implementation. Once N ′
sel > 4 the computation time of the exhaustive search becomes

impractical for real-time implementation which further validates the use of a potential game to

select the nodes optimal sensing ranges.

5.6.4 POSE.R vs. Existing Techniques

Next, the POSE.R algorithm is compared to existing scheduling methods. Specifically, POSE.R

is compared against three fixed range distributed scheduling methods. Since the varying range

methods presented in the related work section do not consider target tracking, POSE.R is not

compared against them. The methods compared against are as follows: (1) Autonomous Node

Selection (ANS), (2) LPS-HPS Scheduling, and (3) Random Scheduling. The ANS algorithm [29]

is a distributed sensor selection method that utilizes GDOP to identify the best sensors to track

the target. Here, the sensors collaborate in a distributed manner to make scheduling decisions.

However, the ANS algorithm is presented for passive sensors and does not consider multi-modal

sensor nodes. Therefore, to ensure an apple to apple comparison, the ANS algorithm is adapted

to include multi-modal operating conditions. The ANS algorithm has the sensors selected actively

sensing and tracking the target, while the sensors not selected are in a low power state with their

receiver on. Therefore, the nodes are adapted to switch between the LPS (passive) and HPS (active)

states to mimic the behavior of the ANS algorithm. Thus, if a sensor selects itself to track the target,

it will transition to the HPS state, while staying in the LPS state to keep the receiver enabled and

initialize tracking when not selected.

The LPS-HPS Scheduling method is a distributed trigger-based activation method that utilizes

two operating states, passive (LPS) and active (HPS). The nodes remain in the passive state until

a target is detected. Once a target is detected, the node remains in the active state until the target

passes out of the node’s field of view. The Random Scheduling method is a distributed probabilistic

method where the sensors randomly switch between sleeping and actively sensing (HPS). Here,

during each time step, a node sleeps with a probability prand and senses with a probability 1 −
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Figure 5.8: Missed Detection Rates Comparison

prand. Thus, for prand = 1 the network is always sleeping while for prand = 0, the network is

always sensing. Note that the LPS-HPS and Random Scheduling methods do not facilitate sensor

collaboration.

Missed Detection and Root Mean Squared Error Performance: First, the missed detection

characteristics of POSE.R are compared to the other distributed scheduling methods shown in

Fig. 5.8. Here, each of the other scheduling methods were simulated with a fixed sensing range

betweenRsi
HPS(k) = [R1, RL] and are shown in Fig. 5.8. As seen in Fig. 5.8, the POSE.R algorithm

achieves a significantly lower missed detection probability than the other methods for low HPS

sensing ranges. As the network density and the HPS sensing range increases, the Pm for the other

distributed methods approaches the POSE.R algorithm. Therefore, in order for the other methods

to achieve similar characteristics as POSE.R, the network must contain a high density of sensor

nodes that are utilizing a large HPS sensing range.

Next, the tracking performance of the POSE.R algorithm and other distributed methods is pre-

sented in Figures 5.9 and 5.10. As seen, the POSE.R and ANS algorithms achieve significantly

lower position and velocity Root Mean Squared Errors (RMSE) as compared to the other methods.

This is due to distributed sensor collaboration that allows the nodes to perform fusion to reduce

the covariance error. Also, the sensor selection cost function in POSE.R and ANS aims to select

the set of sensors that minimizes the measurement covariance error. Therefore, the performance of
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Figure 5.9: POSE.R algorithm Position Root Mean Squared Error
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Figure 5.10: POSE.R algorithm Velocity Root Mean Squared Error

the POSE.R and ANS algorithms achieve similar results. Additionally, it can be seen that as the

HPS sensing range increases, the RMSE of the LPS-HPS and Random methods slightly increases.
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(a) Average energy consumed per sensor

node located within RL of the target’s lo-

cation.

(b) Network Lifetime with λ = 0 targets

in Ωγ

(c) Network Lifetime with λ = 1 targets

located in Ωγ

(d) Average energy consumed per sensor

node in the entire network.

(e) Network Lifetime with λ = 2 targets

located in Ωγ

(f) Network Lifetime with λ = 3 targets

located in Ωγ

Figure 5.11: POSE.R algorithm energy characteristics compared to existing techniques.

This is because nodes further away from the target are able to receive measurements. As the HPS

range increases, the measurement noise increases, causing the nodes further away from the target

to have an increased error.

Energy Consumption Performance: The above results indicate that through efficient design,

the other distributed networks can achieve the same missed detection characteristics as POSE.R.

However, if the energy consumption characteristics are compared, the opposite result is achieved.

Specifically, the average energy consumption per sensor node located within a distance of RL

of the target’s location is presented in Fig. 5.11a. This result shows that for low densities and

low HPS ranges, the POSE.R network consumes more energy compared to the other distributed

methods. This is because for low densities, DR1
(uτℓ) < Nsel, which requires the selected nodes

to expand their sensing ranges; while the other distributed methods utilize a smaller sensing range

which consumes less energy. However, as the network density increases for lower HPS ranges,

the POSE.R algorithm energy consumption approaches the ANS algorithms energy consumption.
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This is because within RL of the network, Nsel sensors are selected to be in the HPS state and the

remaining are likely to be within the LPS state. This is the same characteristics of the ANS network

which is seen in Fig. 5.11a. Then, as the HPS range increases, the energy consumption of the other

network increases above the POSE.R energy consumption. This is because the POSE.R algorithm

can select a smaller sensing range to cover the target. This shows the true benefits of the adaptive

sensor selection algorithm. Therefore, if the network is designed based on energy consumption,

the POSE.R will achieve a lower Pm than the other networks. However, if the network is designed

based on Pm characteristics, the POSE.R algorithm will consume less energy per sensor node

which increases the network lifetime.

Additionally, the multi-modal sensor node design benefits are presented in Fig. 5.11d in terms

of the average energy consumption per sensor node located a distance greater thanRL of the targets

location. This result shows that by incorporating a Sleep state within the distributed supervisor, the

POSE.R algorithm is able to consume less energy than all of the other networks. This result also

shows that the POSE.R, LPS-HPS, and ANS algorithms are opportunistic sensing methods. When

comparing Fig. 5.11a with Fig. 5.11d, these methods shows that the nodes located away from an

event consume significantly less energy than the nodes located around the event. This indicates

that these scheduling methods opportunistically utilize their energy resources.

Next, the network lifetime of the POSE.R network is compared against the other distributed

scheduling methods in Figures 5.11b, 5.11c, 5.11e, 5.11f. Here, each network was simulated with

a network density ρ = 1.4e−3 in a 2RL × 600m tube with λ targets traveling through the center of

the tube in a straight line. As a target leaves the tube, a new target is generated at the beginning

of the tube to ensure that λ targets are located within the tube during each time step. First, the

network lifetime with λ = 0 targets within the network is presented in Fig. 5.11b. Here, the

POSE.R algorithm has a significantly longer network lifetime as compared to the other methods.

This is because all of the nodes in the network are consuming energy at the rate presented in

Fig. 5.11d. This result shows that by incorporating multi-modal sensor nodes into the DSN, the

network lifetime is significantly increased. Next, the network lifetime with λ ≥ 1 targets located

within the network at each time step is presented in Figures 5.11c, 5.11e, 5.11f. These results
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show that the POSE.R algorithm has an increased network lifetime even when targets are present.

However, as λ increases, the POSE.R algorithm network lifetime does not show significantly large

lifetime benefits. This is because the tube Ωγ becomes completely occupied with target’s and all

of the nodes begin to consume energy at the rate presented in Fig. 5.11a. For low densities and low

HPS ranges, the POSE.R algorithm does not have an increased lifetime as compared to ANS. This

because the adaptive sensor selection algorithm increases the HPS range of the selected sensors

to ensure target coverage, while ANS may not be able to ensure target coverage with a low HPS

range.

When comparing the results presented in Figures 5.8, 5.9, 5.10, and 5.11, it can be seen that

the POSE.R algorithm outperforms the other distributed scheduling methods. Although the Pm

achieved becomes the same for high densities and high HPS ranges, the energy characteristics,

RMS errors, and network lifetimes achieved are significantly lower for POSE.R.

Network Resilience to Coverage Gaps: Finally, the resilience of the POSE.R network was

analyzed by evaluating the algorithm’s performance in the presence of a coverage gap, as shows in

Figures 5.12 and 5.13. Here, each network was simulated with a network density of ρ = 1.4e−3

and a single target travels through the ROI. However, the nodes located within a distance ofRgap =

[30, 50] of the target’s location at time k = 50s, uτℓ(50), is initialized with an initial energy value

E0 = 0. This simulates a group of sensor nodes dying and a coverage gap of size >= Rgap. As

seen in Fig. 5.12, the probability of detection, Pdet, is presented verses time for various Rgap and

Rsi
HPS(k) values. This result indicates that for low HPS ranges, the other methods lose the target

when it travels through the coverage gap. However, the POSE.R algorithm is able to cover the

target by performing adaptive sensor selection and optimal range selection. Additionally, similar

to Fig. 5.8, as the HPS range increases, the Pdet achieved with the ANS and Random scheduling

methods are the same as the POSE.R algorithm.

Then, the average energy consumption per sensor node located within RL of the target vs. time

is presented in Fig. 5.13. This result shows that as the target travels through the coverage gap,

the POSE.R algorithm’s average energy consumption increases since the nodes within RL of the

target must expand their sensing range to achieve target coverage. Additionally, as the HPS range
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Figure 5.12: Probability of detection vs. time as a target travels through a coverage gap located at t = 50s.
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Figure 5.13: Average energy consumed per sensor node within RL of the the target. The target travels through a

coverage gap located at t = 50s.

increases, the POSE.R algorithm energy savings increases which further shows the benefits of the

multi-modal control algorithm. Additionally, when achieving the same Pdet as the other networks,
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the POSE.R algorithms average energy consumption is less than the other networks. Therefore,

Figures 5.12 and 5.13 show that the POSE.R algorithm is resilient to coverage gaps by performing

optimal range selection, as well as energy efficient as compared to existing distributed methods.

5.7 Conclusion

This chapter developed the POSE.R algorithm for controlling a distributed sensor network for re-

silient energy-efficient target tracking. The network control approach consists of detecting, track-

ing, and collaborating target state information in a distributed manner. Then, the target information

is predicted and utilizes the select the best sensors to opportunistically cluster around a target to

enhance target tracking. Additionally, the optimal sensing range is selected for the best sensors to

ensure target coverage, incorporate resilience in the event of a covarage gap, and minimize energy

consumption. The multi-modal states of each sensor node are probabilistically controlled using

distributed PFSA-based supervisors. The POSE.R network characteristics were compared with

existing distributed scheduling methods and the results show that the POSE.R algorithm extends

the networks lifetime, incorporates network resiliency, achieves high tracking accuracy, and low

missed detection rates.
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CHAPTER 6

CONCLUSIONS

This thesis presents a DSN control algorithm to solve the Target Coverage problem. The objective

of this thesis is to maximize the network lifetime while ensuring that every target is covered by at

least 1 active sensor node. To maximize the network lifetime, the sensor nodes must perform their

desired task, e.g. target tracking, for long periods of time. However, each node only possess a finite

energy resource, which once depleted, causes the node to die and decreases the network lifetime.

To ensure that all of the targets are covered by at least 1 sensor node, the sensor nodes must adapt

to the network density around the target’s predicted position to provide resilient target coverage.

Therefore, this thesis develops an energy-efficient node-level control strategy that extends the net-

work lifetime, while providing resilient target coverage in the presence of sensor failures. The first

two themes of this thesis tackle the energy-efficiency objective, while the third theme addresses

resilient target coverage for a stationary DSN.

6.1 Prediction-based Opportunistic Sensing (POSE) algorithm

The first theme of this thesis address the problem of energy-efficiency in DSN by developing

the Prediction-based Opportunistic Sensing (POSE) algorithm. This algorithm manages the power

consumption of each sensor node in a distributed fashion to enable energy-efficient target coverage.

This is achieved by embedding a distributed supervisor, i.e. a Probabilistic Finite State Automaton
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(PFSA) on each node, which enables and disables the devices on the node in an opportunistic

manner to conserve energy.

The states of the PFSA consist of three operating conditions that determine the devices enabled

on each sensor node and are: 1) Sleep, 2) Low Power Sensing (LPS), and 3) High Power Sensing

(HPS). The Sleep state consumes minimal energy by disabling all devices. The LPS state allows

the node to detect the target using LPS devices or from information transmitted by its neighbors.

The HPS state allows the node to track the target and broadcast target information to its neighbor

to alert them of the target locations. The state transition probabilities of the PFSA are dynamically

updated based on the target locations. The goal of the PFSA design is to only enable the HPS state

when a target is predicted to be located in the nodes coverage area, thus opportunistically sensing.

Additionally, when a target is located away from the node, the node should transition between the

Sleep and LPS states to minimize energy consumption.

In order for the node to transition to the HPS state, it must predict with high confidence that a

target is located within its coverage area. This can only be achieved in the HPS and LPS states.

Thus, only activating HPS sensors around the target locations significantly increases the energy-

efficiency of the network. Additionally, allowing for a low power target detection state, i.e. LPS,

the network can periodically check to identify if a target is present while conserving energy. Fur-

thermore, by incorporating a Sleep state, the sensor node can further reduce energy consumption

by turning everything off. This results in an extended network lifetime and is the first objective of

the target coverage problem

Therefore, the first theme of this thesis provides the following novel contributions:

• The development of distributed supervisors (i.e. PFSA) for probabilistic control of the devices

enabled on each multi-modal sensor node, and

• A prediction-based scheduling approach that updates the probabilities of the distributed su-

pervisor to enable opportunistic sensing for energy-efficient control.

The POSE algorithm was simulated and compared against two distributed scheduling approaches.

First, the missed detection characteristics were presented and showed that the POSE algorithm al-
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most achieves the same probability of missed detection as an always monitoring network. This

result shows that even though the POSE algorithm incorporates three operating conditions, the de-

sign of the PFSA and the algorithms embedded within each state still allow each node to be aware

of the target as it travels through the network. This is achieved by incorporating prediction-based

opportunistic sensing into the network. The sensor nodes are able to identify the target locations

and ensure that they transition to the HPS state along the target’s path to minimize missed detec-

tions.

Next, the POSE algorithm energy savings compared to the two distributed scheduling ap-

proaches was presented. This result showed that the POSE algorithm achieves ≥ 90% energy

savings compared to a network that is always monitoring. Additionally, the POSE algorithm

achieves ≥ 80% energy savings compared to Random Scheduling networks and ≥ 30% against

Trigger-based activation networks. This shows that designing an intelligent multi-modal sensor

node control strategy, the energy-efficiency can be significantly increased which leads to an ex-

tended network lifetime.

Finally, the tracking performance of the POSE algorithm was presented in terms of the position

and velocity Root Mean Squared Error (RMSE). The POSE algorithm achieves a much smaller

RMSE then the always monitoring network, random scheduling network, and trigger-based acti-

vation network. This is because the POSE network incorporates distributed fusion into the DSN,

which minimizes estimate error. Therefore, the POSE algorithm achieves low missed detection

rates, significant energy savings, and accurate tracking accuracy.

Although this theme extends the network lifetime, the POSE algorithms design enables redun-

dant nodes in a high power consuming state around the target’s location. Additionally, in practical

applications, not all of the targets within the deployment region are of interest to the mission oper-

ator. Therefore, if the network is enabling redundant sensor nodes around every target that travels

through the deployment region, significant energy is being wasted. Therefore, the second theme of

this thesis extends the POSE algorithm to address the above challenges.

117



6.2 POSE using Distributed Classification, Clustering, and Control (POSE.3C)

To address the above issues, the Prediction-based Opportunistic Sensing using Distributed Clas-

sification, Clustering and Control (POSE.3C) algorithm was developed as the second theme of

this thesis to further improve the energy-efficiency of the DSN. The POSE.3C algorithm continues

using the distributed supervisor (i.e. PFSA) developed in the POSE algorithm, except the state

transition probabilities are updated based on the target’s class as well as the target’s predicted lo-

cation. This new algorithm is composed of two additional steps in the control scheme, 1) Target

classification and 2) Sensor selection.

The sensor nodes that are tracking the target perform target classification to identify if the target

is a Target Of Interest (TOI) or a Target Not Of Interest (TNOI). For example, in a boarder surveil-

lance application, the TOIs could be humans and vehicles, while the TNOIs could be animals.

Then, the sensor nodes that use received information to update the PFSA will perform distributed

fusion to identify the type of target present. Next, a distributed clustering approach is employed

for sensor selection to select Nsel > 1 sensor nodes to track TOI to improve estimation, while only

selecting Nsel = 1 sensor nodes to track TNOI to maintain awareness. In this regard, the DSN

opportunistically senses TOI and conserves energy around TNOI.

Therefore, the novel contributions of the second theme are as follows:

• Development of a distributed algorithm that facilitates 3C network autonomy with the fol-

lowing attributes:

(i) distributed classification and utilization of the target class information to govern the cluster

size for tracking,

(ii) distributed clustering via a) fusing the target state estimates and predicting the next state,

and b) sensor node selection around the target’s predicted state, and

(iii) distributed supervisory control to enable/disable multi-modal sensing devices for energy-

efficiency.

• Theoretical analysis of the network’s performance characteristics: (i) Expected energy con-

sumption, (ii) Expected network lifetime, (iii) Probability of missed detection for a target
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birth and for a mature target.

The first major result of the POSE.3C algorithm is the Theoretical properties of the network.

This theme developed 3 theorems that allow the network designer to predict the average energy

consumption, network lifetime, and missed detection characteristics based on the multi-modal

sensor node design, network density, and PFSA design parameters. The theoretical properties

were validated thoroughly via simulations.

Additionally, the POSE.3C algorithm was validated by comparing the network lifetime and

tracking errors against the Autonomous Node Selection (ANS) algorithm [29], a Random Schedul-

ing network, Trigger-based activation network. The network lifetime result showed that the POSE.3C

network is able to achieve the longest network lifetime if only TNOI are traveling through the net-

work. This result shows that by incorporating classification feedback into the control loop, the

network lifetime can be drastically increased when TNOI are traveling through the network. Ad-

ditionally, the POSE.3C network was able to achieve a longer network lifetime as compared to

the other method even when only TOI were traveling through the network. This result shows that

using multiple operating conditions and distributed clustering, the number of active sensors around

the target can be minimized, allowing the sensor nodes to intelligently perform their tasks while

conserving energy when not needed.

Furthermore, the tracking accuracy results show that the POSE.3C network is able to achieve

similar performance as the ANS algorithm. The ANS algorithm selects sensors that minimize the

measurement covariance error, while the POSE.3C algorithm minimizes error while incorporating

uniform energy depletion. Therefore, at the cost of uniform energy depletion, the POSE.3C al-

gorithm has a slightly larger RMSE, however, the network lifetime is significantly longer for the

POSE.3C network.

The POSE and POSE.3C network allow for an extended network lifetime through energy-

efficient control. However, if multiple co-located sensor nodes fail, a coverage gap forms and

the network is not designed to ensure target coverage within the gap. Therefore, the POSE.3C

algorithm was extended to incorporate an approach that learns and reacts to the density of the

network around the target’s predicted position in order to ensure resilient target coverage.
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6.3 POSE for Resilience (POSE.R)

The third theme of this thesis further extends the POSE and POSE.3C algorithm by incorporating

resilient target coverage into the DSN by developing the Prediction-based Opportunistic Sensing

for Resilience (POSE.R) algorithm. Here, the multi-modal sensor nodes are assumed to contain a

high power sensing device that can vary it’s sensing range at the cost of consuming more energy.

The POSE.R algorithm incorporates an adaptive sensor selection approach that selects the optimal

sensor nodes and their sensing ranges to track the target and ensure target coverage in the presence

of failures and non-uniform node locations. The sensor selection approach adapts to the density of

active sensor nodes around the target’s predicted location. For high density regions with ≥ Nsel

nodes, an Energy-based Geometric Dilution of Precision (EGDOP) sensor selection method is

employed to select and activate geometrically diverse nodes with high remaining energy to cover

the target with their minimum sensing range.

When a target is predicted to travel through a low density region, the sensor nodes may need to

expand their sensing range to accommodate for a coverage gap or an insufficient number of nodes.

To identify the best sensing ranges to cover the target while minimizing energy consumption, a

Game Theoretic sensor range selection method is employed using Potential Games. The objective

function of the game selects Nsel nodes and their sensing ranges to cover the target’s prediction

location while minimizing energy wastage by reducing redundant coverage. In this regard, the

DSN becomes resilient to coverage gaps by opportunistically covering the gaps when a target is

predicted to travel through it, while operating in an energy-efficient manner when the target travels

through high density regions.

Therefore, the novel contributions of the POSE.R algorithm is the development of a distributed

algorithm that facilitates resilient target coverage and tracking with the following attributes:

• distributed coverage gap identification method that does not rely on active or passive moni-

toring methods,

• distributed node selection approach that adapts to the network density around a target’s pre-

dicted location via a) EGDOP selection criteria for high density regions, and b) a Game
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Theoretic node and range selection method using potential games for low density regions.

• distributed supervisory control strategy to enable/disable multi-modal sensing devices for

energy-efficiency.

The POSE.R algorithm was simulated and compared against the ANS algorithm, Random

Scheduling, and a Trigger-based Activation network. The methods available in literature do not

consider adjustable sensing ranges. Therefore, the other methods were simulated for each of the

adjustable ranges of the POSE.R algorithm to show the benefits of allowing for range adaptation.

The first result compared the probability of missed detection against the other method. This

showed that for low network densities, the other networks required a very large sensor range in

order to achieve similar missed detection characteristics as the POSE.R network. Additionally for

low sensing ranges, the other networks would require a very large network density to achieve the

same missed detections as the POSE.R network. Therefore, to achieve the same performance as

the POSE.R network, a combination of large sensing ranges or high network density must be used

to achieve the same performance.

In addition to achieving low missed detection characteristics, the POSE.R algorithm achieves

high tracking accuracy. In this theme, the sensor selection cost function is very similar to the ANS

cost function which allows the tracking accuracy to be the same as ANS and significantly lower

than the other methods.

Furthermore, the energy consumption characteristics showed that the POSE.R algorithm can

significantly save energy as compared to the other methods. However, if the network density is

low and the sensing range for the other networks is low, the energy consumption of the POSE.R

algorithm around the target is slightly larger. This is because the POSE.R algorithm is adjusting

the sensing ranges at the cost of energy to achieve low missed detection rates and increased target

coverage. However, as the network density and sensing range increase, the POSE.R algorithm

provides significant energy savings by reducing the sensing range if the target travels through a

region of high density sensor nodes.

Finally, the resilience of the POSE.R network was presented by simulating a target traveling

through a coverage gap. The gaps size was varied and the results show that the POSE.R algorithm
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is able to achieve high detection probabilities as compared to the other methods, even when the

target is in the center of the gap. However, when the other methods have a very large sensing

range, the detection performance is the same as the POSE.R network. Although the detection

performance is the same, the energy consumption of the POSE.R network is lower then the other

methods, thus shows that the POSE.R network is energy-efficient.

These results show that incorporating adjustable ranges into the DSN provides resilient target

coverage to coverage gaps and non-uniformly distributed sensor placement. In addition, the net-

work is able to achieve an extended network lifetime, low missed detection rates, and accurate

state estimation.
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APPENDIX A

AUTOMATIC TRACK FORMATION (ATF)

In this work, a track is assumed to be initialized by the ATF method. This approach assumes that

the target present in the deployment region can travel at a maximum velocity Vmax. Therefore, if

two consecutive measurements, zj(k − 1) at time k − 1 and zj(k) time k are not associated to a

previous state estimate, then the following condition is checked. If

|zj(k)− zj(k − 1)| ≤ Vmax∆T, (A.1)

then a new track is formed as follows.

x̂si,c(k|k) =
[
zxj (k),

zxj (k)− zxj (k − 1)

∆T
,

zyj (k),
zyj (k)− zyj (k − 1)

∆T

]′
(A.2)

Σ̂si(k|k) =




σ2
x

σ2x
∆T

0 0

σ2x
∆T

2σ2x
∆T 2 0 0

0 0 σ2
y

σ2y
∆T

0 0
σ2y
∆T

2σ2y
∆T 2




(A.3)

where σx and σy are the Cartesian measurement noises converted from the polar domain.
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APPENDIX B

JOINT DATA ASSOCIATION FILTER (JPDA) FILTER

The JPDA filter is a state estimation method used to track multiple targets in the presence of

clutter. To perform state estimation locally on each sensor, sensor node si first receives a set of

measurements, z(k), and then updates the previous target states as follows.

B.0.1 State Prediction

First, sensor node si computes the expected state vector, measurement, and state covariance matri-

ces during the next time step as follows.

x̂si,c(k|k − 1) = f(x̂si,c(k − 1|k − 1), k − 1)

ẑsi,c(k|k − 1) = h(x̂si,c(k|k − 1), k)

Σ̂si,c(k|k − 1) = F(k − 1)Σ̂si,c(k − 1|k − 1)F(k − 1)′ +Q (B.1)

where x̂si,c(k − 1|k − 1) is the target state, Σ̂si,c(k − 1|k − 1) is the target state covariance,

f(x̂si,c(k − 1|k − 1), k − 1) is the state transition matrix, h(x̂si,c(k|k − 1), k) is the measurement

model, and F(k − 1) is the Jacobian of the state transition matrix.
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B.0.2 Measurement Validation

Next, the set of validated measurements that fall within the validation gate of state estimate c is

computed as follows.

z̄si,c(k) = {zj(k) ∈ z(k) : vsi,c(k)′Ssi,c(k)−1v
si,c
j (k) ≤ η} (B.2)

where v
si,c
j (k) = [zj(k)− ẑsi,c(k|k − 1)] is the innovation, η is the validation gate threshold,

Ssi,c(k) = H(k)Σ̂si,c(k|k − 1)H(k)′ +R(k) (B.3)

is the innovation covariance, H(k) is the Jacobian of the measurement model, and R(k) is the

covariance of the measurement noise.

B.0.3 Joint Association Probabilities

After measurement validation, the joint association probabilities of the event, Aj,c(k), that mea-

surement j at time k originated from target c as follows.

P (A(k)|z(k)) = 1

n1

∏

j

{λ−1Λj,c}ςj
∏

c

{P si,c
D }δc{1− P si,c

D }1−δc (B.4)

where n1 is a normalization constant, λ is spatial density of false measurements, ςj = 1 if zj(k) ∈

z̄si,c(k) and ςj = 0 if not, δc is the target detection indicator, P si,c
D is the probability of detecting

target c, and

Λj,c = N [zj(k); ẑ
si,c(k|k − 1),Ssi,c(k)] . (B.5)

B.0.4 State Estimation

Then, assuming that the target states conditions on the previous measurements are mutually inde-

pendent, the marginal association probabilities, Pjc(k), can be computed.

Pj,c(k) = P (Aj,c(k)|z(k)) (B.6)
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Next, the target state estimates are updated as follows.

x̂si,c(k|k) = x̂si,c(k|k − 1) +Wsi,c(k)νsi,c(k) (B.7)

where

νsi,c(k) =

|z̄si,c(k)|∑

i=1

Pi,c(k)v
si,c
j (k)

Wsi,c(k) = Σ̂si,c(k|k − 1)H(k)′Ssi,c(k)−1 (B.8)

Finally, the target covariance estimates are updated as follows.

Σ̂si,c(k|k) = P0,c(k)Σ̂
si,c(k|k − 1)+

[1− P0,c(k)] Σ̄
si,c(k|k) + Σ̃si,c(k|k) (B.9)

where

P0(k) = 1−
|z̄si,c(k)|∑

i

Pi,c(k) (B.10)

Σ̄si,c(k|k) = Σ̂si,c(k|k − 1)−Wsi,c(k)Ssi,c(k)Wsi,c(k)′ (B.11)

Σ̃si,c(k|k) = Wsi,c(k){
|z̄si,c(k)|∑

i=1

Pi,c(k)v
si,c
j (k)vsi,cj (k)′−

νsi,c(k)νsi,c(k)′}Wsi,c(k)′ (B.12)
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