
University of Connecticut
OpenCommons@UConn

Doctoral Dissertations University of Connecticut Graduate School

1-19-2016

Information Fusion for Pattern Classification in
Complex Interconnected Systems
Nayeff Najjar
nayeff.najjar@uconn.edu

Follow this and additional works at: https://opencommons.uconn.edu/dissertations

Recommended Citation
Najjar, Nayeff, "Information Fusion for Pattern Classification in Complex Interconnected Systems" (2016). Doctoral Dissertations.
1334.
https://opencommons.uconn.edu/dissertations/1334

http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fdissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.uconn.edu/?utm_source=opencommons.uconn.edu%2Fdissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu?utm_source=opencommons.uconn.edu%2Fdissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations?utm_source=opencommons.uconn.edu%2Fdissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/gs?utm_source=opencommons.uconn.edu%2Fdissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations?utm_source=opencommons.uconn.edu%2Fdissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://opencommons.uconn.edu/dissertations/1334?utm_source=opencommons.uconn.edu%2Fdissertations%2F1334&utm_medium=PDF&utm_campaign=PDFCoverPages

Information Fusion for Pattern Classification in
Complex Interconnected Systems

Nayeff Najjar, PhD

University of Connecticut 2017

Typical complex interconnected systems consist of several interconnected components with several

heterogeneous sensors. Classification problems (e.g., fault diagnosis) in these systems are chal-

lenging because sensor data might be of high dimension and/or convey misleading or incomplete

information. So, this thesis performs optimal sensor selection and fusion to lower computational

complexity and improve classification accuracy.

First, the thesis presents the novel Unsupervised Embedded algorithm for optimal sensor selection.

The algorithm uses the minimum Redundancy Maximum Relevance (mRMR) criterion to select

the candidate list of sensors, then usesK-means clustering algorithm and entropy criterion to select

the optimal sensors. The Unsupervised Embedded algorithm is applied to heat exchanger fouling

severity level diagnosis in an aircraft.

Second, the thesis presents a fusion algorithm for classification improvement called the Better-

than-the-Best Fusion (BB-Fuse) algorithm, which is analytically proven to outperform the best

sensor Correct Classification Rate (CCR). Using confusion matrices of individual sensors, the BB-

Fuse selects the optimal sensor-class pairs and organizes them in a tree structure where one class is

isolated at each node. The BB-Fuse algorithm was tested on two human activity recognition data

sets and showed CCR improvement as expected.

Using the confusion matrices is a limitation of the BB-Fuse algorithm because of high computa-

tion complexity and pertinence to specific classifiers. So, the thesis next presents the Decomposed

Sensor-Class Pair Tree with maximum Admissible-Relevance for Fusion (D∗-Fuse) algorithm,

which is a novel sensor-class pair selection and fusion algorithm. Instead of using the confusion

matrices, the D∗-Fuse algorithm uses a novel classifier-independent information-theoretic crite-

rion (i.e., Admissible-Relevance (AR) criterion) to obtain the sensor-class pair. As a result, any

classifiers can be used with the D∗-Fuse Tree.

In comparison to other sensor selection algorithms in literature, the novel AR criterion has two

major advantages. First, the AR criterion ensures selection of non-redundant sensors by selecting

optimal sensor-class pairs. This pair selection ensures that the selected sensors carry signatures

about different classes; i.e., they convey non-redundant classification information. Second, the AR

criterion outputs a general fusion tree that suggests an order in which the sensors should be used.

Information Fusion for Pattern Classification in

Complex Interconnected Systems

Nayeff Najjar

B.S., King Fahd University of Petroleum and Minerals, 2005

M.S., Widener University, 2008

M.S., University of Connecticut, 2016

A Dissertation

Submitted in Partial Fullfilment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Connecticut

2017

Copyright by

Nayeff Najjar

2017

ii

Approval Page

Doctor of Philosophy Dissertation

Information Fusion for Pattern Classification in

Complex Interconnected Systems

Presented by

Nayeff Najjar

Major Advisor

Prof. Shalabh Gupta

Associate Advisor

Prof. Peter Luh

Associate Advisor

Prof. Rajeev Bansal

University of Connecticut

2017

iii

To King Abduallah bin Abdulaziz (R.I.P.)

iv

Acknowledgments
I would like first to express my appreciations to the highness of King Abdullah bin Abdulaziz

(RIP), the previous king of Saudi Arabia. King Abduallah initiates a scholarship program through

which thousands of Saudi students have the opportunity to join top universities worldwide and;

especially the United States of America. I been lucky to gain on of these scholarships using which

I continued my higher education and for that I feel grateful.

Next, I would like to thank my advisor, Dr. Shalabh Gupta. Dr. Gupta’s mentoring through my

PhD work helped me to improve my academic skills. In his lab, he encouraged teamwork and

gave me the opportunity to improve my leadership and communication skills. It was not possible

to develop my PhD theory without his kind directions and advice. Thank you Dr. Gupta.

Besides that, I would like to express my gratitude to my mother, Thuraiyah Najjar, and father,

Abdularahman Najjar, for all encouragements and support. My mother was my first teacher and

her contribution to my personality is invaluable and so was my father.

Through my life, many of family members and friends have been generous with encouragements,

kind wishes and advices. I would like to seize this opportunity to thank all of them; especially, my

father in law, Jameel Itraji and my uncle, Ghazi Najjar.

Last but not least, I would like to thank my wife, Israa Itraji. The years I spent in my PhD work

were hard and time consuming. Her patience and persistent support were vital for me to be

successful in my PhD.

v

TABLE OF CONTENTS

List of Figures x

List of Tables xii

Chapter 1: Introduction 1

1.1 Background and Motivation . 1

1.2 Outline and Contributions . 2

1.3 List of Publications . 4

Chapter 2: Unsupervised Embedded Sensor Selection for Classification Algorithm 6

2.1 Introduction . 6

2.1.1 Application . 7

2.1.2 Approach and Contributions . 9

2.2 Literature Review . 11

2.2.1 Sensor Selection Algorithms . 11

2.2.2 Fault Diagnosis Algorithms . 11

2.3 System Description . 12

2.3.1 Primary and Secondary Heat Exchangers 13

2.3.2 Data Generation Process . 15

vi

2.3.3 Heat Exchanger Fouling Diagnosis Architecture 19

2.4 Optimal Sensor Selection Methodology . 19

2.4.1 Information-theoretic Measures . 21

2.4.2 Data Partitioning for Symbol Sequence Generation 22

2.4.3 minimum Redundancy Maximum Relevance (mRMR) 24

2.4.4 Embedded Algorithm . 27

2.4.5 Unsupervised Embedded Algorithm . 27

2.5 Data Analysis for Fouling Diagnosis . 28

2.5.1 Feature Extraction . 29

2.5.2 Classification . 30

2.5.3 Sensor Fusion . 31

2.6 Results and Discussion . 31

2.7 Conclusions . 36

Chapter 3: BB-Fuse: Optimal Sensor-Class Pair Selection and Fusion

Algorithm for Classification 39

3.1 Introduction . 39

3.2 Literature Review . 41

3.2.1 Voting Methods . 41

3.2.2 Bayesian Fusion Methods . 42

3.2.3 Boosting Methods . 43

3.2.4 Decision Tree Methods . 43

3.3 Mathematical Preliminaries . 44

3.4 BB-Fuse Algorithm . 46

3.4.1 Objective . 46

3.4.2 BB-Fuse Training Phase . 47

3.4.3 BB-Fuse Testing Phase . 52

3.5 BB-Fuse Performance . 52

vii

3.5.1 BB-Fuse Optimality . 52

3.5.2 BB-Fuse Complexity . 60

3.6 Results and Discussion . 61

3.6.1 Application I: Human Activity Recognition 61

3.6.2 Application II: User Identification . 65

3.7 Conclusions . 67

Chapter 4: D∗-Fuse: Optimal Sensor-Class Pair Selection and Fusion

Algorithm for Classification 70

4.1 Introduction . 70

4.1.1 Basics of Information Theory . 72

4.2 Literature Review . 74

4.2.1 MD Criterion . 74

4.2.2 MR Criterion . 76

4.3 D∗-Fuse Algorithm . 78

4.3.1 Objectives . 78

4.3.2 D∗-Fuse Training Phase . 79

4.3.3 D∗-Fuse Testing Phase . 84

4.4 Results and Discussion . 84

4.4.1 Application I: Simulated Data . 84

4.4.2 Application II: Gesture Phase Segmentation 88

4.4.3 Application III: Human Activity Recognition Dataset 92

4.5 Conclusions . 96

Chapter 5: Conclusions 98

5.1 Unsupervised Embedded Algorithm . 98

5.2 BB-Fuse Algorithm . 100

5.3 D∗-Fuse Algorithm . 102

viii

Appendix A: Matters Relevant to Information Theory 104

A.1 Maximum Entropy Distribution . 104

A.2 Calculation of Mutual Information . 105

A.3 Fano’s Inequality . 106

Appendix B: Machine Learning Algorithms 108

B.1 Principal Component Analysis (PCA) . 109

B.2 Linear Discriminant Analysis . 109

B.3 k-Nearest Neighbor Classification Algorithm . 110

Appendix C: Fusion Algorithms 112

C.1 CaRT and C4.5 . 112

C.2 Bayes Belief Integration . 114

C.3 Majority Voting . 115

C.4 Adaptive Boosting . 116

C.5 Borda Count Voting . 117

C.6 Condorcet Count Voting . 118

Bibliography 119

ix

LIST OF FIGURES

1.1 Research Themes Summary and Connections . 4

2.1 Environmental Control System (ECS) Schematics 8

2.2 An Illustration of the Plate Fin Heat Exchanger 9

2.3 Heat Exchanger Fouling Diagnosis Algorithm where d = 1, 2 . . . 5 10

2.4 Normalized Flow vs Secondary Heat Exchanger Impedance 14

2.5 Stochastic time series data of three critical sensors for five different day types . . . 17

2.6 An illustration of the Maximum Entropy Partitioning 25

2.7 An example of using the K-means clustering algorithm and the entropy criterion

to rank sensors . 28

2.8 Top three unsupervised embedded optimal sensors’ principal components 1 and 2

vs the ambient temperature for day types 1, 2, . . . 5 34

3.1 Decision Tree Types; C = {a, b, c, d, e} is the Class Set. 45

3.2 An Illustration of the Grafting and Node Merging Operations on One-vs-the-Rest

Trees; where C = {a, b, ...z}. 46

3.3 The Structure of a BB-Fuse Tree (TBB). 48

3.4 An Example of the BB-Fuse Tree Construction 51

3.5 The BB-Fuse Tree . 56

x

3.6 Placement of (a) Inertial Measurement Units (IMUs), (b) Subject Acceleration

Devices, (c) Reed Sensors and (d) Object Acceleration Devices in Application I

Dataset [116, 117] . 62

3.7 The BB-Fuse Tree for Application I. 64

3.8 The x, y and z axes for the Android Phones. 66

3.9 The BB-Fuse Tree for Application II. 67

4.1 Entropy H(C), Conditional Entropy H(C|S) and Mutual Information I(C;S). . . 74

4.2 Venn Diagrams for Maximum Dependency (MD) and Maximum Relevance (MR)

criteria . 75

4.3 D∗-Fuse Tree TD . 78

4.4 Admissible Relevance (AR) Venn Diagram . 80

4.5 D∗-Fuse Tree for Application I . 85

4.6 Sample Means and Variances for the Simulated Data 86

4.7 The 4 main Gesture Phases [122]. The Hold Phase is not shown and it is simply a

pause before or after the Stroke Phase. 89

4.8 D*-Fuse Tree for Application II . 90

4.9 2nd Order Gaussian Mother Wavelet . 93

4.10 D∗-Fuse Tree for Application III . 94

xi

LIST OF TABLES

2.1 List of Critical Sensors in the ECS . 8

2.2 Input Parameters and Fouling Classes . 18

2.3 Decreasingly Sorted Candidate List and Optimal Sensor Sets 32

2.4 Confusion Matrices of the Optimal Sensors with PCA + k-NN for Classification . . 35

2.5 Confusion Matrices for the Optimal Sensors with GMM + k-NN for Classification 36

2.6 Classification Results for the Top Three Optimal Sensors Obtained using the UE

Algorithm . 37

2.7 Computation Time for Various Procedures Used for Heat Exchanger Fouling Di-

agnosis . 38

3.1 Description of Sensing Devices, Modalities, and Locations for Application I Dataset 63

3.2 Application I: Confusion Matrices for Different Methods 64

3.3 Application I: Description of the Optimal Sensors 64

3.4 Application I: CCRs for Different Methods . 65

3.5 Application I: Execution Times . 65

3.6 Application II: Description of the Optimal Sensors. 67

3.7 Confusion Matrices for the User Identification from Walking Activity Dataset . . . 68

3.8 Application II: CCRs for Different Methods . 68

3.9 Application II: Execution Times . 69

xii

4.1 Sensor Data Distribution for Application I . 85

4.2 Optimal Sensors and CCRs for Application I . 85

4.3 Confusion Matrices for Application I . 87

4.4 Sensor Definition . 89

4.5 Optimal Sensors and CCRs for Application II . 90

4.6 Confusion Matrices for Application II . 91

4.7 Class and Sensor Set Definition for Application III 92

4.8 Optimal Sensor Sets for Application III . 94

4.9 Confusion Matrices for Application III . 95

4.10 CCRs for Various Sensor Selection and Fusion Algorithms for the Human Activity

Recognition Dataset . 96

xiii

CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Classification problems arise in a plethora of modern applications including security, entertain-

ment, surveillance, medical, engineering, geoscience and many other applications [1–9]. Most

modern systems (e.g., aerospace, automobile and robotic systems) can be described as complex

interconnected systems, where the components are interconnected via electrical, mechanical or

wireless connections. Typically, several heterogeneous sensors are scattered all over these systems

for monitoring and control purposes (e.g., fault diagnosis and prognosis, activity recognition and

situation awareness). Accurate classification could be challenging in these systems due to various

types of complexities including data, operational, and system complexities. First of all, the data

could be complex because of the multitude of heterogeneous sensors which makes the analysis

computationally expensive. Second, operational complexity stems from the fact that the system

response may vary with respect to ambient conditions; in turn, class signatures vary from one

ambient condition to another which may confuse the classifiers. Last but not the least, system

complexity is due to the interconnections between the components; as a result, sensors may carry

redundant, misleading or complementary classification information.

These complexities promote the need for automatically selecting an optimal sensor set, and then

1

obtaining a unified, robust and reliable classification decision using information fusion techniques.

In this regard, there are three themes in this thesis as introduced next where the details are in

Chapters 2,3 and 4.

1.2 Outline and Contributions

The first theme addresses the problem of optimal sensor set selection with application to heat

exchanger fouling diagnosis in the Environmental Control System (ECS) of an aircraft. The ECS

is a complex interconnected system that controls the temperature, humidity level and pressure of

the cabin air of an aircraft. One of the major components in the ECS is the heat exchanger which

exchanges the heat with the ram air. The heat exchanger is prone to the fouling phenomenon,

which is the accumulation of debris on the surface of the heat exchanger. Fouling reduces the

efficiency of the heat exchanger, might occur unexpectedly and may lead to cascading failures

of other expensive components. Subsequently, it is required to perform periodic maintenance of

the heat exchanger. Unfortunately, this maintenance incurs high financial and time costs. This

motivates the design of an automated heat exchanger fouling diagnosis algorithm.

Heat exchanger fouling diagnosis is challenging because the ECS sensor readings vary with

respect to ambient temperatures and altitudes of airports across the world. Furthermore, the ECS

is prone to various sources of uncertainties such as measurement noises and vibrations. Moreover,

fouling diagnosis is difficult and computationally expensive due to the large number of hetero-

geneous sensors. So, the thesis presents the Unsupervised Embedded sensor selection algorithm,

which is an automated method that selects optimal, non-redundant sensor set for data reduction

and reliable fouling diagnosis.

This algorithm is of two steps. In the first step, the algorithm uses the popular minimum-

Redundancy-Maximum-Relevance (mRMR) [10] algorithm to select a candidate list of sensors. In

the second step, the algorithm uses K-means clustering algorithm to cluster the data, and then

ranks the sensors based on the average entropy of the clusters of each sensor.

The second theme addresses the challenge of sensor fusion to improve the Correct Classification

2

Rate (CCR). Most information fusion algorithms that are available in literature lack the analytical

guarantee of CCR improvement. This thesis presents a novel algorithm called the Better-than-the-

Best Fusion (BB-Fuse) algorithm, which is analytically proven to improve the CCR. The BB-Fuse

algorithm exploits the fact that different sensors isolate different classes with different accuracies.

Subsequently, the BB-Fuse algorithm uses the confusion matrices that result from different sensors

to search for the optimal sensor-class pairs. Finally, the BB-Fuse organizes them in a fusion tree

that isolates one class at a time.

The first and the second themes addressed the sensor selection problem and the fusion problem

for CCR improvement; however, both of the above algorithms have certain limitations. In regards

to the first theme, the Unsupervised Embedded algorithm is computationally efficient and performs

better in comparison to existing sensor selection algorithms; however, it relies on the mRMR

algorithm which is criticized in literature for subtracting the minimum redundancy criterion [11].

In regards to the second theme, the BB-Fuse algorithm guarantees CCR improvement; however,

it relies on the confusion matrices of the sensors. The confusion matrices are not only expensive to

compute but also pertain to specific classifiers. In other words, there would be a different optimal

fusion tree if different classifiers are used because the optimal sensor-class pairs would differ.

To address the above limitations, the third theme presents the Decomposed Sensor-Class Pair

Tree with maximum Admissible-Relevance for Fusion (D∗-Fuse) algorithm, which is a novel sensor-

class pair set selection and fusion algorithm. Similar to the BB-Fuse, the D∗-Fuse algorithm utilizes

the fact that sensors differ in the quality with which they can isolate individual classes. However,

the D∗-Fuse algorithm depends on an information-theoretic sensor-class pair selection criterion

(called the Admissible Relevance (AR) criterion) instead of the confusion matrices of individual

sensors. Subsequently, any set of classifiers can be trained at the nodes of the resultant sensor-class

tree structure.

The D∗-Fuse algorithm has two major improvements over the mRMR. First, the D∗-Fuse algo-

rithm selects optimal “sensor-class” pair set rather than selecting “sensor” set only. As a result,

sensor redundancy between the optimal selected sensors does not exist since the selected sen-

sors carry information that isolate different classes. Second, the D∗-Fuse algorithm outputs a tree

3

Theme 1:

Unsupervised Embedded Algorithm

(Optimal Sensor Selection Algorithm)

Theme 2:

BB-Fuse Algorithm

(Optimal Sensor-Class pair

Selection and Fusion Algorithm)

Them 3:

D*-Fuse Algorithm

(Optimal Sensor-Class pair

Selection and Fusion Algorithm)

Improvements:

i. Lowering computation

complexity by using mutual

information instead of

confusion matrices

ii. Sensor-class pair fusion tree

structure that is generalizable

to any classifiers

Improvement:

Obtaining classification

decision with guaranteed

CCR improvement

Improvements:

i. Avoiding selection of

redundant sensors

ii. Optimal sensor-class pairs

selection instead of

only sensors

iii. Constructing general sensor

fusion architecture

BB-Fuse: Better-than-the-Best Fusion

CCR: Correct Classification Rate

D*-Fuse: Decomposed Sensor-Class Pair Tree with Maximum

Admissible-Relevance for Fusion

Information

Fusion for

Classification

Figure 1.1: Research Themes Summary and Connections

structure to fuse the optimal sensors. Figure 1.1 summarizes the three research themes and the

connections between them.

1.3 List of Publications

Journal Papers

1. N. Najjar, S. Gupta, J. Hare, S. Kandil, and R. Walthall, “Optimal sensor selection and fusion for heat ex-

changer fouling diagnosis in aerospace systems,” IEEE Sensors Journal, vol. 16, no. 12, pp. 4866–4881, 2016.

2. N. Najjar, C. Sankavaram, J. Hare, S. Gupta, K. Pattipati, R. Walthal, and P. D’Orlando, “Health assess-

ment of liquid cooling system in aircrafts: Data visualization, reduction, clustering and classification,” SAE

International Journal of Aerospace, vol. 5, no. 1, pp. 119–127, 2012.

3. N. Najjar and S. Gupta, “BB-Fuse: An information fusion algorithm for n-class classification problems,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Submitted.

4

Conference Papers

4. N. Najjar and S. Gupta, “Better-than-the-Best Fusion algorithm with application in human activity recogni-

tion,” in Proceedings of SPIE Multisensor, Multisource Information Fusion: Architectures, Algorithms, and

Applications 2015, SPIE, 2015, pp. 949805-1 – 949805-10.

5. N. Najjar, J. Hare, P. D’Orlando, G. Leaper, K. Pattipati, A. Silva, S. Gupta, and R. Walthall, “Heat exchanger

fouling diagnosis for an aircraft air-conditioning system,” in Proceedings of SAE 2013 AeroTech Congress and

Exibition- Technical Paper 2013-01-2250, SAE International, 2013.

6. N. Najjar, C. Sankavaram, J. Hare, S. Gupta, K. Pattipati, R. Walthall, and P. D’Orlando, “Health assessment

of liquid cooling system in aircrafts: Data visualization, reduction, clustering and classification,” in Proceed-

ings of SAE 2012 Aerospace Electronics and Avionics Systems Conference- Technical Paper 2012-01-2106,

SAE International, 2012, pp. 119–127.

7. J. Wilson, N. Najjar, J. Hare, and S. Gupta, “Human activity recognition using lzw-coded probabilistic finite

state automata,” in Proceedings of 2015 IEEE International Conference on Robotics and Automation (ICRA),

IEEE, 2015, pp. 3018–3023.

8. J. Hare, S. Gupta, N. Najjar, P. D’Orlando, and R. Walthall, “System-level fault diagnosis with application

to the environmental control system of an aircraft,” in Proceedings of SAE 2015 AeroTech Congress and

Exhibition- Technical Paper 2015-01-2583, SAE International, 2015.

9. A. Silva, N. Najjar, S. Gupta, P. D’Orlando, and R. Walthall, “Wavelet-based fouling diagnosis of the heat

exchanger in the aircraft environmental control system,” in Proceedings of SAE 2015 AeroTech Congress and

Exhibition- Technical Paper 2015-01-2582, SAE International, 2015.

Patents

10. N. Najjar, S. Gupta, J. Hare, G. Leaper, P. D’Orlando, R. Walthall, and K. Pattipati, Optimal sensor selection

and fusion for heat exchanger fouling diagnosis in aerospace systems, 14/700,769, (Submitted).

11. J. Hare, S. Gupta, N. Najjar, P. D’Orlando, and R. Walthall, System level fault diagnosis for the air manage-

ment system of an aircraft, 14/687,112, (Submitted).

12. A. Silva, N. Najjar, S. Gupta, P. D’Orlando, and R. Walthall, Wavelet-based analysis for fouling diagnosis of

an aircraft heat exchanger, 14/689,467, (Submitted).

5

CHAPTER 2

UNSUPERVISED EMBEDDED SENSOR SELECTION FOR

CLASSIFICATION ALGORITHM

2.1 Introduction

Optimal sensor set selection is essential for classification in complex interconnected systems. Pri-

marily, optimal sensor set selection reduces the data and in turn computational complexity. Fur-

thermore, it increases classification accuracy because some sensors might convey misleading or

partial classification information. Optimal sensor set selection can sometimes be counter intu-

itive in complex interconnected systems because of direct or feedback interconnections between

the components. Hence, automated data-driven optimal sensor selection is desirable in complex

interconnected systems.

Recent literature has developed several sensor selection algorithms that are categorized into two

main types based on their evaluation criteria. The first in this category are the Wrapper Algorithms

that depend on the evaluation of the Correct Classification Rate (CCR)1 for each sensor using a

specified classifier [12–14]. Wrapper algorithms usually lead to a high CCR but are computation-

ally expensive if the number of sensors is large because they rely on the cross-validation algorithm

to calculate the CCR. Besides that, the wrapper algorithms cannot be generalized to any classifier.

1CCR is the ratio of correctly classified samples to the total number of testing samples

6

The second type are the Filter Algorithms that evaluate the performance of each sensor based on an

evaluation function. Recently, many filter algorithms have been developed using the concepts of

information theory [10, 15]. Filter algorithms do not depend on the classifier, are computationally

less expensive, and may perform as good as the wrapper algorithms [13].

In addition, there exist the Embedded Algorithms that take advantage of both the wrapper and

the filter algorithms. The embedded algorithms use a filter to select a candidate list of sensors and

then apply a wrapper on this list to rank the optimal sensor set [10]. Embedded algorithms are

less expensive than wrappers and more accurate than filters; yet they are pertinent to the specified

classifier [16]. Several search methods have been suggested for the above algorithms, such as the

forward and backward search [10, 15]. Dash and Liu [17] compared different such search methods.

This theme presents a modified embedded sensor selection algorithm which is called the Un-

supervised Embedded algorithm. The first step of the algorithm uses minimum Redundancy Max-

imum Relevance (mRMR) criterion [10] as a filter to initiate a candidate list. Subsequently, the

second step of the algorithm is clustering based sensor ranking, which relies on K-means clus-

tering method instead of a specific classifier to rank the sensors in the candidate list. This method

has low computational complexity, faster execution, and it does not depend on a specific classifier.

Once the optimal set of sensors is selected, different machine learning tools can be applied for data

analysis and fusion to make classification decisions.

2.1.1 Application

For applicatin, this theme uses the Environmental Control System (ECS) of an aircraft as an ex-

ample of a complex interconnected system. The ECS is a system which regulates temperature,

pressure and humidity of the cabin air of an aircraft. The ECS consists of various components

such as the primary and secondary heat exchangers, turbines, compressor, condenser, and water

extractor as schematically shown in Fig. 2.1 where the sensros are defined in Table 2.1. These

components are interconnected through various mechanical and pneumatic connections. In addi-

tion, various sensing devices (more than 100 parameter recorded) such as temperature, pressure

and flow sensors are mounted at different locations in the ECS [18, 19].

7

Figure 2.1: Environmental Control System (ECS) Schematics

Table 2.1: List of Critical Sensors in the ECS

S Description S Description

ṁ1 PD mass flow rate ṁ2 SD mass flow rate

T1 PD air temperature T2 SD air temperature

P1 PD air pressure P2 SD air pressure

Pi SHX input pressure Po SHX output pressure

Thx SHX output temperature Tcm Compressor output temperature

Tout ECS output temperature Tcn Condenser output temperature

TFDFlight deck zone temperature TZj Zone Zj ∀j = 1 . . . nz temperature

S: Sensor SHX: Secondary heat exchanger
PD: Primary bleed air duct SD: Secondary bleed air duct
nz: The number of zones in the cabin

Heat exchangers are critical components of the ECS of an aircraft. Typically, several plate fin

heat exchangers are used in an ECS, which consist of plates and fins stacked over each other as

shown in Fig. 2.2. Plate fin heat exchangers are used in this application because of their compact

design, light weight and high efficiency. Often, physical objects (e.g., debris) accumulate on the

fins of the heat exchanger due to particulates and other contaminants present in the air stream. This

phenomenon is known as fouling which obstructs the flow of the cooling medium through the heat

exchanger and hence degrades its efficiency.

8

In absence of an automated fouling diagnosis methodology, heat exchanger necessitates peri-

odic and expensive maintenance [20]. On top of maintenance costs, fouling diagnosis incurs fi-

nancial losses that result from the aircraft flight interruption that last several days. Besides, fouling

may occur unexpectedly and, in extreme cases, can lead to damage of other expensive components

(i.e., cascading failures). As such, early fouling diagnosis is of utmost importance to facilitate

Condition Based Maintenance (CBM)2 and to avoid cascading failures.

2.1.2 Approach and Contributions

A high fidelity ECS Simulink model that is provided by our industry partner was used for data

generation. To reduce system modeling uncertainty, the Simulink model was validated using actual

flight test data operating under nominal conditions. System validation is an iterative process in

which actual flight data is compared with Simulink output data; after that, the Simulink model is

tuned to minimize the residuals. Next, the Simulink model output data is compared with actual

flight data again and so on. The process terminates when the residuals are within acceptable

tolerance.

The Simulink model inputs include the ambient temperature, altitude, occupant count and air-

craft state (on-ground or flying). In addition, heat exchanger fouling condition can be injected into

Figure 2.2: An Illustration of the Plate Fin Heat Exchanger

2Condition Based Maintenance (CBM) is to perform maintenance only when necessary

9

Parametric Combinations of

OCC & Ambient Temperature

Various

Fouling

Conditions

Simulink

Model

Training Data Set

of m sensors

Optimal

Sensor

Selection

Data from Optimal

Sensors , and

Optimal Sensors

, and

Feature

Extraction

Features

Features

Features

Training Phase for Day Type

=1, 2, 3, 4, 5

OCC & Ambient Temperature

Unknown

Fouling

Condition c

Unlabeled Data of

m sensors

Pick Optimal

Sensors’

Data

Data from Optimal

Sensors , and

Feature

Extraction

Testing Phase for Day Type

=1, 2, 3, 4, 5

Classifier

Training

Classifier

1

Classifier

2

Classifier

3

Features

Features

Features

Majority

Vote

Fusion

Enhanced

Decision

Classifier

1

Classifier

2

Classifier

3

Simulink

Model

Figure 2.3: Heat Exchanger Fouling Diagnosis Algorithm where d = 1, 2 . . . 5

the Simulink model by varying the flow impedance through the heat exchanger. The Simulink

model outputs time series data of more than 100 sensor parameters.

To accommodate the system behavior under various input conditions, the ambient temperatures

and passenger loads are tabulated as discussed in the Section 2.3.2. After that, fouling classes are

defined based on the air-flow through the heat exchanger. Then, the validated Simulink model of

the ECS is used to generate sensor data for nominal and different fouling conditions of the heat

exchanger while considering various sources of uncertainties in the system. After data generation,

machine learning algorithms are applied to obtain a fouling decision. The heat exchanger fouling

diagnosis algorithm is shown in Fig. 2.3.

The main contributions are below:

• Optimal sensor set selection for fouling diagnosis using a novel Unsupervised Embedded

Algorithm, that uses the mRMR criteria as a filter and the K-means clustering method for

ranking.

• Application of the Maximum Entropy Principle for data partitioning to compute probability

10

distributions and to estimate the mutual information in the mRMR criteria.

2.2 Literature Review

2.2.1 Sensor Selection Algorithms

Sensor/feature selection for classification has gained interest in literature. Han et al. [21] studied

feature selection problem for chillers. Namburu et al. [22] used genetic algorithm for sensor se-

lection and applied SVM, PCA, and Partial Least Squares (PLS) for fault classification in HVAC

systems. Optimal sensor selection for discrete-event systems with partial observations was per-

formed by Jiang and Kumar [23]. Gupta et al. [24] discussed stochastic sensor selection with

application to scheduling and sensor coverage. Joshi and Boyd [25] used convex optimization to

perform sensor selection. Hero and Cochran [26] provided a review of the methods and applica-

tions of sensors management. Xu et al. [27] used sensor configuration, usage and reliability costs

for sensor selection for PHM of aircraft engines. Shen, Liu and Varshney [28] considered the

problem of multistage look-ahead sensor selection for nonlinear dynamic systems.

2.2.2 Fault Diagnosis Algorithms

Several techniques have been proposed in recent literature for fault detection, diagnosis and prog-

nosis (FDDP) of air-conditioning systems, in particular, Heating, Ventilating and Air Conditioning

(HVAC) systems [29–31]. Katipamula and Brambley introduced a two-part survey of FDDP of

HVAC systems [32, 33]. Buswell and Wright [34] accounted for uncertainties in model-based

approaches to minimize false alarms in fault diagnosis of HVAC systems. Fault diagnosis of Air

Handling Units (AHU) was presented in [35–37]. Pakanen and Sundquist [38] developed an On-

line Diagnostic Test (ODT) for fault detection of Air Handling Units (AHU). Qin and Wang [39]

performed a site survey on hybrid fault detection and isolation methods for Variable Air Volume

(VAV) air conditioning systems. Rossi and Braun [40] designed a classifier that uses temperature

and humidity measurements for fault diagnosis of the Vapor Compression Air Conditioners. Zhao

et al. [41] utilized exponentially-weighted moving average control charts and support vector re-

11

gression for fault detection and isolation in centrifugal chillers. Najjar et al. [42] developed a

tool for data visualization, reduction, clustering, and classification of the actual data obtained from

flight test reports of the Liquid Cooling System (LCS) in aircrafts. Shang and Liu [43] used the Un-

scented Kalman Filter (UKF) to diagnose sensor and actuator faults in the Bleed Air Temperature

Control System. Gorinevsky and Dittmar [44] addressed fault diagnosis of the Auxiliary Power

Unit (APU) using a model-based approach. Isermann [45] provided a review of model-based fault

detection and diagnosis methods.

Heat exchanger fouling diagnosis has become a critical research issue in recent years. Lingfang

et al. [46][47] developed a method of fouling prediction based on SVM. Najjar et al. [48] presented

the fouling severity diagnosis of the Plate Fin Heat Exchanger using the principal component

analysis (PCA) and the k-nearest neighbor classification (k-NN). Kaneko et al. [49] introduced

a statistical approach to construct predictive models for thermal resistance based on operating

conditions. Shang and Liu [50] proposed a method to detect heat exchanger fouling based on the

deviation of valve commands from the actual valve positions. Riverol and Napolitano [51] used

Artificial Neural Networks (ANN) to estimate the heat exchanger fouling. Garcia [52] used Neural

Networks and rule based techniques to improve heat exchanger monitoring. Adili at al. [53] used

genetic algorithms to estimate the thermophysical properties of fouling.

2.3 System Description

The Environmental Control System (ECS) is an air conditioning system that regulates temperature,

pressure and humidity of the cabin air. In order to meet the health and comfort requirements of

the passengers, the ECS supplies air to the cabin at moderate temperatures and pressures [54].

Figure 2.1 shows a simplified system diagram of the main ECS components, namely: i) primary

heat exchanger, ii) secondary heat exchanger, iii) air-cycle machine (ACM), iv) condenser, and v)

water extractor.

The ACM in turn consists of a compressor and two turbines: a) first stage turbine and b) second

stage turbine. The compressor and the turbines rotate on the same shaft [54–57]. In addition,

12

various sensing devices such as temperature and pressure sensors [54] are mounted at different

locations of the ECS. Table 2.1 shows a list of critical sensors, as also shown in Fig. 2.1.

The primary heat exchanger is supplied with hot bleed air through two ducts, namely, the pri-

mary bleed air duct and the secondary bleed air duct, where air flow in each duct is controlled

by a valve (not shown in Fig. 2.1). These ducts are then merged together to drive the bleed air

to the primary heat exchanger. As shown in Fig. 2.1, hot bleed air is cooled in the primary heat

exchanger, using ambient ram air as a sink, to a temperature below the auto-ignition temperature

of fuel as a safety measure in case of a fuel leak. Air that comes out of the primary heat exchanger

flows into the compressor section of the ACM where it gets compressed and thus heated. Air then

flows out of the compressor into the secondary heat exchanger where it is cooled again using ram

air as the sink. Air then flows through the hot side of the condenser heat exchanger where moisture

is condensed out of the air-flow and collected by the water extractor. Air then flows into the first

stage turbine where it gets expanded and cooled. Cold air out of the turbine flows through the cold

side of the condenser heat exchanger into the second stage turbine where it gets further expanded

and cooled providing the air at the desired cabin supply temperature and pressure [55].

2.3.1 Primary and Secondary Heat Exchangers

The heat exchangers used in the ECS under consideration are the cross-flow plate fin heat exchang-

ers that are built from light weight plates and fins stacked over each other, as shown in Fig. 2.2. By

definition, the direction through which the hot-air flows is called the hot-side while the direction

through which the ram air flows is called the cold-side of the heat exchanger. The fins are placed

alternatively in parallel to the hot air flow and the cold air flow, hence the name cross-flow plate

fin heat exchanger. Plate fin heat exchangers are desirable for their compact sizes, high efficiency,

and light weight. The function of the heat exchanger is to transfer heat from the hot air to the

ram air. The temperature can be set to the desired value by controlling the flow of the ram air in

the cold-side of the heat exchanger. Debris accumulates on the fins of the heat exchangers due

to several factors including chemical reactions, corrosion, biological multiplications and freezing.

This phenomenon is known as fouling and it obstructs the ram air flow. Fouling lowers the heat

13

efficiency of the heat exchanger because the deposited material has low thermal conductivity and

hinders the transfer of heat [43, 53]. A detailed description of fouling substances and cleaning

methods can be found in [43, 58]. In this regard, this chapter focuses on the fouling diagnosis of

the secondary heat exchanger. The heat transfer rate Ψ̇ (Watts) through the heat exchanger [59]

is given by Eq. (2.1) as follows

Ψ̇ = κ · Ah · (Tavg,h − Tm) = κ · Ac · (Tm − Tavg,c) (2.1)

where κ is the overall heat transfer coefficient (W/(m2K)), Tm is the metal temperature (K), and

Tavg,x and Ax are the average air temperature (K) and the total heat transfer area (m2) at the x-

side, respectively. The subscript x is either h for the hot-side or c for the cold-side. The total heat

transfer areas of the hot and cold sides are calculated as follows

Ax = WhWcNx[1 + 2nx(lx − εx)] (2.2)

where Wh, Wc, lx, and εx are the fin dimensions (m) as shown in Fig. 2.2, and Nx and nx are the

number of fin layers and fin frequency per unit length at the x-side, respectively [60, 61].

The heat transfer is also calculated as a function of the input and the output temperatures of the

heat exchanger, as follows

Ψ̇ = ṁhcp,h(Ti,h − To,h) = ṁccp,c(To,c − Ti,c) (2.3)

Figure 2.4: Normalized Flow vs Secondary Heat Exchanger Impedance

14

where ṁx, cp,x, and Ti,x and To,x are the mass flow rate (kg/s), specific heat (J/(kgK)), and the

input and output temperatures of the x-side, respectively [59].

The input-output pressure drop at the cold-side of the heat exchanger is modeled as

∆P = Pin,c − Pout,c

=
1

β
zcṁ

2
c (2.4)

where Pin,c and Pout,c are the input and the output pressures (kPa) for the cold-side, β is a

dimensionless correction factor and zc is the flow impedance (kPa · s2/kg2) which is varied in the

simulation to represent different fouling conditions. The plot of the flow vs the flow impedance

is shown in Fig. 2.4. A change in zc affects ṁc and thus affects the heat transfer and the output

temperatures of hot and cold air streams as computed using Eq. (2.1)-(2.3). This also affects the

sensor readings of all other sensors in the ECS.

2.3.2 Data Generation Process

This chapter utilizes an experimentally validated high-fidelity Simulink model of the ECS provided

by an industry partner. The model is used to generate dynamic data for various sensor locations

around the ECS system for fouling diagnosis. It is important to note that the model represents the

ECS performance for a specific aircraft and has been validated to match experimental results from

lab testing and flight data for this specific ECS. For this chapter, the model is exercised to generate

time series of sensor data for various ground operating conditions (e.g., ambient temperature, oc-

cupant count, etc.). Ground operating conditions are chosen because typically more debris exists

in the aircraft vicinity while on the ground as opposed to in-flight operation. Data generated for

this study includes a large number (> 100) of sensor outputs.

Figure 2.5 shows the stochastic time series data plots of three critical sensors under various

uncertainties for different day types. The structure of the data is explained below. Let us denote

the sensor suite by a setS = {s1, . . . sm}, where m is the total number of sensors. For each sensor

sj , the time series data are collected for 600 seconds at the sampling rate of 1 sample/sec, thus

15

generating a data sequence zj = [zj(1), ...zj(600)], ∀j = 1, 2, . . .m. The system reaches steady

state after 300 seconds, thus the data from 301 to 600 seconds is used for analysis; however this

interval could be reduced for higher sampling rates.

It is to be noted that the system behavior and the sensor data are affected by several input

parameters, which affect the accuracy of fouling diagnosis. This chapter considers variations in two

main input parameters: the ambient temperature for different day types and the load corresponding

to different occupant counts on the aircraft. Besides the heat exchanger fouling itself results in

variations in sensor data. Thus the objective is to capture the effects of fouling under different

input conditions. Specifically, the data is generated by varying the aforementioned parameters as

described below.

• Ambient Temperature (TA)

As expected, the ambient temperature is the most critical external parameter that affects sensor

readings. The effect of ambient temperature could be misinterpreted and could lead to false di-

agnosis of heat exchanger fouling. Thus, to incorporate the effect of ambient temperature, sensor

data is categorized into five different day types: i) extremely cold, ii) cold, iii) medium, iv) hot and

v) extremely hot day types. The temperature ranges for each day type are shown in Table 2.2(a).

Each day type is further partitioned into eight uniformly spaced temperature values.

• Occupant Count (OCC)

The occupant count also affects ECS sensor readings due to passengers adding heat load that

the ECS reacts to in order to maintain the desired cabin conditions. The number of occupants

is grouped into four categories: i) Low Load, ii) Medium Load, iii) Heavy Load, and iv) Very

Heavy Load based on the percentage occupancy in the cabin. Table 2.2(b) shows these four load

categories. Since OCC has relatively less influence on the sensor readings, only the middle point

of each category is used for data generation.

16

C
0

C
1

C
2

C
3

Sensor Rank 1 Sensor Rank 2 Sensor Rank 3

D
a

y
 T

y
p

e
1

D
a

y
 T

y
p

e
2

D
a

y
 T

y
p

e
3

D
a

y
 T

y
p

e
4

D
a

y
 T

y
p

e
5

Figure 2.5: Stochastic time series data of three critical sensors for five different day types

17

Table 2.2: Input Parameters and Fouling Classes

(a) Day Types
Day Type Tamb (oF)
Extremely cold -30 – 0
Cold 0 – 30
Medium 30 – 60
Hot 60 – 90
Extremely hot 90 – 120

(b) Passenger Load Categories
Load Type OCC
Low Load 0% – 60%
Medium Load 60% – 75%
Heavy Load 75% – 95%
Very Heavy Load 95% – 100%

(c) Fouling Classes
Class Flow
Green (c0) 80% – 100%
Yellow (c1) 60% – 80%
Orange (c2) 40% – 60%
Red (c3) 0% – 40%

• Heat Exchanger Fouling (zc)

Fouling of the secondary heat exchanger is modeled as an increase in the ram air-flow impedance

(zc) on the cold side of the heat exchanger. When the flow impedance is increased, the air-flow

decreases simulating blockage due to heat exchanger fouling. This lowers the effectiveness of

the heat exchanger. For this chapter, four fouling classes have been defined based on the flow

through the cold-side of the secondary heat exchanger as follows: i) Green Class (c0)- i.e., 80-100

% flow, ii) Yellow Class (c1)- i.e., 60-80 % flow, iii) Orange Class (c2)- i.e., 40-60 % flow, and iv)

Red Class (c3)- i.e., 0-40 % flow. The reason to introduce Yellow and Orange classes is to avoid

direct confusion between the Green and Red classes. The model is run for different values of flow

impedance and the resulting flow through the heat exchanger is observed. The plot in Fig. 2.4

is used to determine the range of impedance values for each of the above classes that are defined

based on the flow. Table 2.2(c) shows the impedance intervals associated with each class. Each

class is further partitioned into eight uniformly spaced flow values for data generation.

Thus, for each day type stochastic time series data are generated for various combinations of the

above parameters to represent each fouling class. The model is run for different combinations of

the values of ambient temperature (8) (within each day type), occupant counts (4), and impedance

values (8) (within each fouling class), resulting in a set consisting of a total number of 8× 4× 8 =

256 runs of time series data. Furthermore, for each day type, similar data sets are generated for all

the fouling classes, thus leading to a total of 4×256 = 1024 runs of time series data. Subsequently,

the above data sets are generated for all five day types. Let Γ = {γ1, ...γ1024} denote the set of

parametric combinations and let t ∈ {1, 2, ...T} denote the set of discrete time indices, where

T = 600 is the length of the time series data. Then, for each day type the entire data for each

18

sensor sj ∈S is arranged in a |Γ| × T matrix Zj , where the element at the rth row and tth column

of Zj is the reading of sj at time index t ∈ {1, 2, ...T} with parametric input γr ∈ Γ. Figure

2.5 shows the stochastic time series data plots of three critical sensors for each day type. For the

purpose of data analysis, the fluctuations in OCC and the variations of impedance values within

each class are considered as uncertainties. Other sources of uncertainties such as measurement

noise, mechanical vibrations, and fluctuations in valve positions have been considered by adding

white Gaussian noise with 25 dB SNR to the data. The variations in ambient pressure have not

been considered in this chapter.

2.3.3 Heat Exchanger Fouling Diagnosis Architecture

Figure 2.3 shows the Heat exchanger fouling diagnosis architecture that consists of a training and

a testing phase. The training phase consists of generating stochastic data for each sensor in the

ECS (total 109 sensors) as described above. This sensor data is labeled with the fouling class

information and is used for optimal sensor selection for each day type separately, as described in

Section 2.4. From the data of optimal sensors, some useful features are extracted using PCA and

GMM methods and classifiers (k-NN) are trained to identify the fouling classes, as described in

Section 2.5.

In the testing phase, an unlabeled time series data is generated for an unknown parametric con-

dition γ ∈ Γ where the fouling severity is also considered as unknown. Subsequently, the optimal

sensors identified in training phase are used for feature extraction and classification using trained

classifiers. To further improve the classification accuracy, the results of the top three optimal sen-

sors are fused using the majority vote.

2.4 Optimal Sensor Selection Methodology

Since a large number of sensors are available in the ECS mounted at different locations, the

underlying processes of data generation, storage, and analysis become cumbersome. Therefore, an

optimal sensor selection methodology is needed to rank the most relevant sensors in terms of the

19

best classification performance for heat exchanger fouling diagnosis. This is formally stated in the

following problem statement.

Optimal Sensor Selection Problem: Given the sensor set S = {s1, s2, . . . sm}, with m sen-

sors, and the class set C = {c1, c2, . . . cn}, with n classes, the optimal sensor selection problem

is to select a set S∗ ⊆ S, where |S∗|=m∗, m∗ < m, that consists of sensors with maximum

classification accuracy and are ranked accordingly in decreasing order.

As discussed in the introduction, two commonly used sensor selection methods are: i) the

wrapper method and ii) the filter method. Since the wrapper algorithms rank the sensors based

on their correct classification rate (CCR), a feature extractor and a classifier have to be designed,

trained, and applied to all sensors in order to compute their CCRs, thus making the whole process

computationally expensive. Furthermore, the wrapper algorithms cannot be generalized to any

classifier [12–14]. On the other hand, the filter algorithms evaluate the performance of each sensor

based on an information theoretic measure [10, 15]. Filter algorithms are computationally less

expensive and do not depend on the choice of a classifier, but they may not perform as good as the

wrapper algorithms [13].

To circumvent this difficulty, the embedded algorithms take advantage of both the wrapper

and the filter algorithms by using a filter to select a candidate list of sensors and then applying a

wrapper on this list to rank and select the optimal set of sensors [10]. Embedded algorithms are

less expensive than wrappers and more accurate than filters; yet they are pertinent to the specified

classifier [16]. In this regard, this section presents a detailed description of the optimal sensor set

selection methodology based on the embedded algorithm. In addition, a novel algorithm for sensor

selection is presented, called the unsupervised embedded algorithm, that relies on the K-means

clustering approach. This method has the advantage that it does not depend on the choice of a

classifier and enables faster execution with very low computational complexity.

Both the embedded and the unsupervised embedded algorithms are based on the minimum Re-

dundancy Maximum Relevance (mRMR) [10] criteria for the filter algorithm as a precursor step

before applying the wrapper. The filter step facilitates fast execution of the first round of data re-

20

duction and produces a candidate list of top ranked sensors. Before describing the optimal sensor

selection techniques, some useful information-theoretic quantities are defined below.

2.4.1 Information-theoretic Measures

Definition 2.4.1 (Entropy) Entropy H(X) is defined as a measure of uncertainty in a random

variable X such that

H(X) = −
|X|∑
i=1

pi ln pi (2.5)

where X is a random variable whose outcomes belong to the set X = {x1, x2, . . . x|X|} with the

associated probability distribution defined as p(X = xi) = pi ∀ i = 1, 2, . . . |X|.

According to Shannon [62], the entropy H(X) qualifies to be a measure of uncertainty because

it satisfies the following three conditions:

• H(X) is a continuous function of pi.

• If the random variable X is uniformly distributed (i.e., pi = 1
|X| , ∀ i = 1, 2, . . . |X|), then

H(X) is a monotonically increasing function of |X|.

• If an event X = xi is split into two posterior sub-events, then the original entropy can be

expressed as a weighted sum of the entropies of the sub-events.

The higher the entropy is, the higher is the uncertainty in the random variable. On the other

hand, the entropy reaches its lowest value, H(X) = 0, when p(X) is a delta distribution.

Suppose now that we have two random variables: X defined as above, and Y whose outcomes

belong to the set Y = {y1, . . . y|Y |} with probabilities p(Y = yj) = qj for all j = 1, 2, . . . |Y|.

Furthermore, suppose that the joint probability distribution is defined as pi,j = p(X = xi, Y = yj)

for all i = 1, 2, . . . |X|, j = 1, 2, . . . |Y|. Then the joint and conditional entropies are defined as

21

follows:

H(X, Y) = −
|X|∑
i=1

|Y|∑
j=1

pi,j ln pi,j (2.6)

H(X|Y) = −
|X|∑
i=1

|Y|∑
j=1

pi,j ln p(X = xi|Y = yj)

= H(X, Y)−H(Y) (2.7)

Definition 2.4.2 (Mutual Information) The mutual information between two random variables

X and Y is defined as

I(X, Y) = H(X)−H(X|Y)

= H(X) +H(Y)−H(X, Y) (2.8)

The subtraction of H(X|Y) from H(X) represents the information gained about the random vari-

able X given the information about the random variable Y [15]. The next section presents a parti-

tioning approach for transformation of the continuous data to the symbolic domain for computation

of the information-theoretic quantities as needed in the filter method.

2.4.2 Data Partitioning for Symbol Sequence Generation

Consider the data matrix Zj of size |Γ| × T for any particular sensor sj , j = 1, 2, ...m, generated

under different parametric conditions as described in Section 2.3.2. The encoding of the underlying

dynamics of this sensor data is achieved by partitioning [63] of the sensor observation space using

an appropriate partitioning method. Let Rj ⊂ R be the compact (i.e., closed and bounded) region

within which the observed sensor data Zj is circumscribed. Let Σ = {α1, α2, . . . α|Σ|} be the

symbol alphabet that labels the partition segments, where the number of segments is |Σ|, where

2 ≤ |Σ| < ∞. Then, the symbolic encoding of Rj is accomplished by introducing a partition

{ϕ1
j , · · · , ϕ

|Σ|
j } consisting of |Σ| mutually exclusive (i.e., ϕ`j ∩ ϕkj = ∅, ∀` 6= k), and exhaustive

(i.e.,
⋃|Σ|
r=1 ϕ

r
j = Rj) cells. Each cell is encoded with a symbol from the alphabet Σ. For each

input condition, as the system evolves in time, the state trajectory (i.e., sensor readings) fall within

22

different cells of the partition, accordingly the corresponding symbol is assigned to each point of

the trajectory. Let zj(γr) , [Zj(r, 1), Zj(r, 2), . . . Zj(r, T)] be the rth row of the data matrix Zj

for a given γr ∈ Γ. Then, for each sensor sj ∈ S and for each γr ∈ Γ, the time series data zj(γr)

are transformed into a symbol sequence [64] z̃j(γr) , [Z̃j(r, 1), . . . Z̃j(r, T)] as

[Zj(r, 1), . . . Zj(r, T)]→ [Z̃j(r, 1), . . . Z̃j(r, T)] (2.9)

where T is the data length, Z̃j(r, t) ∈ Σ, ∀t = 1, ...T and Z̃j is the symbolic data matrix. Note:

As mentioned earlier, this chapter uses only the steady state part of the data for fouling diagnosis

analysis (i.e., ∀ t = 301, 302, . . . 600).

To do the above symbolization, this chapter uses the maximum entropy principle [65] based

partitioning to create a partition of the observed sensor data space, which is finer in the information

dense regions and coarser in the low information regions as described below.

Definition 2.4.3 (Maximum Entropy Principle, Jaynes [65]) The maximum entropy principle states

that the probability distribution that unbiasedly estimates the distribution of a random variable X

under a given set of constraints is the distribution that maximizes the entropy H(X).

In other words, the unbiased estimate of the probability distribution of a random variable X should

satisfy the following optimization problem:

P∗ =


p∗1
...

p∗|X|

 = arg max
P

H(X); H(X) = −
|X|∑
i=1

pi ln pi

subject to:
|X|∑
i=1

pi = 1 (2.10)

The optimization problem in Eq. (2.10) can be solved using the Lagrange multiplier as shown

in Appendix A.1. As a result, the entropy is maximized for the uniform distribution (i.e., p∗i =

1
|X| , ∀i = 1, ...|X|).

The Maximum Entropy Principle generates the unbiased distribution for each of the sensor

23

readings. Considering the data matrix Zj = [Zj(r, 1), Zj(r, 2), . . . Zj(r, T)]r=1,...|Γ| for sensor sj ,

the goal is to find the partition that results in maximum entropy distribution (i.e., the uniform

distribution). The partition cells are defined by the partitioning levels L = {L0
j , L

1
j , . . . L

|Σ|
j },

such that ϕrj = [Lr−1
j , Lrj) ∀r = 1, 2, . . . |Σ|. To compute the maximum entropy partition for the

sensor data Zj , the first step is to calculate the number of samples in each cell (i.e., η∗ = ηr =

floor(|Γ| × T/|Σ|), ∀r = 1, 2, ...|Σ|). The second step is to sort the entire data into a vector

wj = [wj(1), wj(2), . . . wj(|Γ| × T)], such that

wj(`) ∈ {Zj(r, t) ∀ r = 1, 2 . . . |Γ|, t = 1, 2, . . . T} ∀` = 1, 2, . . . |Γ| × T (2.11)

& wj(1) ≤ wj(2) . . . ≤ wj(|Γ| × T) (2.12)

Then the partitioning levels are defined as follows:

L0
j = wj(1) (2.13)

Lqj = wj(q · η∗) ∀q = 1, . . . |Σ| − 1, and (2.14)

L
|Σ|
j = wj(|Γ| × T) (2.15)

The algorithm counts the samples from the bottom and defines the partitioning levels at the multi-

ples of η∗ while setting the first and the last levels at the min and the max of the original data. This

procedure generates a partition that is finer in the regions of high data density and coarser in the

regions of low data density, as shown by an illustrative example in Fig. 2.6. Subsequently, a unique

symbol from the alphabet Σ is assigned to all the data points in each cell of the partitioning. This

process transforms each data matrix in Zj into a symbol matrix Z̃j , as shown in Eq. (2.9).

In the above manner, the maximum entropy partitioning is constructed for all sensors and the

corresponding data are transformed into symbol sequences. Subsequently, the candidate list of

sensors is selected and ranked according to the filter criteria as described next.

2.4.3 minimum Redundancy Maximum Relevance (mRMR)

Based on mutual information, the mRMR criterion [10] evaluates and ranks the sensors that best

describe the classes and simultaneously avoid sensors that provide redundant information by means

24

Figure 2.6: An illustration of the Maximum Entropy Partitioning

of the following two conditions: i) Maximum Relevance and ii) Minimum Redundancy, as de-

scribed below.

Let us define the random variables C and Sj , j = 1, ...m, as follows:

• C: A random variable whose sample space is the set of all symbol sequences and its outcome

belongs to the class set C = {c1, . . . cn}, and

• Sj: A random variable whose sample space is the symbolized data matrix z̃j for sensor sj and

its outcome belongs to Σ.

Then the Maximum Relevance criteria is defined as follows.

Definition 2.4.4 (Max Relevance) The Maximum Relevance criterion aims to find the set U∗1 ⊆

S, where |U∗1 | = m∗, m∗ < m, that has the maximum average mutual information between its

sensors and the random variable C, such that

U∗1 = arg max
U1⊆S,|U1|=m∗

J1(U1, C);

J1(U1, C) =
1

m∗

∑
sj∈U1

I(Sj, C) (2.16)

The Maximum-Relevance criterion does not account for the information redundancy between

sensors. Thus, the Minimum Redundancy criteria is defined as follows.

Definition 2.4.5 (Min Redundancy) The Minimum Redundancy criterion aims to find the setU∗2 ⊆

25

S, where |U∗2 | = m∗, m∗ < m, that minimizes average mutual information between its sensor

pairs, such that

U∗2 = arg min
U2⊆S,|U2|=m∗

J2(U2),

J2(U2) =
1

(m∗)2

∑
s`,sj∈U2

I(S`, Sj) (2.17)

The mRMR criterion combines the above two criterion as follows.

Definition 2.4.6 (minimum Redundancy Maximum Relevance) The minimum Redundancy Max-

imum Relevance (mRMR) criterion aims to find the set S∗ ⊆ S, where |S∗| = m∗, m∗ < m, to

optimize J1 and J2 simultaneously, such that

S∗ = arg max
U⊆S,|U|=m∗

J(U, C),

J(U, C) = J1(U, C)− J2(U) (2.18)

The evaluation of the mRMR criteria requires: a) computation of I(Sj, C) and I(S`, Sj),

∀`, j = 1, 2, . . .m, and b) finding the solution of the optimization function in Eq. (2.18). The

mutual information quantities are computed from the symbol sequences of each sensor data, as

described in Appendix A.2. The optimization problem based on the mRMR criterion is a com-

binatorial problem, which can be solved using the Forward Selection search method [10]. Note:

this information-theoretic method of sensor selection is more efficient and several orders of mag-

nitude faster as compared to the full wrapper method that requires computation of the CCRs for all

sensors.

Forward Selection Search

The forward selection search is a greedy search algorithm that is used to find a (sub)optimal solu-

tion of the mRMR optimization problem in Eq. (2.18). To be specific, the algorithm starts with an

empty set of sensors, then keep adding sensors that maximize the mRMR criteria until the desired

number of m sensors is obtained. The details [66] of the algorithm are shown in Algorithm 1.

26

Result: An optimal set of sensors S∗ = {s∗` , ∀ ` = 1, 2, . . .m∗}.
Initialization: S = {s1, s2, . . . sm}, S∗ = ∅, ` = 1
while ` ≤ m∗ do

• Step 1: Find the sensor s∗` ∈S that maximizes the criterion in Eq. (2.18) for a single sensor

• Step 2: Update S→S − s∗`

• Step 3: Update S∗ →S∗ ∪ s∗` , `→ `+ 1

end
Algorithm 1: The Forward Selection Search Algorithm

2.4.4 Embedded Algorithm

As mentioned earlier, an embedded wrapper and filter algorithm is used to tradeoff between the low

complexity of filter algorithms and the accuracy of wrapper algorithms in the optimal sensor set

selection procedure. In other words, an embedded algorithm uses a filter algorithm first to select a

candidate list (CL) of sensors; subsequently, a wrapper algorithm (which uses a specific classifier)

is deployed to select or rank the optimal set of sensors[10] from the candidate list. The embedded

algorithms also have several deficiencies including being classifier specific and requiring tuning

the classifier beforehand for each sensor separately. To circumvent these disadvantages, the paper

proposes the unsupervised embedded algorithm as described next.

2.4.5 Unsupervised Embedded Algorithm

The unsupervised embedded algorithm also relies on a filter algorithm (e.g., the mRMR) to select

the candidate list (CL) of m sensors. Then the data Zj corresponding to each sensor sj ∈ CL,

which consists of the data of all classes, are clustered into n clusters using the K-means clustering

algorithm [67], where n is equal to the number of fouling classes (for this paper n = 4). Lets

call these clusters as {O1,O2, . . .On}. Lets now define a random variable Oi that is drawn on the

cluster Oi and whose outcome belongs to the set of classes C = {c1, . . . cn}. Subsequently, the

entropy H(Oi), i = 1, . . . n, of the class distribution within each cluster is computed using Eq.

(2.5). Then, the weighted entropy sensor sj is calculated as

Hj =
n∑
i=1

|Oi|
|Γ| · T

·H(Oi). (2.19)

27

(a) High-ranking, low-entropy sensor (b) Low-ranking, high-entropy sensor
Oi: a cluster ∀ i = 1, 2, 3, 4 ci: classes ∀ i = 0, 1, 2, 3

Figure 2.7: An example of using the K-means clustering algorithm and the entropy criterion to
rank sensors

where |Γ| · T =
n∑
i=1

|Oi| is the total number of training data for sensor sj∀sj ∈ CL.

Finally, the sensors are ranked according to their entropies such that the sensor that has the

lowest entropy is ranked the highest and so on. In this fashion the candidate list is re-ranked and a

possible list of top ranked sensors is selected for further analysis. This process ranks the sensors in

the order such that the sensors that have the least uncertainty between classes in their data clusters

are ranked the highest, thus facilitating a better classification decision.

Figures 2.7(a) and 2.7(b) show examples of a high and low rank sensors, respectively. As seen

in the figures, when the average entropy Hj for a sensor sj ∈ S is low, the inter-class distances

between samples that belong to different classes are high while the within-class distances (i.e.,

distances between samples that belong to the same class) are low. Therefor, low entropy sensors

are expected to achieve higher CCRs.

2.5 Data Analysis for Fouling Diagnosis

Once an optimal sensor set is obtained, different machine learning methods are applied for analysis

of sensor data for fouling diagnosis. These methods consists of the feature extraction and the

classification steps as described below.

28

2.5.1 Feature Extraction

Two methods of feature extraction are applied in this chapter; namely, the Principal Component

Analysis (PCA) and the Gaussian Mixture Model (GMM) as described below.

Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is a data reduction method. Given a data matrix X

of dimension L × m, where L > m, whose columns are data vectors (e.g., sensor data). The

objective of PCA is to transform the data matrix X into a matrix X′ of size L ×m′, where m′ <

m. The columns of X′ hold the Score Vectors (also known as the Principal Components). This

transformation is accomplished using the Karhunen-Loéve (KL) algorithm which is summarized

in Appendix B.1. For implementation to the heat exchanger data, consider the sensor data Zj for a

specific sensor sj for a specific day type. The nominal data corresponding to class c0 is extracted

from Zj and averaged to get a time series data z̄0
j as follows:

z̄0
j =

1

256

∑
γ∈{γ1...γ256}

z0
j(γ) (2.20)

Thereafter, the steady state part of z̄0
j is partitioned into m = 10 segments, each of length L = 30.

These data segments are organized to form a L × m data matrix X0. Following the steps of

the KL algorithm, the m × m′ transformation matrix Ω is then obtained, where m′ = 2 and

is kept fixed. Subsequently, the scores (or principal components) of any observation sequence

zj(γ) ∀ γ = 1, 2, . . . |Γ| are generated by reorganizing the sequence into an L × m matrix X by

breaking zj(γ) into m segments of length L each. The scores of this sequence are then computed

using Eq. (B.1) in Appendix B.1. These scores consist of L points each of which are m′ = 2

dimensional. In the training phase these scores are labeled with fouling class and are sent to the

classifier for training, while in the testing phase they are unlabeled and are sent to the trained

classifier for decision on the fouling class.

29

Gaussian Mixture Model (GMM)

Consider sensor data zj(γr) = [Zj(r, 1), Zj(r, 2), . . . Zj(r, T)] for some γr ∈ Γ. The Gaussian

Mixture Model (GMM) is a statistical model of zj(γr) represented as a sum ofR different Gaussian

distributions as

p(zj(γr)|M)=
R∑
`=1

ρ` ·G (z;µ`, σ`) (2.21)

where M = {ρ1, ρ2, . . . ρR, µ1, µ2, . . . µR, σ1, σ2, . . . σR} is the set of weights ρ`s, means µ`s and

variances σ`s, ` = 1, . . . R, and z is a random variable. The function G (z, µ`, ρ`) is a Gaussian

distribution given as

G (z;µ`, σ`)=
1

(2π)1/2
√
σ`
× e−

1
2

(z−µ`)′(σ`)−1(z−µ`) (2.22)

The parameters ρ`, µ` and ρ`,∀` = 1, 2, . . . R, are estimated from the data using the Expectation

Maximization (EM) algorithm [68]. Subsequently, M is used as a feature for the classifier. For

implementation to the heat exchanger data, a GMM is constructed from sensor data with R = 2.

For each observation sequence zj(γr) ∀ r = 1, 2, . . . |Γ| in Zj , the feature set M j(γr) is computed

as

M j(γr) = [ρ1
j , ρ

2
j , µ

1
j , µ

2
j , σ

1
j , σ

2
j](γr) (2.23)

2.5.2 Classification

Once the features are obtained as the principal components or the parameter set of the GMM, they

are processed by a classifier to make a decision on the heat exchanger fouling severity. This section

describes the k-Nearest Neighbor (k-NN) algorithm that is used as the classification technique.

k-Nearest Neighbor (k-NN)

The k-Nearest Neighbor (k-NN) classification algorithm is popular for its simplicity, efficiency

and low complexity. The k-NN classifier is explained in Appendix B.3. For implementation,

30

the k-NN classifier is applied on the feature space generated by PCA and GMM for each sensor

in the candidate list and each day type. For each observation sequence zj(γr), the PCA based

features (i.e., principal components) are L = 30 dimensional vectors in m′ = 2 dimensional

feature space while the GMM based features (i.e. the parameter set of GMM) are 1 dimensional

in the 6 dimensional feature space. Since the PCA based features are vectors, the k-NN classifier

producesL decisions one for each point in the vector. Then, a single decision is obtained from these

decisions using the simple majority rule. In the training phase, the optimal k is selected that results

in the highest CCR using the cross-validation algorithm for different values of k = 1, 3, 5, . . . 21.

For the cross-validation method, 30 data sequences are hold-out from each class and are used

for testing while the remaining are used for training. This process is repeated 50 times, where in

each run 30 data sequences are randomly selected from each class. This generates a total of 1500

testing samples for each class. The results are summarized into a confusion matrix [69], whose

columns contain the predicted classes while the rows contain the actual classes.

2.5.3 Sensor Fusion

Sensor fusion is performed for further improvement in the classification performance. Suppose for

a given day type the top three optimal sensors are {s∗1, s∗2, s∗3}, where s∗j ∈ S∗ ⊆ S, ∀j = 1, 2, 3.

Moreover, lets say that the classifiers have generated the following three decisions {ĉ1, ĉ2, ĉ3},

corresponding to the above three sensors, where ĉj ∈ C,∀j = 1, 2, 3. Then, the fusion decision

ĉF is obtained using the majority fusion method. Appendix C.3 presents a mathematical description

of the majority fusion method.

2.6 Results and Discussion

This section presents the results for optimal sensor selection and the classification for heat ex-

changer fouling diagnosis. As shown in the methodology in Fig. 2.3, the first step is training of

the classifiers. Therefore, sensor data is generated using a Simulink model that has been experi-

mentally validated by our industry partner. For each sensor sj ∈ S the data is stored in a |Γ| × T

31

Table 2.3: Decreasingly Sorted Candidate List and Optimal Sensor Sets

Day Type 1 Day Type 2 Day Type 3 Day Type 4 Day Type 5

Rank CL UE EP EG CL UE EP EG CL UE EP EG CL UE EP EG CL UE EP EG

1 Tcm Tcm Thx Thx Thx Thx Thx Thx Thx Po Thx Thx Thx Tout Thx Tout Thx Thx Tout Tout

2 Tout Thx Tcm Tcn Tout Tcm Tcm Po Tcn Thx Tcm Tcm Tcn Po Tout Thx Tcm Tout Thx Thx

3 Tcn P1 Tcn P2 P2 Po Po P2 Tout Tout Po Po Tout Thx Po Po Po Po Po Po

4 ṁ1 P2 Po P1 Tcn P1 P2 P1 P2 Tcm Tout Tout Po Tcn Tcm Tcm Tout P2 Tcm Tcm

5 P2 Po P1 Tcm Tcm P2 Tcn Tcm ṁ2 P1 P2 P2 Tcm Tcm P2 P2 P2 P1 P2 P2

6 Thx Tcn P2 Po ṁ1 Tout P1 Tcn P1 P2 P1 P1 TFD P1 P1 P1 P1 Tcm P1 P1

7 ṁ2 Tout ṁ1 Tout P1 Tcn Tout ṁ1 Po T2 ṁ2 T2 P1 P2 Tcn Tcn TFD Tcn TFD Tcn

8 P1 ṁ1 ṁ2 ṁ2 Po ṁ1 ṁ2 ṁ2 T2 T1 T2 T1 P2 TFD TFD TFD Tcn TFD Tcn TFD

9 Po ṁ2 Tout ṁ1 ṁ2 ṁ2 ṁ1 Tout Tcm Tcn T1 ṁ2 TZ1 TZ1 TZ1 TZ1 TZ2 TZ2 TZ1 TZ2

10 TZ5 TZ5 TZ5 TZ5 TZ5 TZ5 TZ5 TZ5 T1 ṁ2 Tcn Tcn TZ5 TZ5 TZ5 TZ5 TZ1 TZ1 TZ2 TZ1

CL Candidate List UE Unsupervised Embedded

EP, EG Embedded with PCA+k-NN and GMM+k-NN

matrix Zj which includes the data for all four fouling classes as described in Section 2.3.2. The

rows of the matrix consist of various parametric combinations of the ambient temperature (TA)

within a specific day type, the occupant count (OCC), and the impedance values (zc) within each

class, as shown in Tables 2.2(a)-2.2(c). As described in Section 2.3.2, for each class there are 256

data sequences each of length T = 600, thus resulting in a total of 4 × 256 = 1024 sequences

for each day type. Similar data are generated for each day type. To include the effect of other

uncertainties beyond the above parametric uncertainties, the data is corrupted by 25dB additive

white Gaussian noise, and the noisy data are plotted in Fig. 2.5. The noise is filtered out using

5-levels wavelet denoising technique [70] using 6-taps Daubechies wavelet with soft-thresholding

on the detail coefficients of the wavelet. The thresholds are determined using Stein Unbiased Risk

Estimator (SURE). The fouling diagnosis methodology uses only the last 300 seconds of steady

state data for analysis.

Subsequently, the data of all sensors for one day type are taken and the mRMR technique is

applied to find the candidate list of top 10 sensors. To compute the information theoretic quantities

in the mRMR criterion, the sensor data is transformed into symbol sequences using the Maximum

Entropy Partitioning as described in Section 2.4.2. The above process is repeated for each day

type. The resultant candidate lists (CL) are shown in Table 2.3.

32

Once the candidate list is generated for each day type using the mRMR criteria, the unsuper-

vised embedded algorithm is applied on the candidate list, which includes a two-step process: i)

K-means clustering of each sensor data, ii) computation of weighted average cluster entropies and

sensor ranking as described in Section 2.4.5. The resultant sensor ranking is presented in Table

2.3. For comparison, the embedded algorithm is used to rank the sensors which used two different

wrappers: i) PCA as the feature extractor and k-NN as the classifier, and ii) GMM as the feature

extractor and k-NN as the classifier. As seen in Table 2.3, the results of unsupervised embedded

algorithm improved the candidate list rankings which were purely based on information-theoretic

quantities, such that the updated rankings are similar to the embedded wrapper results. However,

the unsupervised embedded algorithm does not depend on the feature extraction and classification

methods and is computationally much more efficient.

Using the PCA procedure for feature extraction as described in Section 2.5.1, a feature vector

consisting of 30 feature points are extracted from each data sequence in the data matrix Zj . Each

feature point is composed of the elements of the first and second principal components. These

principal components are computed from the eigenvectors whose corresponding eigenvalues con-

tain more than 90% of the energy. Since ambient temperature can be measured and known, it is

used to augment the feature space as the third axis where the other two axis are formed by the two

principal components. As a result, we have 30 feature points for each data sequence plotted in a

3D feature space. This resulted in excellent clustering of the classes as shown in Fig. 2.8.

Using the GMM procedure for feature extraction as described in Section 2.5.1, the second order

GMM was used to extract a feature vector of size 1×6 from each data sequence which is composed

of the weights, means, and variances of the 2 mixtures as explicitly stated in Eq. (2.23). Similar

to the PCA procedure, the GMM feature space is also augmented with the ambient temperature.

Due to its high dimension, GMM feature vectors are difficult to visualize; however, it leads to high

CCR in conjunction with k-NN classifier as discussed below.

The confusion matrices of the PCA + k-NN and the GMM + k-NN methods are presented in

Tables 2.4 and 2.5, respectively. An interesting observation on the confusion matrices is that false-

alarms and miss-detections mostly occur between adjacent fouling classes. Table 2.6 presents the

33

Figure 2.8: Top three unsupervised embedded optimal sensors’ principal components 1 and 2 vs
the ambient temperature for day types 1, 2, . . . 5

CCR results which indicate that the performances of PCA and GMM are comparable, with a slight

lead for the GMM.

34

Table 2.6 shows that not only do optimal sensors selected using the unsupervised embedded

algorithm lead to high CCRs (above 85% in most of the cases), but also the majority vote fusion

of resultant sensors lead to superior results (above 94% for most of the day types). Besides that,

testing the PCA requires majority vote among the 30 feature vectors (as described in Section 2.5.1)

unlike the GMM; this makes the GMM much faster to train and test. Nonetheless, training the

GMM requires the use of the Expectation Maximization (EM) algorithm, which is more expen-

sive than the KL algorithm. The computation times on 32-bit MatLab running on a 3.10 GHz

Intel(R) Core(TM) i5− 2400 processor, 16 GB ram and Windows 7 Operating System are shown

Table 2.4: Confusion Matrices of the Optimal Sensors with PCA + k-NN for Classification

Day Type
Optimal Sensors Selected Using UE Algorithm Majority Vote Fusion

s∗1 s∗2 s∗3 of s∗1, s
∗
2 and s∗3

Classifier Output Classifier Output Classifier Output Classifier Output
c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3

Day Type 1

A
ct

ua
l c0 1378 122 0 0 1354 146 0 0 1284 216 0 0 1439 61 0 0

c1 129 1261 110 0 105 1295 100 0 311 1112 77 0 130 1332 38 0
c2 6 145 1303 46 0 108 1373 19 0 151 1300 49 2 65 1419 14
c3 0 0 60 1440 0 0 41 1459 0 0 50 1450 0 0 12 1488

Day Type 2

A
ct

ua
l c0 1352 148 0 0 1325 175 0 0 1314 186 0 0 1435 65 0 0

c1 146 1286 68 0 213 1196 91 0 401 1015 84 0 173 1305 22 0
c2 0 118 1330 52 0 131 1278 91 0 112 1357 31 0 79 1414 7
c3 0 0 47 1453 0 4 80 1416 0 0 33 1467 0 0 5 1495

Day Type 3

A
ct

ua
l c0 1223 277 0 0 1326 174 0 0 1065 412 7 16 1349 151 0 0

c1 287 1119 94 0 162 1248 90 0 400 1023 77 0 229 1259 12 0
c2 0 99 1374 27 0 89 1411 0 25 107 1368 0 1 34 1465 0
c3 0 0 9 1491 0 0 1 1499 6 0 0 1494 0 0 0 1500

Day Type 4

A
ct

ua
l c0 1269 231 0 0 1332 168 0 0 1359 141 0 0 1419 81 0 0

c1 218 1271 11 0 205 1223 72 0 119 1360 21 0 97 1399 4 0
c2 0 1 1499 0 0 102 1356 42 0 41 1459 0 0 9 1491 0
c3 0 0 0 1500 0 0 46 1454 0 0 2 1498 0 0 0 1500

Day Type 5

A
ct

ua
l c0 1413 87 0 0 1433 67 0 0 1396 104 0 0 1480 20 0 0
c1 84 1414 2 0 94 1392 14 0 106 1330 64 0 40 1460 0 0
c2 0 11 1489 0 0 17 1483 0 0 73 1351 76 0 4 1496 0
c3 0 0 18 1482 0 0 0 1500 0 0 73 1427 0 0 2 1498

k Number of nearest neighbors for the k-NN algorithm UE Unsupervised Embedded

35

Table 2.5: Confusion Matrices for the Optimal Sensors with GMM + k-NN for Classification

Day Type
Optimal Sensor Selected Using UE Algorithm Majority Vote Fusion

s∗1 s∗2 s∗3 of s∗1, s
∗
2 and s∗3

Classifier Output Classifier Output Classifier Output Classifier Output
c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3 c0 c1 c2 c3

Day Type 1

A
ct

ua
l c0 1289 210 1 0 1385 115 0 0 1303 197 0 0 1438 62 0 0

c1 194 1195 111 0 113 1334 53 0 288 1205 7 0 111 1373 16 0
c2 11 131 1322 36 0 129 1326 45 0 170 1303 27 2 60 1419 19
c3 0 0 89 1411 0 0 81 1419 0 0 63 1437 0 0 14 1486

Day Type 2

A
ct

ua
l c0 1371 129 0 0 1243 257 0 0 1354 146 0 0 1438 62 0 0

c1 158 1286 56 0 254 1140 106 0 385 1080 35 0 183 1303 14 0
c2 0 121 1352 27 1 126 1279 94 0 103 1353 44 0 53 1436 11
c3 0 0 64 1436 0 0 100 1400 0 0 41 1459 0 0 14 1486

Day Type 3

A
ct

ua
l c0 1317 183 0 0 1366 134 0 0 962 493 21 24 1384 116 0 0

c1 339 1122 39 0 118 1363 19 0 437 1028 35 0 187 1312 1 0
c2 0 97 1387 16 0 89 1411 0 14 141 1345 0 4 20 1476 0
c3 0 0 35 1465 0 0 5 1495 0 0 27 1473 0 0 1 1499

Day Type 4

A
ct

ua
l c0 1344 127 29 0 1398 102 0 0 1447 53 0 0 1479 21 0 0

c1 141 1349 10 0 203 1249 48 0 158 1335 7 0 90 1409 1 0
c2 0 40 1454 6 0 99 1366 35 0 98 1396 6 0 18 1478 4
c3 0 0 11 1489 0 0 59 1441 0 0 50 1450 0 0 3 1497

Day Type 5

A
ct

ua
l c0 1412 88 0 0 1411 89 0 0 1413 87 0 0 1475 25 0 0

c1 93 1392 15 0 82 1402 16 0 122 1342 36 0 30 1470 0 0
c2 0 31 1464 5 0 50 1443 7 0 100 1378 22 0 10 1490 0
c3 0 0 36 1464 0 0 7 1493 0 0 112 1388 0 0 4 1496

k Number of nearest neighbors for the k-NN algorithm UE Unsupervised Embedded

in Table 2.7 for training and testing phases.

2.7 Conclusions

The chapter presented a methodology for fouling diagnosis of the Secondary Heat Exchanger in the

Environmental Control System of an aircraft that regulates temperature, pressure and humidity of

the cabin air as well as the air used to cool electronics onboard the aircraft. Since the ECS contains

a large number of sensors, an optimal sensor selection methodology is presented to select the most

useful sensors that provide the best diagnosis results. The results of unsupervised embedded (UE)

36

Table 2.6: Classification Results for the Top Three Optimal Sensors Obtained using the UE Algo-
rithm

Day Type
UE PCA + k-NN GMM + k-NN

Sensor NE CCR (%) FA (%) MD (%) CCR (%) FA (%) MD (%)

Day Type 1

Tcm 0.50 89.7 8.1 3.0 87.0 14.1 4.6
Thx 0.51 91.4 9.7 2.3 91.1 7.7 2.5
P1 0.52 85.8 14.4 6.9 87.5 13.1 6.4
MVF - 94.6 4.1 2.9 95.3 4.1 2.5

Day Type 2

Thx 0.42 90.4 9.9 3.2 90.8 8.6 3.5
Tcm 0.45 86.9 11.7 4.7 84.4 17.1 5.7
Po 0.45 85.9 12.4 8.9 87.4 9.7 8.6
MVF - 94.2 4.3 3.8 94.4 4.1 4.1

Day Type 3

Po 0.44 86.8 18.5 6.4 88.2 12.2 7.5
Thx 0.46 91.4 11.6 3.6 93.9 8.9 2.6
Tout 0.50 82.5 29.0 9.6 80.1 35.9 10.0
MVF - 92.9 10.1 5.1 94.5 7.7 4.2

Day Type 4

Tout 0.44 92.3 15.4 4.8 93.9 10.4 3.1
Po 0.46 89.4 11.2 4.6 90.9 6.8 4.5
Thx 0.47 94.6 9.4 2.6 93.8 3.5 3.5
MVF - 96.8 5.4 2.2 97.7 1.4 2.0

Day Type 5

Thx 0.49 96.6 5.8 1.9 95.5 5.9 2.1
Tout 0.49 96.8 4.5 2.1 95.8 5.9 1.8
Po 0.51 91.7 6.9 2.4 92.0 5.8 2.7
MVF - 98.9 1.3 0.9 98.9 1.7 0.7

UE Unsupervised Embedded Algorithm MVF Majority Vote Fusion
CCR Correct Classification Rate (%) FA False Alarm Rate (%)
NE Normalized Entropy MD Miss-Detection Rate (%)

algorithm for sensor selection are compared with embedded wrapper algorithms. It is shown that

the sensors ranked by UE algorithm yield excellent classification results with significant improve-

ment in computational complexity. Subsequently, the data of the top ranked sensors are analysed

using the k-NN classifier in combination with either PCA or GMM as feature extractors and re-

sults are compared. The data is generated from an experimentally validated high-fidelity Simulink

model of the ECS provided by our industry partner and included various uncertainties generated

by parametric fluctuations in ambient temperature, occupant count, and flow impedance. Finally,

the majority vote algorithm is applied as a simple fusion technique to improve the results.

The following areas are envisioned for future research:

37

Table 2.7: Computation Time for Various Procedures Used for Heat Exchanger Fouling Diagnosis

Procedure
Training Time Testing Time
(Per Day Type) (Per Observation)

Maximum Entropy Partitioning 1 s -
mRMR 5.2 s -
Clustering + Entropty Based Ranking 4.8 s -
GMM Feature Extraction 7.55 min -
PCA Feature Extraction 1.06 s -
PCA + k-NN 7.55 min 50 ms
GMM + k-NN 36.1 s 0.7 ms
PCA + k-NN + Majority Vote 22.65 min 150 ms
GMM + k-NN + Majority Vote 108.3 s 2.1 ms

• Real-time implementation of the heat exchanger fouling diagnosis methodology on actual

aircraft data

• Testing and validation of different sensor fusion methods

• Utilization of different machine learning tools for improving the classification performance

• Development of a similar fouling diagnosis methodology for aircraft cruise operating condi-

tions.

38

CHAPTER 3

BB-FUSE: OPTIMAL SENSOR-CLASS PAIR SELECTION AND FUSION

ALGORITHM FOR CLASSIFICATION

3.1 Introduction

Information fusion is the art of combining information from different sources to enhance informa-

tion quality, where the information quality can be evaluated using different measures depending

on the application (e.g., Correct Classification Rate (CCR), tracking accuracy, etc.). Often the

data collected from different sensors is uncertain, conflicting, incomplete and/or redundant, thus

making information fusion a challenging task [71]. The need for information fusion has emerged

in diverse applications such as biometrics identification [4, 7, 72], geoscience [1, 73], target track-

ing [74, 75], audio processing [9, 76], text classification [8, 77], medical data [3, 78], surveillance

sensor networks [19, 79], facial recognition [80–82], human activity recognition [Najjar2015,

83–85], image analysis [86–88], robotics [89, 90], and complex systems diagnostics [18, 91]. In

general for n-class classification problems, one of the main objective of information fusion is to

improve the CCR of the sensing system with multiple sensors.

However, if information fusion is not performed properly, it can sometimes degrade the infor-

mation quality. This can happen if fusion is performed on sensors that do not all contain useful

information pertaining to the underlying classification problem. Typically, it is observed that dif-

39

ferent sensors might have different classification accuracies in separating different classes. In other

words, a sensor might be extremely good in classifying a certain subset of classes, but yield a poor

performance in classifying others. Thus, an efficient fusion algorithm must capitalize on this fact

to identify the best sensor-class pairs and fuse them effectively to yield an overall improved CCR.

In this regard, this chapter introduces a fusion algorithm, called Better-than-the-Best Fusion

(BB-Fuse), which systematically fuses relevant information derived from optimal sensor-class

pairs, to guarantee that the resulting CCR is better than or equal to the best CCR obtained by

any single sensor. In the training phase, the algorithm constructs a fusion tree, called the BB-Fuse

Tree, by finding the optimal sensor-class pairs and placing them on the nodes of the tree. This is

done by constructing n binary confusion matrices for each sensor by training a classifier, where

each confusion matrix corresponds to one particular class and evaluates the classifier performance

in separating that class from the rest. Subsequently, the best sensor is selected for isolating each

class, thus generating the optimal sensor-class pairs. The process is done in a sequential manner to

built the BB-Fuse Tree which isolates one class at each node with maximum achievable CCR. In

the testing phase, the BB-Fuse Tree is used on unlabeled sensor data by sequentially applying the

sensor-class pairs designed at each level of the tree to obtain the final decision at a terminal node.

The BB-Fuse algorithm is validated on experimental data sets from two different applications.

The first application is focused on human activity recognition where the objective is to classify ba-

sic hand movements in a kitchen environment using different sensors placed at multiple locations.

The second application is focused on people identification from walking activity using acceleration

sensor data collected from Android phones placed in their chest pockets.

The main contributions of this chapter are as follows:

• Development of the BB-Fuse algorithm for n-class classification problems, which produces

higher CCR than that of the best sensor with provable guarantees.

• Testing and validation of the BB-Fuse algorithm on two different data sets and performance

comparison with other fusion algorithms in literature.

The chapter is organized as follows. Section 3.2 presents the relevant literature review on fusion

40

methods for classification. Section 3.3 lays out the mathematical foundation for the BB-Fuse

algorithm while Section 3.4 presents its details. Section 3.5 discusses the performance of BB-

Fuse from optimality and complexity perspectives. Section 3.6 presents the testing and validation

results and Section 3.7 concludes the chapter with recommendations for future work. Additionally,

Appendix C describes other fusion algorithms that are used for comparative analysis with the BB-

Fuse algorithm.

3.2 Literature Review

Several fusion methods have been proposed in literature with diverse applications. While some

technical details are discussed in Appendix C, a brief review is presented below.

3.2.1 Voting Methods

Voting-based fusion methods are the simplest where the classifiers are the voters and the classes

are the candidates. Three popular voting methods are reviewed below:

•Majority Voting

The simplest form of voting is the Majority Voting where the decision of each classifier is treated

as its vote while the voted class earns a point. Then the class that scores the maximum points wins

the election [92]. Majority Voting has been used in a variety of applications. For example, Kim et

al. [93] used Majority Voting to develop a diagnostic system for an air-operated valve system that

is used in nuclear power plants. Specifically, they used Majority Voting to fuse logistic regression,

artificial neural network, and support vector machine classifiers. Orrite et al. [94] addressed the

problem of selecting the smallest set of classifiers that maximizes recognition and then fused them

using Majority Voting. Kuncheva et al. [95] derived the upper and lower bounds of the accuracy of

the Majority Voting.

Despite the simplicity and effectiveness of Majority Voting, there is a possibility of ties. Further

it has a drawback that a class may win even though it received a small number of votes; especially

when the number of classes is large [92].

41

• Condorcet Count Voting

Condorcet Count Voting decreases the chances that a candidate wins with a small number of votes.

Here instead of voting for all classes, the classifiers vote for all 2-class pairwise competitions, thus

comparing each class with every other class. The class that scores the largest number of points

wins the overall election [92]. Condorcet Count Voting has appeared in a number of applications.

Ahmed et al. [96] applied this method to search a database of chemical compounds to select a

compound that matches a desired biological activity. Wu [97] presented an improvement by using

Linear Discriminant Analysis to design weights for the Condorcet Count Voting, and then applied

Weighted Condorcet Count Voting for information retrieval.

Repeated pairwise class elections can make the Condorcet Count Voting computationally ex-

pensive [92].

• Borda Count Voting

Another improvement of the Majority Voting is the Borda Count Voting. Here each classifier

expresses its confidence on its classification decision by ranking the classes using a function called

the Borda Count [98]. Borda count for a class is defined as the number of classes ranked below

it by the classifier. Then the class that has the maximum Borda count summed from all classifiers

wins. Borda Count Voting has been applied in many applications [99]. An example is in fault

diagnosis of induction motors for elevator traction machines where Niu et al. [100] fused support

vector machine, linear discriminant analysis, k-Nearest Neighbors, random forests and adaptive

resonance theory-Kohonen neural network classifiers using Majority Voting, Bayesian Belief, and

modified Borda Count Voting methods.

Borda Count Voting is effective and easy to implement; however, its performance could degrade

when erratic classifiers outnumber the accurate ones [101].

3.2.2 Bayesian Fusion Methods

Bayesian fusion methods [101] require the classifiers’ outputs to be expressed as posterior prob-

abilities. Posterior probabilities can be estimated using various techniques, e.g., using confusion

42

matrices or using posterior probabilities of Bayes classifiers [101]. Bayes Belief Integration is a

member of the Bayesian fusion family that uses confusion matrices of individual classifiers to cal-

culate the posterior probabilities of the classes given the decisions of all classifiers, then picks the

class that maximizes it [101]. Qu et al. [102] proposed a method for mechanical fault diagnosis

using dual-tree wavelet packet transform and classifier fusion using Bayes Belief method. Kabir

et al. [103] developed a Bayesian Belief network based data fusion model for failure prediction

in water mains. Jin et al. [104] presented a fuzzy ARTMAP ensemble approach using improved

Bayesian Belief method for reliable fault diagnosis.

The implementation of Bayes Belief Integration method in the testing phase requires the acqui-

sition of all classifiers decisions, which makes it computationally expensive.

3.2.3 Boosting Methods

Boosting algorithms [105] find a linear combination of a set of weak classifiers to obtain an en-

hanced decision. In the training phase, a classifier is added at each iteration which minimizes the

error on previously miss-classified training samples. This is done according to a distribution which

increases (decreases) weight of miss (correct) classified examples. Adaptive Boosting (Adaboost)

is a popular boosting method that is based on the minimization of the exponential loss function

and it achieves better than random guessing under certain conditions [105]. Adaboost has been

used in many applications. Guo et al. [106] proposed a pedestrian detection method that combines

Adaboost and SVM algorithms. Cheng and Jhan[107] proposed an AdaBoost-SVM classifier for

triaxial accelerometer-based fall detection.

The popular classifiers (e.g., k-NN and Support Vector Machines) need to be slightly modified

to accept training data distribution before the boosting algorithm is applied.

3.2.4 Decision Tree Methods

Several variants of decision trees [108] have been proposed in literature for classification and fu-

sion. The most popular classification decision trees apply thresholds to different features at each

node, to split the training data into two (or more) groups. The optimal feature is then selected

43

at each node using an impurity measure (e.g., entropy [109, 110], information index, Gini in-

dex [109], etc.) of the resultant groups. The process is repeated for all nodes and the algorithm

terminates when the terminal nodes contain only single classes. The tree is then pruned to reduce

the computational complexity [109, 110]. Three popular classification decision trees are Classifi-

cation and Regression Trees (CaRT)[3, 109, 111], ID3 [110, 112], and C4.5 [113, 114].

In lieu of the above review, the BB-Fuse algorithm is positioned in the category of decision

trees. The algorithm constructs a binary tree by selecting an optimal sensor-class pair at each

node. The decision-making is not threshold based and it applies a classifier at each node to isolate

one class at a time. Thereby, it provides an analytical guarantee to yield a CCR which is better

than the best individual sensor. Furthermore, BB-Fuse has low-computational complexity because

it sequentially uses only a selected subset of classifiers that maximize the isolation of one class at

a time.

3.3 Mathematical Preliminaries

This section builds the mathematical foundation necessary for constructing the BB-Fuse algorithm.

Definition 3.3.1 (Graph [115]) A graph G = (V ,E) consists of a set of nodes (or vertices) V =

{v1, v2, . . . v|V |} and a set of edges E = {e1, e2, . . . e|E |}, where each edge is a node pair of the

form (vi, vj). If the order of the pairs (vi, vj) is specified (i.e., (vi, vj) 6= (vj, vi), ∀i 6= j), then the

graph G is called a directed graph; otherwise it is called an undirected graph.

Further, the following are defined for a graph G :

• A sequence {e(k)}k=1,2,... of edges e(k) = (v(k − 1), v(k)) ∈ E , is called a trail if all edges

are distinct.

• A path is a trail where all nodes are distinct.

• A cycle is a closed trail where only the first and the last nodes are the same.

• If the graph G has a cycle, then it is called a cyclic graph; otherwise, it is called an acyclic

graph.

44

(a) Decision Trees Types (b) Decision Trees (c) Binary (d) One-vs-the-Rest

Figure 3.1: Decision Tree Types; C = {a, b, c, d, e} is the Class Set.

• For any directed edge ek = (vi, vj) ∈ E , vi is called the parent of vj , and vj is called a child

of vi.

Definition 3.3.2 (Rooted-Tree [108]) A rooted-tree T = (V ,E) is a (directed) acyclic graph

that has one node, called the root, which has no parent, and there exists a unique path from the

root to each node, i.e. every node except the root has only one parent. A node without children is

called a terminal node (or a leaf).

Definition 3.3.3 (Decision Tree) A decision tree is a rooted tree where every non-terminal node

consists of a hypothesis and an input class set such that the hypothesis divides the class set into

multiple subsets forming inputs to its children. A unique classification decision for a testing pattern

is made by sequential application of the hypotheses on nodes, thus tracing a path on the tree from

the root to a leaf node.

A binary decision tree is a tree where every non-terminal node has only two children. A one-vs-

the-rest decision tree is a binary tree, which isolates one class from the rest of the classes available

at each node. Fig. 3.1 shows the different types of decision trees. Finally, two tree operations,

grafting and node merging, as shown in Fig. 3.2, are defined below.

Definition 3.3.4 (Grafting) Let T1 and T2 be two decision trees, where � is a leaf node of T1 and •

is the root of T2, and the class sets at the node � and the root • match. Then the grafting operation

T1 ⊕ T2 is defined as grafting of T2 to T1 at node � by replacing the node � with the root •.

45

(a) Grafting Example (b) Node Merging Example

Figure 3.2: An Illustration of the Grafting and Node Merging Operations on One-vs-the-Rest
Trees; where C = {a, b, ...z}.

Definition 3.3.5 (Node Merging) Let T be a decision tree and let vi and vj be any two of its non-

terminal nodes such that vj is a child of vi. Then the node merging operation, vi ≺ vj , is defined

as merging of vj with vi if the following conditions hold:

• An M -ary hypothesis h (e.g. a M -class classifier) is applied at node vi but only partially

used to divide the input class set at vi into M ′ < M class subsets.

• The same hypothesis h is again partially applied at vj to further divide the input class subset

at vj .

3.4 BB-Fuse Algorithm

This section describes the details of the BB-Fuse algorithm. First, the objective of the algorithm is

discussed, then its training and testing phases are explained.

3.4.1 Objective

Let P be the classification problem under consideration that aims to separate n classes from

the class set C = {c1, c2, . . . cn}. Let F = {f1, f2, . . . f|F |} be the set of sensing devices (or

modalities) which produce time series data for the observed phenomenon which has to be clas-

sified into the above classes. Further, let H = {h1, h2, . . . h|H |} be the set of different clas-

46

sifiers. Now define a set S = {s1, s2, ...sm} which is the product set of F and H such that

S = F ×H = {s , (f, h) : f ∈ F , h ∈ H and s ∈ S}. Thus each sj ∈ S is a combo of a

sensing device and a classifier trained on it such that it outputs a decision ĉj ∈ C, ∀j = 1, ...m.

For the sake of simplicity, we will just call each sensor-classifier combo as a ‘sensor’ where it is

understood that a classifier is trained and attached to it.

The objective of the fusion problem is to combine the decisions {ĉj ∈ C, j = 1, ...m} of

m sensors, to produce a unique decision ĉ ∈ C with improved accuracy. As discussed in the

introduction, different sensors might have different accuracies in separating different classes. Thus

the objective of the BB-Fuse algorithm is to identify the best sensor-class pairs and fuse them by

constructing a decision tree, called the BB-Fuse Tree, which yields a higher classification accuracy

than the best individual sensor.

3.4.2 BB-Fuse Training Phase

In the training phase, the BB-Fuse algorithm constructs a one-vs-the-rest decision tree TBB using

a greedy algorithm that isolates one class at each node from the rest until all classes are isolated at

terminal nodes.

BB-Fuse Tree Structure

Since the class set C = {c1, c2, . . . cn} consists of n classes, the BB-Fuse tree TBB consists of

n levels denoted by ` = 1, ...n, as shown in Fig. 3.3. While level 1 consists of the root node,

level n consists of the two bottom most leaf nodes with exit classes. Every other level 2 ≤ ` ≤

(n − 1) consists of two nodes: i) a terminal, i.e. a leaf node, which contains the single isolated

class at the previous level, and ii) a non-terminal node, whose input is the class set available after

removing all previously isolated classes. Every non-terminal node splits into a leaf node and a

non-terminal node at a level below. Also, every non-terminal node contains a sensor s` ∈S which

makes the underlying binary classification decision. Fig. 3.3 shows the structure of the BB-Fuse

tree consisting of n leaf nodes and n− 1 non-terminal nodes.

To build the recursive iteration process to construct the tree, lets denote c̄0 ,C = {c1, c2, ...cn}

47

Figure 3.3: The Structure of a BB-Fuse Tree (TBB).

to form the entering class set at the root node of the tree at level 1. The root then splits the class set

c̄0 into two subsets at level 2 below, one consisting of a class c1 ∈ c̄0 which goes to the leaf node

as the isolated class, and the other consisting of the subset c̄1 = {c̄0\c1}, which forms the entering

class set for the corresponding non-terminal node. Then c̄1 is further split into two subsets and this

process is repeated at all levels until all classes are isolated. In general, let c̄`−1 ∀ ` = 1, ...n− 1 be

the entering class set at the non-terminal node at level `, such that |c̄`−1| = n− `+ 1. Then c̄`−1 is

split into two subsets, one consisting of the class c` ∈ c̄`−1, i.e. the isolated class which goes to the

leaf node below, and the other consisting of the set c̄` = {c̄`−1\c`} which forms the entering class

set to the following non-terminal node, until it contains only a single class.

Selection of the Optimal Sensor-Class Pairs

Now we describe the procedure to find the optimal sensor-class pairs {(s`, c`), ` = 1, ...n − 1}

to construct the BB-Fuse tree. To do so we first define one-vs-the-rest classification subproblems

at every non-terminal node of the tree. Consider the non-terminal node at level ` whose entering

class set is c̄`−1 as described above. Further let x ∈ c̄`−1 be a dummy class variable. Lets now

define its complement set x̄ , {c̄`−1\x}, i.e. the remaining available classes at that node, to

generate a partition of the class set c̄`−1 as {x, x̄}. Then, a one-vs-the-rest classification subproblem

P(x,x̄) is defined, which aims to separate the two meta-classes x and x̄. Thus the total number of

subproblems at any level ` is equal to the size of the entering class set |c̄`−1|. Given all such

48

subproblems, the following questions arise:

Q.1 Which subproblem produces the best results, i.e. which class is the best to isolate, at level `?

Q.2 Which sensor is the best to isolate it?

To answer the above questions, we need to first establish our performance measures to select the

optimal sensor-class pairs. One good performance measure is the CCR of a classifier, also called

classification accuracy, which measures its efficacy in making correct decisions. However, CCR

alone may not be enough since a classifier can produce an overall high CCR even though it poorly

isolates a certain class. Another measure is sensitivity, which is defined with respect to a certain

class as its correct classification probability. Thus, we consider these two performance measures

together; however, sometimes it may not be possible to obtain a feasible solution where these two

measures are maximized together. This is because the sensor-class pair which has the highest CCR

may not have the highest sensitivity and vice versa. Thus the optimization problem is formulated

as follows:

• Optimization Problem: Let s∗ ∈ S be the optimal sensor that generates the highest CCR

for the full classification problem P . Our aim is to construct a fusion scheme that will achieve a

CCR which is higher than that of s∗ used alone. Let π(sj,P(x,x̄)) denote the CCR generated by

sensor sj ∈S for the classification subproblem P(x,x̄), whose objective is to separate class x from

x̄. Then, at each level ` = 1, ...n− 1 of the tree, we consider the following problem:

(s`, c`) = max
∀sj∈S,∀x∈c̄`−1

π
(
sj,P(x,x̄)

)
,

subject to the constraint

p(x|s)p(x|x, s) ≥ p(x|s∗)p(x|x, s∗), (3.1)

which generates the optimal sensor-class pair (s`, c`) for each level `. The sensor s` is placed at

the non-terminal node of level ` which is used to separate the class c` which goes to the leaf node

at the level below. The term in the inequality is the sensitivity of sensor s, for separating class x

49

from the rest, weighted by the probability of class x.

We will show later that the BB-Fuse tree with optimal sensor-class pairs selected as above yields

a CCR higher than s∗. Here we define the Sensor-Class Pair Accuracy Matrix matrix as:

Π` =
[
π
(
sj,P(x,x̄)

)]
∀sj∈S,∀x∈c̄`−1 ; ∀` = 1, ...n− 1 (3.2)

whose rows and columns correspond to sensors and classes, respectively.

• Solution Procedure: To solve the optimization problem, π
(
sj,P(x,x̄)

)
are obtained as fol-

lows. Let A1(sj) = [ai,i′]i,i′=1,2,...n, be the confusion matrix resulting from sensor sj ∈ S for the

original n-class classification problem P . Here ai,i′ represents the number of testing samples that

are actually of class ci ∈ C but are classified as ci′ ∈ C; the diagonal elements ai,i represent the

correctly classified samples. Then binary confusion matrices B(x,x̄)(sj) = [bi,i′]i,i′=1,2, ∀x ∈ c̄0,

are derived from A1(sj) as follows:

b1,1 = aα,α , b1,2 =
n∑

k=1,k 6=α
aα,k

b2,1 =
n∑

r=1,r 6=α
ar,α , b2,2 =

n∑
r=1,r 6=α

n∑
k=1,k 6=α

ar,k

(3.3)

where α is the index of class x and B(x,x̄)(sj) evaluates the performance of sensor sj in solving

the subproblem P(x,x̄). Subsequently, these binary matrices are constructed for all sensors sj ∈S.

From these, π
(
sj,P(x,x̄)

)
= b1,1+b2,2∑

i,j bi,j
can be computed ∀sj ∈ S and ∀x ∈ c̄0, to generate the matrix

Π1. Similarly, the sensitivity terms are also computed which are equal to b1,1∑
i,j bi,j

. The optimal

sensor-class pair (s1, c1) is then selected as per the optimization problem in Eq. (3.1). To do so,

first the elements of Π1 are sorted and ranked. Then following down the rank, the sensor-class pair

with the highest rank and which satisfies the constraint below is selected. Note that the selected

pair will always have higher CCR for the underlying subproblem as well as higher sensitivity than

the sensor s∗; in the worst case, s∗ will be selected itself.

After the optimal class c1 is found, the class set is reduced to c̄1 = {c̄0\c1} and the confusion

matricesA2(sj) are obtained fromA1(sj), ∀sj ∈S, by deleting the row and column corresponding

to class c1. Then again binary confusion matrices are constructed from A2(sj) as described above

50

Figure 3.4: An Example of the BB-Fuse Tree Construction

and the optimal sensor-class pair (s2, c2) is selected at level 2 and so on. In general, A`(sj) is the

resulting (n−`+1)×(n−`+1) confusion matrix of sensor sj at level ` of the tree which is formed

by deleting the rows and columns corresponding to all classes that have been separated so far. The

above process is repeated at all levels to find all the optimal sensor-class pairs of the BB-Fuse tree.

Finally, in order to reduce the size of the tree, any parent and child nodes which contain the same

optimal sensor, are merged together as described in Definition 3.3.5.

Example 3.4.1 Figure 3.4 shows an example of the BB-Fuse tree construction where the input

class set is C = {c1, c2, c3}. The confusion matrices for 3 sensors s1, s2 and s3 are shown in

the left column. As seen, the highest CCR of 78% is obtained by sensor s1. The first step is to

calculate the binary confusion matrices for isolating one class from the rest, for each of the three

sensors, as shown in Iteration 1. Here, class c3 is isolated best using sensor s2 with a CCR of

97% . Thus, the optimal sensor-class pair at the root node is (s1, c1)=(s2, c3). Next, the class set is

reduced to c̄1 = {c1, c2}, and the third rows and columns are deleted from the confusion matrices,

as illustrated in Iteration 2. Again, it is seen that s3 separates the classes c1 and c2 with the highest

CCR of 100%. Thus, the optimal sensor-class pair (s2, c2)=(s3, c2) is selected and the BB-Fuse tree

51

is constructed. The CCR of the BB-Fuse tree is computed as

π(TBB,P) = p(c3)p(c3|c3, s2) + p(c̄3)p(c̄3|c̄3, s2)
[
p(c2)p(c2|c2, s3) + p(c1)p(c1|c1, s3)

]
=

100

300
· 100

100
+

200

300
· 190

200

[80

135
· 80

80
+

55

135
· 55

55

]
= 96%

which is higher than the CCR of any single sensor.

3.4.3 BB-Fuse Testing Phase

In the testing phase, unlabeled time series data are collected only from the optimal sensors s`; ` =

1, . . . n−1, found in the training phase. Then, the execution moves down the BB-Fuse tree starting

from the root node by using the optimal sensor-class pairs embedded in the tree. For example, at

level ` sensor s` is used to obtain a decision ĉ` ∈ C. If ĉ` is equal to the a priori determined

optimal class c`, then the algorithm terminates at the corresponding leaf node, where it outputs the

classification decision as ĉ = c`; otherwise, the algorithm moves down the tree. The above process

is repeated until a terminal node is reached.

3.5 BB-Fuse Performance

This section discusses the performance of the BB-Fuse algorithm from two perspectives; namely,

the optimality and the computational complexity.

3.5.1 BB-Fuse Optimality

First we show that the node merging operation as per Definition 3.3.5 does not affect the overall

CCR of the tree. We will need the following lemma.

Lemma 1 Let T1 and T2 be two decision trees such that they both have the same input class A

and the same exit class B at the last terminal node. Also, T1 and T2 yield the same CCR for the

classification problem P and the same probability of correct detection for class B. Furthermore,

let Tα be a decision tree whose last exit class is A and let Tβ be a decision tree whose input class

52

is B. Then,

• π(Tα ⊕ T1,P ′) = π(Tα ⊕ T2,P ′)

• π(T1 ⊕ Tβ,P ′′) = π(T2 ⊕ Tβ,P ′′)

• π(Tα ⊕ T1 ⊕ Tβ,P ′′′) = π(Tα ⊕ T2 ⊕ Tβ,P ′′′)

where P ′, P ′′ and P ′′′ represent the corresponding classification problems for the above grafting

operations; and π(�, ◦) denote the CCR obtained from the tree � for the classification problem ◦.

Proof: The proof is straightforward and results from graphical visualization of the grafting oper-

ations. �

Theorem 3.5.1 Let T be a one-vs-the-rest decision tree such that two of its non-terminal nodes,

say u and v, where u is the parent of v, carry the same sensor s ∈ S for classification. Let T ′ be

the tree obtained by merging these two nodes to form a node w = u ≺ v which carries the same

sensor s. Then,

π(T ,P) = π(T ′,P)

where π(T ,P) and π(T ′,P) denote the CCRs obtained from the trees T and T ′ for the classifi-

cation problem P , respectively.

Proof: Let Tuv be the subtree consisting of the non-terminal nodes u and v, such that the class x

is separated at node u, while classes y and z are separated at node v. Let Tα and Tβ be the subtrees

grafted above the node u and below the node v respectively, to form the tree T , such that the class

set {x, y, z} exits from Tα and forms the input class set for Tuv, while the class z exists from Tuv

and forms the input class set for Tβ . Thus, T is decomposed as follows

T = Tα ⊕ Tuv ⊕ Tβ. (3.4)

Since u and v contain the same sensor s, they can be merged as per Definition 3.3.5, to form a

node w = u ≺ v. Let Tw be the tree consisting of the single non-terminal node w, which separates

53

the three classes x, y and z. As above, lets graft Tα and Tβ above and below Tw respectively, to

form the tree T ′, such that

T ′ = Tα ⊕ Tw ⊕ Tβ. (3.5)

Now let the confusion matrix of sensor s to separate the classes x, y and z be represented as

A 1(s) =


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3


The CCR of Tuv is obtained as

π(Tuv,P(x,y,z)) = p1(x|s)p1(x|x, s)+p1(x̄|s)p1(x̄|x̄, s)·
{
p2(y|s)p2(y|y, s)+p2(z|s)p2(z|z, s)

}
(3.6)

where x̄ = {y, z} and π(Tuv,P(x,y,z)) is the CCR of the tree Tuv for the classification subprob-

lem P(x,y,z) which separates classes x, y and z. The quantities p1(x|s), p1(x̄|s), p1(x|x, s), and

p1(x̄|x̄, s) are computed from A 1(s) as

p1(x|s) =

3∑
j=1

a1,j

3∑
i=1

3∑
j=1

ai,j

, p1(x̄|s) =

3∑
i=2

3∑
j=1

ai,j

3∑
i=1

3∑
j=1

ai,j

, p1(x|x, s) =
a1,1

3∑
j=1

a1,j

, p1(x̄|x̄, s) =

3∑
i=2

3∑
j=2

ai,j

3∑
i=2

3∑
j=1

ai,j

.

At level 2 of the tree Tuv, the confusion matrix A 1(s) is updated to A 2(s) by deleting the row and

column corresponding to the class x. Thus,

A 2(s) =

 a2,2 a2,3

a3,2 a3,3



54

from where the quantities p2(y|s), p2(z|s), p2(y|y, s), and p2(z|z, s) are computed as

p2(y|s) =
a2,2 + a2,3

3∑
i=2

3∑
j=2

ai,j

, p2(z|s) =
a3,2 + a3,3

3∑
i=2

3∑
j=2

ai,j

, p2(y|y, s) =
a2,2

a2,2 + a2,3

, p2(z|z, s) =
a3,3

a3,2 + a3,3

.

By substituting all the above values in Eq. (3.6), we get

π(Tuv,P(x,y,z))=
a1,1

3∑
i=1

3∑
j=1

ai,j

+

3∑
i=2

3∑
j=2

ai,j

3∑
i=1

3∑
j=1

ai,j


a2,2 + a3,3

3∑
i=2

3∑
j=2

ai,j


=
a1,1 + a2,2 + a3,3

3∑
i=1

3∑
j=1

ai,j

=π(Tw,P(x,y,z)). (3.7)

From Eqs. (3.4), (3.5) and (3.7), and using Lemma 1, we obtain π(T ,P) = π(T ′,P). Thus,

the node merging operation does not affect the CCR. Hence Proved. �

Next we present the following theorem which will be needed to prove the main result of this

chapter.

Theorem 3.5.2 Let T be a one-vs-the-rest decision tree such that all its non-terminal nodes con-

tain the same sensor s ∈S. Then

π(T ,P) = π(s,P)

Proof: First consider a subtree T1 which has only one non-terminal node containing sensor s ∈S

to separate classes c1 ∈ C and c̄1 ⊂ C. Let the CCR of this subtree be denoted as π(T1,P(c1,c̄1)).

Trivially,

π(T1,P(c1,c̄1)) = π(s,P(c1,c̄1)) (3.8)

Now graft a subtree T2 below T1, where T2 consists of a single node containing sensor s and

which separates classes c2 ∈ c̄1 and c̄2 ⊂ c̄1, such that c̄1 forms the entering class set of T2, as

shown in Fig. 3.5 with s1 = s2 = s.

The resulting subtree is denoted as T1 ⊕ T2 which separates class c1 at level 1, c2 at level 2,

55

Figure 3.5: The BB-Fuse Tree

and c̄2 is the remaining class set. The CCR of T1 ⊕ T2 for the subproblem P(c1,c2,c̄2) is denoted as

π(T1 ⊕ T2,P(c1,c2,c̄2)). Using Theorem 3.5.1,

π(T1 ⊕ T2,P(c1,c2,c̄2)) = π(s,P(c1,c2,c̄2)) (3.9)

Now we continue the process of grafting subtrees below and prove the result by induction. Con-

sider a tree which is composed by grafting k − 1 subtrees T1, T2, ...,Tk−1, where each Tj, j =

1, ...k − 1 consists of a single non-terminal node containing sensor s, which solves the subprob-

lem P(cj ,c̄j). Thus, the resulting subtree is denoted as T1 ⊕ ...Tk−1 which solves the subproblem

P(c1,...ck−1,c̄k−1). We assume that the following is true

π(T1 ⊕ ...Tk−1,P(c1,...ck−1,c̄k−1)) = π(s,P(c1,...ck−1,c̄k−1)) (3.10)

and then show that

π(T1 ⊕ ...Tk,P(c1,...ck,c̄k)) = π(s,P(c1,...ck,c̄k)) (3.11)

From Eq. (3.10) it is observed that we can replace the subtree T1 ⊕ ...Tk−1 with a tree T ′ with

a single node containing the sensor s, which separates the classes c1, ...ck−1, c̄k−1 to get the same

CCR. Now graft the subtree Tk below the subtrees T1 ⊕ ...Tk−1 and T ′, such that c̄k−1 forms the

entering class set for Tk, which results in subtrees T1⊕ ...Tk and T ′⊕Tk respectively. Then using

56

Lemma 1 we get

π(T1 ⊕ ...Tk,P(c1,...ck,c̄k)) = π(T ′ ⊕ Tk,P(c1,...ck,c̄k)) (3.12)

where T ′ ⊕ Tk is a subtree with two non-terminal nodes, which separate class set {c1, ...ck−1} at

level 1 and classes ck, c̄k at level 2. Since these two nodes contain the same sensor s, they can be

merged and following the procedure similar to that of Theorem 3.5.1, it can be shown that

π(T ′ ⊕ Tk,P(c1,...ck,c̄k)) = π(s,P(c1,...ck,c̄k)) (3.13)

Thus Eq. (3.11) is true for arbitrary k. Since T = T1 ⊕ ...Tn−1 and P , P(c1,...cn−1,cn), the result

follows. Hence Proved. �

Corollary 1 Let T and T ′ be two decision trees where each of them address the same classifica-

tion problem P and all their non-terminal nodes contain the same sensor s ∈ S, however they

separate the classes in a different order. Then π(T ,P) = π(T ′,P).

Proof: Using Theorem 3.5.2, π(T ,P) = π(s,P). Also π(T ′,P) = π(s,P). Hence proved. �

Now we show the main result which states that the CCR of the BB-Fuse tree is better than the

CCR obtained by the best sensor. We will need the following lemma.

Lemma 2 If the numbers ai, bi, ci and di ∈ [0, 1], such that ai + bi ≤ 1, ci + di ≤ 1, ai ≥ ci and

ai + bi ≥ ci + di, ∀i = 1, 2, ...n− 1, then the following are true:

i. ai + biλi ≥ ci + diµi, where 0 ≤ µi ≤ λi ≤ 1,∀i, and

ii. a1 + b1(a2 + b2(...(an−1 + bn−1))) ≥ c1 + d1(c2 + d2(...(cn−1 + dn−1)))

Proof: i) There are two possible cases as follows.

• bi ≥ di: Since ai ≥ ci and λi ≥ µi, this implies that

ai + biλi ≥ ci + diµi (3.14)

57

• bi < di: Since ai + bi ≥ ci + di

⇒ ai − ci ≥ di − bi (3.15)

Now 1− µi ≥ 1− λi ⇒ di(1− µi) ≥ bi(1− λi)

⇒ di − bi ≥ diµi − biλi (3.16)

From (3.15) and (3.16) we get ai − ci ≥ diµi − biλi. This implies that ai + biλi ≥ ci + diµi.

ii) Lets start from the innermost term. Choose λn−1 = µn−1 = 1. Since an−1 + bn−1 ≥

cn−1 + dn−1,

an−1 + bn−1λn−1︸ ︷︷ ︸
λn−2

≥ cn−1 + dn−1µn−1︸ ︷︷ ︸
µn−2

Since an−2 + bn−2 ≥ cn−2 + dn−2, part i) implies that

an−2 + bn−2λn−2︸ ︷︷ ︸
λn−3

≥ cn−2 + dn−2µn−2︸ ︷︷ ︸
µn−3

Repeating the above procedure we get

an−k+1 + bn−k+1λn−k+1︸ ︷︷ ︸
λn−k

≥ cn−k+1 + dn−k+1µn−k+1︸ ︷︷ ︸
µn−k

where λn−k , an−k+1 + bn−k+1λn−k+1 and µn−k , cn−k+1 + dn−k+1µn−k+1, ∀k = 2, ...n − 1.

Finally,

a1 + b1λ1 ≥ c1 + d1µ1 (3.17)

Now plugging the values of λs and µs, we get

a1 + b1(a2 + b2(...(an−1 + bn−1))) ≥ c1 + d1(c2 + d2(...(cn−1 + dn−1)))

58

Hence Proved. �

Theorem 3.5.3 Let TBB be the BB-Fuse Tree with optimal sensor-class pairs {(s`, c`), ∀` =

1, . . . n− 1}. Then

π(TBB,P) ≥ π(s∗,P)

where s∗ is the sensor that achieves the highest CCR for the classification problem P when used

alone.

Proof: The BB-Fuse tree TBB consists of n − 1 non-terminal nodes to separate n classes. Thus

TBB is constructed by grafting n − 1 subtrees T1, T2, ...,Tn−1, where each Tj, j = 1, ...n − 1

consists of a single non-terminal node containing sensor sj , which solves the subproblem P(cj ,c̄j),

as shown in Fig. 3.5. Therefore,

TBB = T1 ⊕ T2 ⊕ ...Tn−1. (3.18)

where

π(TBB,P),π(T1 ⊕ ...Tn−1,P(c1,...cn−1,cn))

=p1(c1|s1)p1(c1|c1, s1) + p1(c̄1|s1)p1(c̄1|c̄1, s1)
[
p2(c2|s2)p2(c2|c2, s2) + p2(c̄2|s2)p2(c̄2|c̄2, s2)[

. . .
[
pn−1(cn−1|sn−1)pn−1(cn−1|cn−1, sn−1) + pn−1(cn|sn−1)pn−1(cn|cn, sn−1)

]
. . .
]]

(3.19)

Similarly, consider another tree T ′ which is constructed by grafting n − 1 subtrees T ′1 , T ′2 ,

...,T ′n−1, where each T ′j , j = 1, ...n − 1 consists of a single non-terminal node containing sensor

s∗, which solves the subproblem P(cj ,c̄j). Therefore, we get

T ′ = T ′1 ⊕ T ′2 ⊕ ...T ′n−1. (3.20)

59

where

π(T ′,P),π(T ′1 ⊕ ...T ′n−1,P(c1,...cn−1,cn))

=p1(c1|s∗)p1(c1|c1, s∗) + p1(c̄1|s∗)p1(c̄1|c̄1, s∗)
[
p2(c2|s∗)p2(c2|c2, s∗) + p2(c̄2|s∗)p2(c̄2|c̄2, s∗)[

. . .
[
pn−1(cn−1|s∗)pn−1(cn−1|cn−1, s∗) + pn−1(cn|s∗)pn−1(cn|cn, s∗)

]
. . .
]]

(3.21)

Using Theorem 3.5.2, we get π(T ′,P) = π(s∗,P). Now, lets define the following quantities:

ai = pi(ci|si)pi(ci|ci, si), bi = pi(c̄i|si)pi(c̄i|c̄i, si), ci = pi(ci|s∗)pi(ci|ci, s∗), di = pi(c̄i|s∗)pi(c̄i|c̄i, s∗)

We know that ai + bi ≤ 1 and ci + di ≤ 1 and from the optimality conditions in Eq. (3.1), we

get ai ≥ ci and ai + bi ≥ ci + di, ∀i = 1, ...n− 1. Thus, applying Lemma 2 we get the result

π(TBB,P) ≥ π(s∗,P). (3.22)

Hence Proved. �

3.5.2 BB-Fuse Complexity

Generally, brute force searching for the optimal decision tree (i.e., running full cross-validation

over each tree) is computationally very expensive because the number of possible decision trees

could be very large. To illustrate, the following theorem enumerates the total number of one-vs-the

rest trees.

Theorem 3.5.4 The number of one-vs-the-rest decision trees for separating n classes using m

sensors is mn−1n!/2.

Proof: In one-vs-the-rest decision trees one class is isolated at each non-terminal node using one

of the m sensors. Thus such trees should have n− 1 non-terminal nodes to separate n classes. At

every level we have m sensors to choose from but the class set keeps reducing as we isolate them.

In particular, at level 1 there are n classes, at level 2 there are n− 1 classes and so on, until at level

60

n − 2, there are 3 classes to choose from. However, at level n − 1, only 2 classes are left, whose

order does not matter. Thus the total number of trees are nm · (n− 1)m · · · 3m · 1m = mn−1n!/2.

�

Remark: Theorem 3.5.4 does not account for the node merging operation which reduces the num-

ber of trees.

Furthermore, the number of binary and non-binary trees is even higher than the number one-

vs-the-rest trees. Therefore, brute force searching for the optimal tree could become very tedious

as the number of classes and sensors increase. In contrast, this paper is using a simple algorithm

that builds the BB-Fuse Tree node by node by selecting optimal sensor-class pairs using binary

confusion matrices, as described in Section 3.4. These binary matrices are easy to compute and

the algorithm has fairly low computational complexity with guarantees of a CCR higher than the

best sensor. Numerical values of computational times for the BB-Fuse tree construction are shown

in the Results section for different applications.

3.6 Results and Discussion

This section presents the results of testing and validation of the BB-Fuse algorithm on experimental

data sets of two different applications. These applications are discussed below.

3.6.1 Application I: Human Activity Recognition

In this application, the Opportunity data set [116, 117] for human activity recognition was used

to classify basic hand movements in a kitchen environment. In the kitchen, there were 2 doors, 3

drawers, a fridge, a dishwasher, a lazy chair, and a variety of kitchen items which include a cup,

salami slices, a water bottle, cheese, a bread loaf, 2 knives, a milk carton, a spoon, sugar, a plate

and a glass. Four subjects were asked to perform 20 repetitions of daily activities in the kitchen

such as opening and closing of the fridge, the dishwasher, the drawers, and the doors; locking and

unlocking the doors; turning the lights on and off; cleaning the table; and drinking while standing

and sitting; and others. The objective is to classify the hand-environment interaction into one of 10

61

z
1

z
2

z
3

z
4

z
5

z
6z

7

Inertial Measurement (a)

z
8

z
9

z
10

z
11 z

12 z
13

z
14

z
15

z
16

z
17

z
18

z
19

(b)

Drawer 1

Drawer 2

Drawer 3

Drawers

Dishwasher

Fridge

z20

z21
z22

z30

z32
z31

z23

z24,z25,

z26

z27,z28,

z29

Reed switch
Magnet

(c)

Knife 1

Knife 2

Plate

Cup

Glass

Water
sugar

Milk

spoon

z33

z34

z35
z36

z37

z38

z39

z40

z41
z42

(d)

Figure 3.6: Placement of (a) Inertial Measurement Units (IMUs), (b) Subject Acceleration De-
vices, (c) Reed Sensors and (d) Object Acceleration Devices in Application I Dataset [116, 117]

.

classes: unlocking (c1), locking (c2), closing (c3), reaching (c4), opening (c5), sipping (c6), cleaning

(c7), releasing (c8), moving (c9), and none of the above (c10).

Time series data were collected using a variety of sensors that were placed at different places

in the kitchen. There were a total of 56 different sensing devices and 42 out of them are shown

in Fig. 3.6. Table 3.1 shows the details of various sensing devices and their locations. The data

was collected at a sampling rate of 30.3 Hz and the total length of the experiment was ∼ 2 hours.

Further details can be found in [116, 117]. For feature extraction, a section of 1000 seconds of

time series data (i.e. 250 seconds from each subject covering the various activities) was used. This

data was recorded for each sensing device zj and arranged into a data matrix Oj ∈ R L×mj , where

T = 30300 is the number of samples and mj is the number of sensing modalities. For example,

each acceleration device has three modalities for 3 dimensions, which were arranged into the 3

columns of the data matrix. The data from reed switches were arranged in a similar fashion by

putting them along different columns of the data matrix. The data matrix of each sensing device

was then reduced by applying two different dimension reduction or feature extraction techniques,

namely, Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) (see Ap-

pendices B.1 and B.2 for details). Specifically, features vectors F j ∈ R T×dj and Gj ∈ R T×qj

were extracted from PCA and LDA; respectively, where dj ≤ mj and qj ≤ mj , which varied

from a sensing device to another. In the training phase the labels of these features are known and

marked.

62

Table 3.1: Description of Sensing Devices, Modalities, and Locations for Application I Dataset

Sensing Devices Types Modalities Locations

z1 − z7 Inertial Measurement
Unit (IMU)

• 3D linear
acceleration

• 3D angular
orientation

• 3D magnetic field

Subject body

z8 − z19 Acceleration Device 3D linear acceleration Subject body
z20 − z32 Reed Sensor 0 (open) or 1 (closed) Fridge, drawer and

dishwasher
z33 − z44 Acceleration &

Gyroscope Device
• linear acceleration

• 2D angular location

Kitchen items

z45 − z52 Acceleration Device 3D linear acceleration Fridge, 2 doors,
dishwasher, 3 drawers and
lazy chair

z53 − z56 Localization Device 3D location Subject and Ceiling of the
room

After constructing the feature space for each sensing device, the k-Nearest Neighbor (k-NN)

classifier was trained on the features F j and Gj separately, to find the optimal k for each sensor

for each feature space, and the confusion matrices were generated using the standard 10-fold cross

validation process. Then these sensor-classifier combos (i.e. the sensing device plus the trained

classifier which is referred to as ‘sensors’ in this paper for simplicity) were stored and used for

further analysis. It was found that a localization device located on the subject, with LDA as feature

extractor and the k-NN classifier with k = 3, yielded the highest CCR of 93% when used alone.

The confusion matrix of this best individual sensor is shown in Table 3.2.

Next, the BB-Fuse tree is constructed given the confusion matrices of all sensors by computing

the optimal sensor-class pairs as described in Section 3.4. The resultant BB-Fuse Tree is shown

Fig. 3.7. The description of the optimal sensors for the BB Fuse tree is provided in Table 3.3. The

CCR obtained by the BB-Fuse tree was 96%, which is a 3% improvement over the best sensor.

The confusion matrix for the BB-Fuse tree is also shown in Table 3.2. Finally, the performance

of the BB-Fuse tree is compared with several other methods; namely, CaRT, C4.5, Bayes Belief

63

Table 3.2: Application I: Confusion Matrices for Different Methods

BB-Fuse Best Sensor CaRT
Classifier Output Classifier Output Classifier Output

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

A
ct

ua
lC

la
ss

es

c1 399 1 0 0 0 0 0 0 0 0 399 1 0 0 0 0 0 0 0 0 388 2 3 0 1 0 1 1 0 4
c2 3 855 2 0 19 0 0 5 0 16 3 854 2 0 19 0 0 5 0 17 5 843 10 1 7 1 0 5 1 27
c3 5 16 2628 2 34 3 1 41 2 68 4 17 2626 3 32 4 2 45 10 57 5 10 2609 9 44 2 3 37 4 77
c4 3 0 1 854 2 0 0 2 25 13 3 0 0 853 1 20 0 7 2 14 0 0 6 842 11 1 0 12 0 28
c5 0 14 18 2 3037 2 12 8 2 105 0 15 23 2 3023 17 8 6 7 99 4 8 46 3 2993 5 5 20 3 113
c6 9 7 0 15 2 4411 9 0 39 8 9 7 6 20 11 3942 82 35 170 218 2 0 0 2 1 4401 8 3 63 20
c7 0 4 1 3 7 8 995 0 30 52 0 4 1 3 5 45 982 0 28 32 0 0 1 0 3 5 1037 5 9 40
c8 6 3 29 3 19 10 1 2455 2 72 6 6 25 8 18 35 0 2419 13 70 3 4 51 7 25 8 3 2423 3 73
c9 13 5 0 1 0 61 18 0 1983 19 10 6 6 3 12 166 21 11 1775 90 0 0 2 0 0 67 10 7 1998 16
c10 4 18 62 17 76 33 67 61 38 11424 4 18 59 13 67 191 39 59 46 11304 11 12 77 32 98 33 41 77 22 11397

C4.5 Bayes Belief Integration Majority Voting

A
ct

ua
lC

la
ss

es

c1 374 5 4 0 2 0 0 1 0 14 254 92 25 0 10 0 0 0 0 19 265 0 0 0 1 0 0 0 0 134
c2 4 847 23 1 3 0 1 10 0 11 9 826 37 0 7 0 0 14 0 7 0 584 0 0 0 0 0 1 0 315
c3 2 19 2605 7 55 0 3 28 0 81 0 7 2749 1 6 0 0 14 0 23 0 3 1715 0 2 1 0 5 0 1074
c4 0 3 3 848 13 0 0 2 0 31 0 0 46 720 51 0 0 57 0 26 0 0 2 440 2 0 0 10 0 446
c5 0 8 48 12 2990 1 3 20 1 117 0 2 58 3 3073 0 0 25 0 39 0 0 1 0 2194 0 0 11 0 994
c6 0 0 0 0 1 4416 4 4 45 30 0 0 0 0 2 4419 11 31 25 12 0 0 0 0 0 4387 0 0 4 109
c7 0 0 1 0 5 6 1046 2 6 34 0 0 1 0 0 2 977 0 7 113 0 0 0 0 0 18 587 0 1 494
c8 1 5 21 2 21 4 7 2462 4 73 0 1 22 4 9 1 0 2556 0 7 0 0 0 0 7 3 0 1871 0 719
c9 2 0 1 0 0 133 6 2 1932 24 0 0 0 0 0 57 71 2 1925 45 0 0 0 0 0 108 0 0 1791 201
c10 6 17 87 17 128 32 26 54 19 11414 0 9 9 3 10 2 40 11 0 11716 0 0 0 0 0 2 0 0 0 11798

Adaboost Borda Count Voting Condorcet Voting

A
ct

ua
lC

la
ss

es

c1 368 1 1 0 4 0 0 0 0 26 76 0 0 0 0 0 0 0 0 324 49 21 0 0 8 0 0 0 0 322
c2 1 816 7 0 3 1 0 18 0 54 0 148 0 0 0 0 0 1 0 751 0 314 1 0 1 0 0 0 0 584
c3 0 15 2365 5 15 4 0 39 1 356 0 1 629 0 4 7 0 2 0 2157 0 1 1134 0 7 0 0 8 0 1650
c4 0 0 13 712 7 1 0 21 0 146 0 0 1 51 3 6 0 10 2 827 0 0 11 94 6 0 0 31 1 757
c5 1 3 10 2 2798 2 0 25 1 358 0 0 0 0 1553 2 0 1 0 1644 0 1 3 0 1343 0 0 1 0 1852
c6 0 0 0 0 0 4456 0 0 10 34 0 0 0 0 0 4405 0 0 4 91 0 0 0 0 0 4135 0 0 6 359
c7 0 0 2 0 3 3 931 0 4 157 0 0 0 0 0 45 49 0 0 1006 0 0 0 0 0 39 22 0 0 1039
c8 0 2 19 7 21 8 0 2381 0 162 0 0 0 0 6 40 0 836 0 1718 0 0 9 0 10 10 0 984 0 1587
c9 0 0 0 0 1 77 17 0 1953 52 0 0 0 0 0 186 0 0 1652 262 0 0 0 0 0 157 0 0 1448 495
c10 0 2 9 0 1 4 21 6 0 11757 0 0 0 0 0 3 0 0 0 11797 0 0 0 0 0 2 0 0 0 11798

Figure 3.7: The BB-Fuse Tree for Application I.
Table 3.3: Application I: Description of the Optimal Sensors

` s` Sensing Device Classifier k

1 s1 Localization LDA + k-NN 3
2 s2 IMU on the

Lower Arm
LDA + k-NN 3

3 s3 Localization LDA + k-NN 3

Integration, Majority Voting, Adaboost, Borda Counting, and Condorcet Counting (see appendix

for details). The resulting confusion matrices and CCRs for these different methods are shown

in Tables 3.2 and 3.4, respectively. Table 3.5 shows a comparison of execution times of different

methods on a 64-bit Windows 7 operating system, with a Intel(R) Core(TM) i5-2400, 3.10GHz

64

Table 3.4: Application I: CCRs for Different Methods

Method CCR Method CCR

BB-Fuse 96% Majority Voting 85%
Best Sensor 93% Adaboost 94%
CaRT 95% Borda Count Voting 70%
C4.5 95% Condorcet Voting 70%
Bayes Belief Integration 96%

Table 3.5: Application I: Execution Times

Method Training (s) Testing (s)

Compute Confusion Matrices 603.49 -
BB-Fuse 10.06 7.31E-05
Best Sensor 5.09 4.10E-06
CaRT 37.35 5.34E-06
C4.5 3017.58 5.17E-06
Bayes Belief Integration - 2.08E-02
Majority Voting - 1.64E-05
Adaboost 467.96 8.80E-04
Borda Count Voting 0.02 3.07E-05
Condorcet Voting - 4.76E-02

processor, with 16GB RAM.

It can be observed that for this application, the BB-Fuse algorithm achieved higher CCR than

all other methods except the Bayes Belief Integration method. Both the BB-Fuse and Bayes Belief

Integration algorithm achieved a CCR of 96%; however, it should be noted that the testing phase

of the BB-Fuse algorithm is of lower complexity than the Bayes Belief Integration method. This is

because the BB-Fuse algorithm sequentially tests the pre-determined classifiers at the non-terminal

nodes, and it terminates once it reaches a terminal node; on the other hand, the Bayes Belief

Integration method utilizes all the available classifiers for all devices in parallel for each testing

data set. For example, to classify a test data as class c2, the BB-Fuse algorithm only needs the

classifier at node 1; however, the Bayes Belief Integration requires the decisions of all of the

classifiers to conclude that the testing data belongs to class c2.

3.6.2 Application II: User Identification

In this application, the Walking Activity Dataset available on the University of California, Irvine

(UCI) Machine Learning Repository was used for User Identification. Here, the time series data

65

was collected using Android smart phones placed in the chest pockets of 10 users who were made

to walk in the wild over a predefined path. These users formed the 10 classes, ci, i = 1, 2, . . . 10.

The data contain 3D accelerations (m/s2) with sampling rate of 33.3Hz, where the x−, y− and

z− axes are illustrated in Fig. 3.8. The objective is to identify and authenticate the people using

the 3D acceleration time series data [118].

+z

+x
+y

y

x z

Figure 3.8: The x, y and z axes for the Android Phones.

Since only one sensing device is available here, therefore for fusion purposes the time series

data for the x−, y− and z− axes are treated as 3 different sensors. For each axis, the data for

each user is partitioned into blocks of length 1000 each, thus forming a total of 50 blocks for all

users. Subsequently, each block was again partitioned into 20 chunks, each of length 50 samples,

which were then reshaped to form a 50× 20 matrix. These matrices were then stacked below each

other for all users to form the data matrix Oj ∈ R L×20, where L = 2500 corresponds to the total

number of sample points for 50 blocks. Next, as before feature vectors F j and Gj were extracted

from Oj using PCA and LDA, respectively. Subsequently, the k-NN classifier is applied and the

confusion matrices were generated for each axis data using the standard 10-fold cross validation

process. It was found that the x-axis data, with PCA as feature extractor and the k-NN classifier

with k=4, yielded the highest CCR of 97% when used alone.

Figure 3.9 shows the BB Fuse tree constructed on this application and the selected sensors are

described in Table 3.6. Again the BB-Fuse performance is compared with other methods whose

CCRs and execution times are listed in Tables 3.8 and 3.9, respectively. Table 3.7 shows the

66

Figure 3.9: The BB-Fuse Tree for Application II.
Table 3.6: Application II: Description of the Optimal Sensors.

` s` Sensor Classifier k

1 s1 x LDA + k-NN 1
2 s2 z LDA + k-NN 3
3 s3 x PCA + k-NN 4
4 s4 x LDA + k-NN 1
5 s5 z PCA + k-NN 6
6 s6 x PCA + k-NN 4

confusion matrices obtained for the different methods including the best sensor. As seen, the BB-

Fuse tree produced a CCR of 99% which is 2% improvement over the best sensor.

3.7 Conclusions

This chapter presented a novel information fusion algorithm, called the Better-than-the-Best Fu-

sion (BB-Fuse), for the purpose of improving the classification accuracy in multi-sensor multi-class

systems. The BB-Fuse algorithm utilizes the fact that some sensors have better classification accu-

racy in isolating certain classes than others. Therefore, the algorithm constructs a one-vs-the-rest

decision tree, called the BB-Fuse tree, which systematically selects the optimal sensor-class pairs

at each level to maximize the classification accuracy. The BB-Fuse algorithm is analytically proven

to yield a CCR that is higher than or at least equal to the best individual sensor. Both the training

and testing phases of the BB-Fuse algorithm are shown to have low computational complexity. The

application of the BB-Fuse algorithm is not limited to sensor fusion, but can be easily generalized

67

Table 3.7: Confusion Matrices for the User Identification from Walking Activity Dataset

BB-Fuse Best Sensor CaRT
Classifier Output Classifier Output Classifier Output

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

A
ct

ua
lC

la
ss

es

c1 247 0 0 0 0 2 0 0 1 0 241 0 0 0 0 7 0 0 2 0 207 0 0 0 0 14 0 0 29 0

c2 0 600 0 0 0 0 0 0 0 0 0 597 1 0 1 0 0 0 0 1 0 600 0 0 0 0 0 0 0 0

c3 0 0 150 0 0 0 0 0 0 0 0 8 142 0 0 0 0 0 0 0 1 0 143 2 2 2 0 0 0 0

c4 0 0 0 50 0 0 0 0 0 0 0 1 0 47 0 2 0 0 0 0 0 0 2 42 0 3 0 0 3 0

c5 0 0 0 0 149 0 1 0 0 0 0 0 0 0 143 0 0 0 0 7 0 0 1 0 130 0 12 0 0 7

c6 0 0 2 0 0 448 0 0 0 0 0 6 1 0 0 442 0 0 1 0 15 0 5 5 0 409 0 0 16 0

c7 0 0 0 0 7 0 193 0 0 0 0 0 0 0 4 0 190 0 0 6 0 0 0 0 7 0 192 1 0 0

c8 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 0 0 150 0 0 0 0 0 0 1 0 0 149 0 0

c9 0 0 0 0 0 1 0 0 149 0 0 0 0 0 0 2 0 0 148 0 29 0 0 2 0 16 0 0 103 0

c10 0 0 0 0 0 0 0 0 0 350 0 5 0 0 11 0 2 0 0 332 0 0 1 0 3 0 0 0 0 346

C4.5 Bayes Belief Integration Majority Voting

A
ct

ua
lC

la
ss

es

c1 208 0 0 2 0 14 0 0 26 0 245 0 0 0 1 2 0 0 2 0 246 1 0 0 0 3 0 0 0 0

c2 0 598 1 0 0 1 0 0 0 0 0 600 0 0 0 0 0 0 0 0 0 600 0 0 0 0 0 0 0 0

c3 1 0 138 1 2 8 0 0 0 0 0 0 148 0 0 0 1 1 0 0 0 15 134 0 1 0 0 0 0 0

c4 1 0 2 37 0 7 0 0 3 0 0 0 0 50 0 0 0 0 0 0 0 2 1 45 0 1 0 0 1 0

c5 0 0 0 0 133 0 8 0 0 9 0 0 0 0 148 0 1 0 0 1 3 0 0 0 141 3 0 0 0 3

c6 15 0 4 10 0 402 0 0 18 1 2 0 0 0 0 447 0 0 1 0 5 3 0 0 0 440 0 0 0 2

c7 0 0 0 0 9 0 188 1 0 2 0 1 0 0 5 0 194 0 0 0 0 0 0 0 3 0 193 0 0 4

c8 0 0 0 0 0 0 0 150 0 0 1 0 0 0 0 0 0 149 0 0 1 1 0 0 0 4 0 144 0 0

c9 46 0 0 2 0 15 0 0 87 0 2 0 0 0 0 2 0 0 146 0 13 10 0 0 0 15 1 0 111 0

c10 0 0 0 0 6 0 5 0 0 339 0 0 0 0 0 0 0 0 0 350 0 4 0 0 3 4 0 0 0 339

Adaboost Borda Count Voting Condorcet Voting

A
ct

ua
lC

la
ss

es

c1 225 4 0 0 2 14 2 1 2 0 205 29 0 0 0 16 0 0 0 0 227 0 0 0 0 23 0 0 0 0

c2 0 600 0 0 0 0 0 0 0 0 0 600 0 0 0 0 0 0 0 0 0 600 0 0 0 0 0 0 0 0

c3 0 3 140 0 0 2 4 0 0 1 0 12 137 0 0 1 0 0 0 0 0 1 144 0 0 5 0 0 0 0

c4 0 2 1 43 0 3 0 0 1 0 0 0 1 48 0 1 0 0 0 0 0 0 0 33 0 7 0 0 10 0

c5 3 0 0 0 137 4 3 1 0 2 1 10 3 0 78 15 6 0 0 37 0 0 0 0 143 5 1 0 0 1

c6 5 0 1 1 2 431 0 0 1 9 1 5 0 0 0 432 0 0 0 12 2 0 0 0 0 448 0 0 0 0

c7 2 0 3 0 4 1 187 0 0 3 0 0 0 0 0 0 192 0 0 8 0 0 0 0 4 0 194 0 0 2

c8 2 1 0 0 0 8 2 135 1 1 0 0 0 0 0 0 0 150 0 0 0 0 0 0 0 2 14 130 0 4

c9 14 4 0 0 0 8 0 0 124 0 3 22 0 0 0 17 0 0 107 1 29 0 0 0 0 23 0 0 98 0

c10 1 1 0 0 2 8 0 0 0 338 0 2 0 0 0 4 0 0 0 344 0 0 0 0 0 1 0 0 0 349

Table 3.8: Application II: CCRs for Different Methods

Method CCR Method CCR

BB-Fuse 99% Majority Voting 96%

Best Sensor 97% Adaboost 94%

CaRT 93% Borda Count Voting 92%

C4.5 91% Condorcet Voting 95%

Bayes Belief Integration 99%

68

Table 3.9: Application II: Execution Times

Method Training (s) Testing (s)

Compute Confusion Matrices 3.29 -
BB-Fuse 2.40 1.92E-04
Best Sensor 0.55 3.53E-06
CaRT 0.32 1.90E-05
C4.5 82.92 1.34E-04
Bayes Belief Integration - 1.58E-03
Majority Voting - 2.12E-05
Adaboost 0.02 2.16E-04
Borda Count Voting 9.29 3.39E-05
Condorcet Voting - 4.44E-03

to the fusion of different features and classifiers as well.

The BB-Fuse algorithm was validated on two datasets: the Opportunity Dataset and the User

Identification from Walking Activity Dataset. In the Opportunity Data Set, time series data from

56 sensors were used to classify basic hand movements in a kitchen environment while in the

User Identification Dataset the 3D acceleration data collected from the Android phones of several

people were used to identify the users. In both applications, the performance of the BB Fuse

algorithm was compared with the best sensor and several other existing methods; and it yielded

better results. Besides, the BB-Fuse algorithm is computationally efficient because it sequentially

tests only selected sensors and terminates upon reaching a terminal node.

The following areas are envisioned for future work:

• Use of classifier-independent information theoretic measure for selecting optimal sensor-class

pairs in the decision tree construction.

• Expansion of the BB-Fuse algorithm to non-binary (or not one-vs-the-rest) decision trees.

69

CHAPTER 4

D∗-FUSE: OPTIMAL SENSOR-CLASS PAIR SELECTION AND FUSION

ALGORITHM FOR CLASSIFICATION

4.1 Introduction

Optimal sensor set selection and fusion for CCR improvement dilemmas are addressed in the first

and second themes; however, with certain limitations. The first theme presented the Unsupervised

Embedded algorithm, which selects the candidate list of sensors using the mRMR criterion then

re-ranks the candidate list of sensors using the entropy. The Unsupervised Embedded algorithm is

computationally efficient and leads to high CCR. However, it uses the mRMR algorithm which is

criticized in literature for subtracting the redundancy term [11].

In the second theme, the BB-Fuse algorithm is presented. The BB-Fuse algorithm selects opti-

mal sensor-class pairs using confusion matrices of individual sensors, then organizes them in the

BB-Fuse Tree, which is a fusion structure that guarantees CCR improvement over the sensor that

has the highest CCR. The BB-Fuse algorithm exploits the sensor-class pair information which is

vital to design efficient sensor selection and fusion algorithms. This is because sensors vary in

their accuracy isolating different classes. For example, a sensor might have high CCR; neverthe-

less, it has low accuracy isolating a specific class. It might also happen that a sensor has low CCR;

however, its accuracy is better than other sensors isolating a specific class.

70

Exploiting sensor-class pair information, the BB-Fuse algorithm guarantees CCR improvement;

however, the BB-Fuse algorithm requires as input the confusion matrices of individual sensors.

The confusion matrices have two limitations: 1) they are expensive to compute and 2) they are

pertinent to a specific classifier. The confusion matrices are expensive to compute because they

are generated using the cross-validation algorithm, which is a computationally-expensive, iterative

procedure. For each sensor, the cross-validation iteration splits the data into randomly selected

training and testing data, then applies a specified classifier and updates the confusion matrix. The

cross-validation algorithm is applied on each sensor using a specific classifier to produce sensor

confusion matrices. Generation of sensor confusion matrices is evidently expensive in complex

interconnected systems because the number of sensors is typically large. Besides that, if different

classifiers are used, the sensor confusion matrices differ, and so do the optimal sensor-class pairs

that are selected using the BB-Fuse algorithm. I.e., the BB-Fuse algorithm is classifier dependent.

The Decomposed Sensor-Class pair Tree with maximum Admissible-Relevance based Fusion

(D∗-Fuse) algorithm is presented in this theme to address the limitations of Unsupervised Em-

bedded and BB-Fuse algorithms. Instead of using the mRMR, the D∗-Fuse algorithm selects the

optimal sensor-class pairs using a new information theoretic criterion that is called the Admissible

Relevance (AR) criterion. The AR criterion exploits sensor-class pair information; i.e., the optimal

sensor to isolate each class. Because the selected sensors carry information that isolates different

classes, the AR criterion selects non-redundant sensor set. Therefore, it is not needed to subtract

the redundancy term that is used by the mRMR.

Similar to the BB-Fuse algorithm, the D∗-Fuse algorithm selects sensor-class pairs because sen-

sors vary in the accuracy they can isolate different classes. The D∗-Fuse algorithm then organizes

the optimal pairs in a one-vs-the-rest tree which is called the D∗-Fuse Tree, which is similar to

the BB-Fuse Tree generated by the BB-Fuse algorithm. However, the D∗-Fuse algorithm does not

use confusion matrices. Instead, the D∗-Fuse algorithm uses the AR criterion, which is not ex-

pensive to compute and does not pertain to a specific classifier. As a result, the D∗-Fuse Tree is

generalizable in the sense that any classifiers can be trained on its nodes after the sensor-class pair

selection process (unlike the BB-Fuse Tree where we have to adhere to the classifiers that are used

71

to produce the sensor confusion matrices). This generalization is due to the use of the AR criterion

which uses the classifier independent mutual information measure. The next subsection clarifies

why mutual information can be used for sensor selection.

4.1.1 Basics of Information Theory

To understand the physical meaning of mutual information, the entropy has first to be introduced.

Given a class set C = {c1, c2, . . . cn}, define:

• C: A random variable whose sample space is the set of all training data and its outcome

belongs to the class set C = {c1, . . . cn} with probability mass function p(C = ci) = p(ci).

The entropy is mathematically defined as follows:

H(C) ,
n∑
i=1

p(ci) ln
1

p(ci)
(4.1)

The entropy can be used as a measure of uncertainty [62]. To explain, consider the case for which

there are only two classes (i.e., binary classification problem and the number of classes n = 2).

The plot of the binary entropy vs p(c1) (where a similar plot would be obtained for H(C) vs

p(c2) = 1 − p(c1)) is shown in Fig. ??. As seen in the figure, the entropy is maximized when the

classes are equi-probable (i.e., p(c1) = p(c2) = 0.5) [119]. This would be the most uncertain case

where the classification error is maximum if the classification decision is based on the probability

distribution of the classes only. On the other hand, the entropy drops down as one of the classes has

more probability than the other one in which case a classification decision based on distribution

will make less error.

The entropy can be represented by the circle in Fig. 4.1(a), where the classification decision

may lay anywhere within the circle. Suppose now that we obtained data for the sensor s ∈ S and

this data is used to make a classification decision. The classification uncertainty now drops as there

is more information about the classes obtained using the sensor data. Mathematically, this can be

72

represented by the conditional entropy H(C|S)

H(C|S) = −
n∑
i=1

|Γ|∑
j=1

p(ci, αj) ln p(ci|αj) (4.2)

where S is a random variable that represents the sensor data for the the sensor s ∈S with alphabet,

say Γ = {α1, α2, . . . α|Γ|}. Figure 4.1(b) shows the entropy of C and the entropy of S. The

conditional entropy is the area that is marked by the red line in the figure.

The mutual information is defined in terms of entropy as:

I(C;S) = H(C)−H(C|S) (4.3)

which is shown graphically in Fig. 4.1(c). Being defined as such, the mutual information can be

seen as the “reduction of uncertainty” (i.e., the amount of information learned) in classification

after learning the data of the sensor s. Hence, it is intuitive to select the sensors that maximize

mutual information as a group. This is further justified by the Fano’s Inequality as discussed in

Appendix A.3, which states that the classification error is lower bounded by

Pe ≥
H(C|S)− 1

log |C|
=
−I(C;S) +H(C)− 1

log |C|
. (4.4)

where Pe is the lower bound of classification error. So, the lower bound of classification error Pe

73

(a) H(C) (b) H(C|S) (c) I(C;S)

Figure 4.1: Entropy H(C), Conditional Entropy H(C|S) and Mutual Information I(C;S).

is minimized when the mutual information I(C;S) is maximized.

4.2 Literature Review

Two of the most important mutual information based sensor selection criteria are the Maximum

Dependency (MD) and Maximum Relevance (MR) criteria. The MD criterion selects the subset of

sensors that maximizes the mutual information as a group. Although accurate, the MD criterion is

difficult to estimate especially when the number of sensors is large. Therefore, the MR criterion is

used in literature as estimate for the MD criterion; however, the MR criterion may select redundant

sensors as explained in this section.

While the literature review of Chapters 2 and 3 summarized various sensor selection and fu-

sion algorithms in literature, the literature review in this chapter focuses primarily on the mutual

information based sensor selection algorithms that are mentioned above.

4.2.1 MD Criterion

The MD criterion [10] is a direct result of the Fano’s Inequality. Given classification problem

with class set C = {c1, c2, . . . cn} and sensor set S = {s1, s2, . . . sm}, the maximum dependency

criterion selects the subset of sensors S∗ that jointly maximize the mutual information. Explicitly,

the MD criterion can be expressed as:

S∗ = arg max
S′⊆S

I(C;S ′) (4.5)

74

(a) MD Criterion (b) MR Criterion

Figure 4.2: Venn Diagrams for Maximum Dependency (MD) and Maximum Relevance (MR)
criteria

where S ′ is the random variable that represents the subsetS′ ⊆S and its sample space is the joint

events of sensor readings in S′. For visual illustration, consider the following example.

Example 4.2.1 Consider the classification problem in the Venn diagram in Fig. 4.2(a) with class

set C = {c1, c2} and sensor setS = {s1, s2, s3}. The entropy of the class set is represented by the

oval H(C), which can be partitioned into two parts (one for each class as indicated). The sensor

entropies are also illustrated in the figure by the ovals H(S1), H(S2) and H(S3). The objective

in this example is to select the optimal sensor set of m∗ = 2 sensors. There are three possible

choices; namely, {s1, s2}, {s1, s3} and {s2, s3}. Which subset should be selected?

As indicated by Eq. (4.5), the MD criterion selects the subset of sensors that jointly maximizes

the mutual information which is indicated by the intersection areas between C and the sensors (see

Fig. 4.1(c)). Among the three possible subsets {s1, s2}, {s1, s3} and {s2, s3}, the MD criterion will

select S∗ = {s1, s3} whose MD cost is indicated by the gray area in Fig. 4.2(a).

The MD criterion lays on strong mathematical basis (i.e., the Fano’s Inequality explained in

Appendix A.3). However, it is difficult to be correctly estimated because it requires estimating

joint probabilities of several random variables. To see this, consider the cost function I(C;S) that

Eq. 4.5 maximizes, which is explicitly expressed below

I(C;S) ,
∑
c∈C

∑
x1∈Γ1

∑
x2∈Γ2

· · ·
∑

xm∈Γm

p(x1, x2, . . . xm, c) ln
p(x1, x2, . . . xm, c)

p(x1, x2, . . . xm)p(c)
(4.6)

75

where Γj is the alphabet of sensor sj ∀ j = 1, 2, . . .m and S is a random variable whose al-

phabet is the Cartesian product Γ1 × Γ2 . . .Γm. To Estimate I(C;S), all the probabilities of the

joint events in Eq. (4.6) have to be estimated from sensor data. Unfortunately, estimating joint

probabilities can be inaccurate even in moderate size classification problems because of insuffi-

cient statistics [10]. For example, suppose the size of training data is 106, the number of classes

n = 5, and the number of sensors m = 10 where the alphabet size of each sensor sj alphabet

is |Γj| = |Γ| = 10 ∀ j = 1, 2 . . .m. To estimate I(C;S), we need to estimate the joint prob-

abilities of the events (x1, x2, . . . xm, c) ∀ xj ∈ Γj, j = 1, 2, . . .m and c ∈ C. The number

of these joint events is n × |Γ|10 = 5 × 1010 which is larger than the size of the training data

(106 in this example). Therefore, there is not sufficient statistics to estimate the joint probabilities

p(x1, x2, . . . xm, c)∀ xj, c. Subsequently, the MD criterion cannot be used for sensor selection in

this classification problem.

4.2.2 MR Criterion

Because the MD criterion is difficult to compute, the Maximum Relevance (MR) criterion [10] is

used as an estimate of the MD criterion. Instead of selecting the subset of sensors that maximizes

the mutual information as a group, it selects the set of sensors that maximize the average mutual

information between the sensors and class labels.

For mathematical explanation, define the random variables Sj ∀ j = 1, 2, ...m as follows:

• Sj: A random variable whose sample space is the sensor readings for sensor sj and its out-

comes belong to the set Γj = {α1, α2, . . . α|Γj |}.

Then the Maximum Relevance criterion is defined as below:

S∗ = arg max
S′⊆S,|S′|=m∗

JMR(C, S ′);

JMR(C, S ′) =
1

m∗

∑
sj∈S′

I(C;Sj) (4.7)

Despite the MD criterion, the MR criterion does not require estimation of joint mutual infor-

76

mation. The MR criterion can be easily solved by calculating the terms I(C;Sj) ∀ j = 1, 2, . . .m,

then ranking the sensors and selecting the top m∗ sensors that will also maximize the average.

Nonetheless, the MR criterion has the limitation that it may select redundant sensors [10]. To

see this, consider the following example.

Example 4.2.2 Consider the same sensor selection problem of Example 4.2.1, with class set C =

{c1, c2} and sensor set S = {s1, s2, s3} where the objective is to select the optimal subset of

m∗ = 2 sensors.

The MR criterion selects the subset of sensors that maximizes the average mutual information.

Explicitly, average mutual information quantities are:

1

2
[I(C;S1) + I(C;S2)],

1

2
[I(C;S1) + I(C;S3)], and

1

2
[I(C;S2) + I(C;S3)].

By visual inspection, it can be seen that the optimal subset that maximizes the average mutual

information is S∗ = {s1, s2} as indicated in Fig. 4.2(b). Unfortunately, s1 and s2 in this case

provide redundant classification information as they both intersect with the area of c1, but none of

the selected sensors provide any information about class c2. In other words, the MR criterion has

selected “redundant sensors”.

Because MR criterion may select redundant sensors as seen in Example 4.2.2, the minimum

Redundancy Maximum Relevance (mRMR) [10] criterion has been proposed in literature as a better

approximation of the MD criterion. To account for redundancy, the mRMR criterion subtracts a

redundancy term from the MR criterion. Although the mRMR algorithm has been popular in

various applications, it has been criticized in literature for subtracting the redundancy term [120].

In this theme, the novel Admissible Relevance (AR) sensor-class pair selection criterion is

developed that accounts for sensor redundancy without subtracting the redundancy term. Instead

of subtracting the redundancy term, the AR criterion selects sensor-class pairs. By sensor-class

pair selection (instead of sensor only selection), the AR criterion assures that the selected sensors

carry non-redundant information. This explained in details in the following section.

77

Figure 4.3: D∗-Fuse Tree TD

4.3 D∗-Fuse Algorithm

In this section, the D∗-Fuse algorithm is described. The objective of the D∗-Fuse algorithm is

formally stated; after that, the training and testing phases to achieve the objective are presented.

4.3.1 Objectives

Given a classification problem with a set of n classes C = {c1, c2, . . . cn} and m sensors S =

{s1, s2, . . . sm}, the D∗-Fuse algorithm aims to achieve two objectives:

• Sensor-Class Pair Selection. Which is selecting the optimal sensor-class pairs (s`, c`) ∀ ` =

1, 2, . . . n − 1. Each selected pair contains the class c` that can be best isolated from the rest

of the classes and the sensor that is best used for it s`.

• Sensor Fusion. Which is to obtain a unified enhanced decision. This is done by organizing

the selected sensor-class pairs in special fusion tree that is called the D∗-Fuse Tree.

The structure of the D∗-Fuse Tree (say TD) is similar to the BB-Fuse Tree that is described in

Section 3.4.2 with one major difference: the D∗-Fuse Tree is generalizable in the sense that any

classifier can be trained on its internal nodes, whereas the BB-Fuse Tree is not. The D∗-Fuse Tree

TD consists of n levels denoted by ` = 1, ...n, as shown in Fig. 4.3. Level 1 consists of the root

node but level n consists of the two bottom most leaf nodes with exit classes cn−1 and cn. Levels

78

2, 3 . . . (n− 1) consists of a terminal and a non-terminal node. Terminal nodes contain the classes

that are isolated at previous levels (i.e., c`), and non-terminal nodes contain sensors s` ∈S which

make decisions on the underlying binary classifications. The input to every non-terminal node is

the rest of the remaining classes. To be explicit, the input to level 1 is c̄0 , C and the input to

levels 2, 3, . . . n − 1 are c̄`−1 , c̄`−2 \ c`−1. Figure 4.3 shows the structure of the D∗-Fuse Tree

consisting of n leaf nodes and n− 1 non-terminal nodes.

The objectives listed above are accomplished in two phases; namely, training and testing phases.

In the training phase, a novel information theoretic criterion (called the AR criterion) for sensor-

class pair selection is derived, then an algorithm is developed for D∗-Fuse Tree construction. The

testing phase uses the D∗-Fuse Tree to obtain a unified enhanced decision.

4.3.2 D∗-Fuse Training Phase

The D∗-Fuse algorithm uses a novel sensor-class pair selection criterion that is called the AR

criterion. There are two motivations for sensor-class pair selection instead of sensor only selection:

• Heterogeneous sensors may vary in the quality they isolate different classes from the rest.

Therefore, the best overall sensor might not be the best sensor to isolate a specific class.

Besides that, a sensor might have a low accuracy for the overall classification problem with n

classes; however, it is superior in isolating one of the classes from the rest.

• Optimal sensor-class pair selection (rather than traditional sensor only selection) suppresses

the undesired redundancy in the Maximum Relevance (MR) criterion. By sensor-class pair

selection, the AR criterion ensures that selected sensors carry information about different

classes; i.e., non-redundant classification information. This is further explained by the fol-

lowing example.

Example 4.3.1 Again, consider the same problem in Example 4.2.1 with class set C = {c1, c2}

and sensor set S = {s1, s2, s3} with the objective of selecting the optimal sensor set S∗ ⊆ S of

two sensors; i.e., m∗ = 2. Instead of selecting the sensor only set S∗, optimal sensor-class pairs

(s`, c`) are selected where optimal sensor set S∗ = {s : (s, x) ∈ {s`, c`}∀` = 1, 2, . . . n}.

79

Figure 4.4: Admissible Relevance (AR) Venn Diagram

As seen in Fig. 4.4, the sensor-class pair that maximizes the intersection with H(C) is (s1, c1)

because of the area that is marked g1. After (s1, c1) is selected, there are three sensor-class pair

options to select for class c2; namely, (s1, c2), (s2, c2) and (s3, c2). The optimal one of these is

(s3, c2) because of the area marked g2 in the figure.

Note that in one hand sensor s2 (which provides good classification information) is not selected

because it provides classification information that is “redundant” of s1 ; i.e., information that

pertains to class c1. On the other hand, sensor s3 (which provides less classification information

than that s2 provides) is selected because it carries “non-redundant” information of sensor s1. So,

the AR criterion selects non-redundant sensors by sensor-class pair selection.

Example 4.3.1 shows that selecting sensor-class pairs (instead of only sensor selection) intu-

itively leads to selection of non-redundant sensors. The challenge is now to find a mathematical

expression for sensor-class pair selection (i.e., to mathematically express areas g1 and g2). We will

begin with the term I(C;Sj) and decompose it into a summation of terms such that

I(C;Sj) = Q(C1, Sj) +Q(C2, Sj) + . . . Q(Cn, Sj) (4.8)

where Ci is a random variable that models the isolation of class ci from the rest of the classes.

80

Explicitly,

Ci =

 1 if C = ci

0 otherwise.
(4.9)

The advantage of the decomposition is that it allows for sensor-class pair selection. Before

decomposition, I(C;Sj) can be maximized to find the best sensor for classification for the whole

n classes. After decomposition; however, each term Q(Ci, Sj) (aka AR criterion) in Eq. (4.8) can

be individually maximized ∀ ci ∈ C, sj ∈ S to find the optimal sensor-class pairs (s`, c`) ∀ ` =

1, 2, . . . n; i.e., the best sensor to isolate each class.

Optimization Problem

Taking the average of Eq. (4.8) over j = 1, 2 . . .m results in an expression that is equivalent to the

MR criterion, which is called the Decomposed MR criterion. The Decomposed MR criterion is de-

fined below with explicit expression of the term Q(Ci, Sj) ∀ i, j. The equivalence of Decomposed

MR and MR criteria is formally stated in Theorem 4.3.1.

Definition 4.3.1 (Decomposed MR Criterion) The Decomposed MR criterion selects the m∗ op-

timal sensor set S∗ using the criterion:

S∗ = arg max
S′⊆S

JDMR (4.10)

where

JDMR =
1

m∗

∑
sj∈S′

∑
ci∈C

Q(Ci, Sj)

Q(Ci, Sj) = I(Ci;Sj)−
n− 1

n
I(V ;Sj), (4.11)

Ci is as defined in Eq. (4.9), and

• V : a random variable whose sample space is the training data and its output belongs to the

81

set V = {c̄1, c̄2, . . . c̄n} with probability mass function

p(V = c̄i) = qi =
1− p(ci)
n∑
i=1

1− p(ci)
=

1− p(ci)
n− 1

∀ i = 1, 2, . . . n.

Theorem 4.3.1 The MR and the Decomposed MR criteria are equal; i.e.,

JMR = JDMR. (4.12)

Proof: Consider the mutual information:

I(Ci;Sj) = H(Sj)−H(Sj|Ci)

= H(Sj)− piH(Sj|Ci = 1)− (1− pi)H(Sj|Ci = 0)

= H(Sj)− piH(Sj|Ci = 1)− (n− 1)qiH(Sj|Ci = 0) (4.13)

Now, lets sum Eq. 4.13 over i = 1, 2, . . . n

n∑
i=1

I(Ci;Sj) = nH(Sj)−

H(Sj |Ci)︷ ︸︸ ︷
n∑
i=1

{piH(Sj|Ci = 1)}−(n− 1)
n∑
i=1

{qiH(Sj|Ci = 0)}

=

I(C;Sj)︷ ︸︸ ︷
H(Sj)−H(Sj|C) +(n− 1)

I(V ;Sj)︷ ︸︸ ︷[
H(Sj)−

n∑
i=1

qiH(Sj|Ci = 0)
]

(4.14)

Therefore,

I(C;Sj) =
n∑
i=1

{I(Ci;Sj)} − (n− 1)I(V ;Sj)

=
n∑
i=1

{I(Ci;Sj)−
n− 1

n
I(V ;Sj)}. (4.15)

Hence,

Q(Ci, Sj) = I(Ci;Sj)−
n− 1

n
I(V ;Sj) (4.16)

82

and taking the average of both sides of Eq. (4.15) over sj ∈ S′ (where S′ ⊆ S and |S′| = m∗)

results in:

JMR =
1

m∗

∑
sj∈S′

I(C;Sj) =
1

m∗

∑
sj∈S′

∑
ci∈C

Q(Ci, Sj) = JDMR

�

Now that the MR criterion is decomposed, each term Q(Ci, Sj), which is called the Admissible

Relevance (AR) criterion, can be individually maximized to find the optimal sensor-class pairs.

Definition 4.3.2 (Admissible Relevance Criterion) The Admissible Relevance (AR) criterion is a

sensor-class pair selection criterion that selects pairs (s`, c`) ∀ ` = 1, 2, . . . n such that

(s`, c`) = arg max
ci∈C,sj∈S

Q(Ci, Sj) (4.17)

Solution Process

The D*-Fuse uses the AR criterion to construct D∗-Fuse Tree, which uses the best sensor-class pair

to isolate a class at each level. The D*-Fuse relies on the fact that heterogeneous sensors may vary

in the quality they can discern different classes; besides, sensor-class pair selection avoids selecting

redundant sensors as shown in Example 4.3.1. Therefore, the D*-Fuse algorithm performs optimal

sensor-class pair selection using the AR criterion instead of only sensor selection. Besides that,

the D*-Fuse algorithm shrinks the class space at each iteration by removing the classes that are

selected in previous iterations, which improves classification accuracy.

For initialization, define c0 , ∅ and c̄0 = C. Then, the D∗-Fuse Tree is constructed in the

training phase using an iterative procedure of n − 1 iterations denoted by ` = 1, 2, . . . n − 1. In

each iteration `, the following steps are performed:

1. The optimal pair (s`, c`) using the equation:

(s`, c`) = arg max
ci∈c̄`−1,sj∈S

Q(Ci, Sj)

2. The input class set c̄` for the next iteration is obtained by removing the class that is already

selected; i.e., c̄` = c̄`−1 \ c`.

83

Performing the iterations ` = 1, 2, . . . n− 1 as described above outputs the D∗-Fuse Tree that is

shown in Fig. 4.3. This decision tree is used in the testing phase as described next.

4.3.3 D∗-Fuse Testing Phase

Given unlabeled time series data collected only from the optimal sensors s`; ` = 1, . . . n − 1,

the execution moves down the D∗-Fuse Tree starting from the root node using the corresponding

optimal sensor-class pairs. At level `; to illustrate, sensor s` is utilized for the binary classification

problem of isolating c` from c̄` to obtain a decision ĉ`. If ĉ` = c`, the algorithm terminates and

outputs a decision ĉ = c`; otherwise, the next non-terminal node is used. The above process is

repeated until a terminal node is reached.

4.4 Results and Discussion

For numerical verification, the D∗-Fuse algorithm is applied on three applications in this theme.

The first application is a toy example that is generated using normal distributions for different

sensor-class pairs for a proof of concept. In the second application, data that are collected using

Kinect camera sensor are utilized to classify human gestures. The third application performs hu-

man activity recognition using 3D linear and angular acceleration data, which are collected using

smart phones. Results and more details of the experiments are presented below.

4.4.1 Application I: Simulated Data

Simulated data are generated assuming Gaussian distributionG (µij, σ
2
ij) ∀ i = 1, 2, 3, 4,  = 1, 2, 3

for 3 sensors S = {s1, s2, s3} and 4 classes C = {c1, c2, c3, c4}. The means µij and variances

σ2
ij for sensor-class pairs {(sj, ci) ∀ ci ∈ C and sj ∈ S} are shown in Table 4.1. As explained

later, the means and variances of sensor-class pairs are deliberately selected so that the expected

D∗-Fuse Tree is as shown in Fig. 4.5.

For each sensor sj , a total of 400 time series data xt ∀ t = 1, 2, . . . 400 are generated with labels

yt such that each class ci has 100 time series data, where each time series data xt is a real vector of

84

Figure 4.5: D∗-Fuse Tree for Application I

Table 4.1: Sensor Data Distribution for Application I

s1 s2 s3

c1 G (1.8, 9) G (3, 15) G (0.1, 0.5)

c2 G (2, 10) G (3, 15) G (0.1, 0.5)

c3 G (2, 10) G (3.17, 15.5) G (0.1, 0.5)

c4 G (2, 10) G (3.17, 15.5) G (0.12, 0.51)

Table 4.2: Optimal Sensors and CCRs for Application I

(a) Optimal Sensors

Criterion s∗1 s∗2 s∗3

AR s1 s2 s3

mRMR s1 s2 s3

MR s1 s2 s3

(b) CCRs

Sensor Selection Criterion

Fusion Method AR mRMR MR

D*-Fuse 98% - -

Majority Vote 58% 58% 58%

CaRT 97% 97% 97%

Adaboost 63% 63% 63%

size 10, 000× 1 with distributionG (µij, σ
2
ij), and yt ∈C is its label. The label yt is determined as

shown Table 4.1.

Next, the AR, mRMR and MR sensor selection criteria are applied. The AR criterion selected

the optimal sensor-class pairs (s`, c`) = (s`, c`) ∀ ` = 1, 2, 3, respectively where the corresponding

D∗-Fuse Tree is shown in Fig. 4.5. Both of the mRMR and MR criteria resulted in the optimal

sensor set S∗ = {s1, s2, s3}, where s1 was the first, s2 was the second and s3 was the last rank

85

sensor. Table 4.2(a) summarizes the optimal sensors selected these criteria.

After data is generated as described above, sample means an variances of the sensor sj ∀ j =

1, 2, 3 data are extracted and plotted in Fig. 4.6. Each column in Fig. 4.6 corresponds to a sensor

and each row shows the updated feature space for Levels 1,2 and 3. As seen in the figure, the data

is generated so that sensor s1 can easily be used in Level 1 to isolate class c1 from the rest of the

classes c̄1. Subsequently, the root node is constructed that holds sensor s1 with exit classes c1 and

c̄1, which indicates that sensor s1 should be used to isolate class c1 from the rest of the classes.

At Level 2 next, class c1 is removed as shown in the figure; therefore, class c2 can now be easily

isolated using sensor s2 and the tree is expected to be updated as shown in Level 2 in Fig. 4.6.

Similarly, class c2 is removed in Level 3; so, class c3 can now be isolated using sensor s3. The

simulated data is generated so that the D∗-Fuse training phase is expected to result in the D∗-Fuse

Tree at the last row of Fig. 4.6 and so it does as shown in Fig. 4.5.

After feature extraction (i.e., sample mean and variance calculation), the k-NN classifier is

+ : c1
: c2
2 : c3
• : c4

Figure 4.6: Sample Means and Variances for the Simulated Data

86

trained at each Level ` ∀ ` = 1, 2, 3 to solve the corresponding binary classification problem of

isolating class c` from c̄`. The D∗-Fuse Tree is then evaluated using the 10-Fold cross-validation

algorithm and the D∗-Fuse Tree resulted in 98% as indicated in Table 4.2(b) with confusion matrix

as shown in Table 4.3.

For comparison, Majority Vote, Classification and Regression Tree (CaRT), and Adaptive Boost-

ing (Adaboost) fusion algorithms were applied on the optimal sensor sets that are obtained using

AR, MR and mRMR and evaluated using the 10-Fold cross-validation algorithm as well. D*-Fuse

algorithm (with 98% CCR) superseded other sensor-selection and fusion algorithms where the sec-

ond best was the CaRT algorithm with 97% CCR. Because Majority Vote and Adaboost algorithm

does does not take advantage of sensor-class pair information, they achieved low CCRs of 58% and

63%. CCRs and confusion matrices are summarized in Tables 4.2(b) and 4.3.

The simulated data results indicate that an effective fusion algorithm must take advantage of

sensor-class pair information. This is because some sensors might be good (or bad) classifying

Table 4.3: Confusion Matrices for Application I

Sensor Selection Criterion

Admissible Relevance mRMR Maximum Relevance
Classifier Output Classifier Output Classifier Output

Fusion Algorithm c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

D*-Fuse

A
ct

ua
l c1 100 0 0 0 - - - - - - - -

c2 0 98 2 0 - - - - - - - -
c3 0 0 97 3 - - - - - - - -
c4 0 1 2 97 - - - - - - - -

Majority Vote

A
ct

ua
l c1 84 16 0 0 84 16 0 0 84 16 0 0

c2 46 42 11 1 46 42 11 1 46 42 11 1
c3 15 26 40 19 15 26 40 19 15 26 40 19
c4 6 18 10 66 6 18 10 66 6 18 10 66

CaRT

A
ct

ua
l c1 100 0 0 0 100 0 0 0 100 0 0 0
c2 0 99 1 0 0 99 1 0 0 99 1 0
c3 0 1 96 3 0 1 96 3 0 1 96 3
c4 0 3 6 91 0 3 6 91 0 3 6 91

Adaboost

A
ct

ua
l c1 78 15 6 1 78 15 6 1 78 15 6 1

c2 27 44 25 4 27 44 25 4 27 44 25 4
c3 11 17 51 21 11 17 51 21 11 17 51 21
c4 2 4 17 77 2 4 17 77 2 4 17 77

87

some classes but has low (or high) accuracy classifying other classes. For example, sensor s1 (with

feature space as shown in the first row of Fig. 4.6) is expected to have very low CCR; however, it

can separate class c1 very well.

This experiment is performed in a 32-bit MatLab running on a 3.10 GHz Intel(R) Core(TM)

i5 − 2400 processor with 16 GB ram and Windows 7. AR criterion sensor-class pair selection

execution time is 4.15s. D∗-Fuse training execution time is 9.25s while D∗-Fuse testing execution

time is 3.00E-04s.

4.4.2 Application II: Gesture Phase Segmentation

Gesture phase segmentation is critical for the evolution of human-computer interaction applica-

tions. This classification task is interested in identifying 5 phases people go through when making

gestures while speaking; namely [121]:

1. Rest Phase: the non-movement between gestures.

2. Preparation Phase: the transitory phase before performing the gesture stroke.

3. Stroke Phase: the main movement due to a gesture.

4. Hold Phase: a pause before or after performing a gesture.

5. Retraction Phase: the transitory phase after performing the gesture stroke.

The data is collected using Xbox Kinect sensor by video taping 3 subjects narrating three different

comic stories. After that, the ground truth segmentation is manually established by an expert.

Then, 3D positions of the 1) left palm (x, y, z)lp, 2) left wrist (x, y, z)lw, 3) right palm (x, y, z)rp,

4) right wrist (x, y, z)rw, 5) spine (x, y, z)sp and 6) head (x, y, z)hd of the subjects are tracked from

the video frames which constructs the sensor time series data. These 3D locations constitute the

sensor set S = {s1, s2, . . . s18} as explicitly listed in Table 4.4.

For each sensor sj ∈S, 96 chunks of data are collected xt ∀ t = 1, 2, . . . 96, where each chunk

is manually labeled by an expert as yt ∈C with sampling rate of 30Hz. Each chunk length is 100

samples (i.e., 3.3s), and the number of chunks for each class vary.

88

(a) Rest

(b) Preparation

(c) Stroke

(d) Retraction

Figure 4.7: The 4 main Gesture Phases [122]. The Hold Phase is not shown and it is simply a
pause before or after the Stroke Phase.

Table 4.4: Sensor Definition

Human Part s 3D Location Human Part s 3D Location

Left Palm s1, s2, s3 (x, y, z)lp Right Wrist s10, s11, s12 (x, y, z)rw

Left Wrist s4, s5, s6 (x, y, z)lw Spine s13, s14, s15 (x, y, z)sp

Right Palm s7, s8, s9 (x, y, z)rp Head s16, s17, s18 (x, y, z)hd

Sensor selection is applied after data generation applying the AR, mRMR and MR criteria on

the data xt ∀ t = 1, 2, . . . 96 with labels yt. The optimal sensor sets using different criteria are

listed in Table 4.5(a). The AR algorithm selected 3 sensor-class pairs where the number of optimal

sensors is automatically determined to be m∗ = 3. The D∗-Fuse training phase resulted in the D∗-

Fuse Tree that is shown in Fig. 4.8 (note that the sensor zhd is selected twice at Level 1 and at Level

3, hence the number of optimal sensors is set to m∗ = 3 instead of n − 1 = 4). For comparison,

the mRMR and MR criteria are applied to select m∗ = 3 sensors likewise. Interestingly, the AR,

mRMR and MR criteria selected different sensor sets in this application as listed in Table 4.5(a).

After sensor selection, PCA is used to extract feature from optimal sensors only. Note that this

reduces computational complexity because PCA is applied onm∗ = 3 sensors instead of the whole

sensor set with m = 18 sensors. This emphasizes the advantage of performing sensor selection

before feature extraction (also before classifier training).

89

Figure 4.8: D*-Fuse Tree for Application II

Table 4.5: Optimal Sensors and CCRs for Application II

(a) Optimal Sensors

Criterion s∗1 s∗2 s∗3

AR zhd ysp yhd

mRMR zhd xrp yhd

MR zhd zrp ysp

(b) CCRs

Sensor Selection Criterion

Fusion Method AR mRMR MR

D*-Fuse 100% - -

Majority Vote 100% 100% 100%

CaRT 84% 83% 82%

Adaboost 100% 99% 98%

To perform the PCA, each chunk xt is first reshaped to a matrix Xt of size 5 × 20. Second,

the matrix X is constructed by concatenating the matrices Xt ∀ t = 1, 2, . . . 96 such that the size

of X is 480 × 20 Using the matrix X, the principal components are extracted as described in

Appendix B.1, which results in the feature matrix X′. The matrix X′ has 96×5 = 480 rows, while

the number of columns varies from a sensor to another and selected to satisfy the 95% energy

criterion. The feature matrix of each sensor is the input to the k-NN algorithm that is described in

Appendix B.3.

Next the k-NN classifier is trained for the corresponding binary classification problems at each

level of the D∗-Fuse Tree in Fig. 4.8. For comparison, majority vote, CaRT and Adaboost fusion

methods are applied on the optimal sensor set selected by different criteria and the results are

shown in Tables 4.5(b) and 4.6. The D∗-Fuse Tree resulted in 100% CCR in this application and so

does the majority vote fusion with the AR, MR and mRMR criteria. Note that the D∗-Fuse testing

90

phase does not require the decisions of all of the optimal sensors; therefore, it is computationally

less expensive than the majority vote fusion. The AR criterion lead to higher CCRs (84% and

100%) in comparison to mRMR and MR when used with CaRT and Adaboost. This is because the

AR algorithm selected sensor-class pairs but the mRMR and the MR select optimal sensors only;

hence, the AR algorithm extracts sensor-class pair information and lead to better results.

On a 32-bit MatLab running on a 3.10 GHz Intel(R) Core(TM) i5−2400 processor with 16 GB

ram and Windows 7, the AR criterion sensor-class pair selection execution time is 0.86s. D∗-Fuse

training execution time is 0.41s while D∗-Fuse testing execution time is 4.98e− 02s.

Table 4.6: Confusion Matrices for Application II

Sensor Selection Criterion

Admissible Relevance mRMR Maximum Relevance
Classifier Output Classifier Output Classifier Output

Fusion Algorithm c1 c2 c3 c4 c5 c1 c2 c3 c4 c5 c1 c2 c3 c4 c5

D*-Fuse

A
ct

ua
l

c1 50 0 0 0 0 - - - - - - - - - -
c2 0 100 0 0 0 - - - - - - - - - -
c3 0 0 145 0 0 - - - - - - - - - -
c4 0 0 0 20 0 - - - - - - - - - -
c5 0 0 0 0 165 - - - - - - - - - -

Majority Vote

A
ct

ua
l

c1 50 0 0 0 0 50 0 0 0 0 50 0 0 0 0
c2 0 100 0 0 0 0 100 0 0 0 0 100 0 0 0
c3 0 0 145 0 0 0 0 145 0 0 0 0 145 0 0
c4 0 0 0 20 0 0 0 0 20 0 0 0 0 20 0
c5 0 0 0 0 165 0 0 0 0 165 0 0 0 0 165

CaRT

A
ct

ua
l

c1 38 1 8 1 2 34 4 5 0 7 35 0 8 1 6
c2 4 88 2 0 6 8 79 3 4 6 2 85 8 0 5
c3 6 8 123 0 8 4 3 134 0 4 6 7 113 4 15
c4 3 2 6 9 0 3 8 0 9 0 0 0 2 17 1
c5 0 6 16 0 143 5 8 8 3 141 5 6 11 1 142

Adaboost

A
ct

ua
l

c1 50 0 0 0 0 50 0 0 0 0 50 0 0 0 0
c2 0 100 0 0 0 0 99 1 0 0 0 100 0 0 0
c3 0 0 145 0 0 0 0 144 1 0 0 0 142 0 3
c4 0 0 0 20 0 0 0 0 20 0 0 0 0 20 0
c5 0 0 0 0 165 0 1 0 0 164 0 0 6 0 159

91

4.4.3 Application III: Human Activity Recognition Dataset

Human Activity Recognition is an active research area with various applications including enter-

tainment, assisted living, smart homes and others. Dataset used in this application is a human

activity recognition dataset[123] with 7 classes; namely, c1 walking, c2 walking upstairs, c3 walk-

ing downstairs, c4 sitting, c5 standing, c6 lying and c7 transition class. The transition class is is

a) either stand-to-sit, b) sit-to-stand, c) sit-to-lie, d) lie-to-sit, e) stand-to-lie, or d) lie-to-stand

transition. The 7 classes C = {c1, c2, . . . c7} in this application are listed in Table 4.7(a).

To perform the experiment, thirty volunteers were asked to perform several repetitions of the

above activities and data are collected using smartphones mounted to the subjects’ waists. “Sensing

devices” include 3D linear and angular accelerations Z = {z1, z2, . . . z6} and the sampling rate is

50Hz. The sensing device set Z are listed in Table 4.7(b).

Table 4.7: Class and Sensor Set Definition for Application III

(a) Classes

Class Description

c1 Walking

c2 Walking Upstairs

c3 Walking Downstairs

c4 Sitting

c5 Standing

c6 Lying

c7 Transition

(b) Sensing Devices

z Symbol Definition

z1 ẍ x-direction acceleration

z2 ÿ y-direction acceleration

z3 z̈ z-direction acceleration

z4 α̈ Angular acceleration around x-axis

z5 β̈ Angular acceleration around y-axis

z6 γ̈ Angular acceleration around z-axis

For each sensing device z ∈ Z, a total of 2112 time series data wt ∀ t = 1, 2, . . . 2112 are

collected and manually labeled as yt ∈ C (where the number of time series data per class vary).

Each time series data wt is of length 300 samples (i.e., 6 seconds).

In this experiment, wavelet transform with 2nd Gaussian mother wavelet (shown in Fig. 4.9)

is first applied to the time series data wt at 32 scales 8, 16, . . . 256. Wavelet transform shows

frequency and time domain information rather than time only information that is indicated by the

time series data, which could lead to better classification information. Depending on the data,

92

-5 0 5
-0.5

0

0.5

1

Figure 4.9: 2nd Order Gaussian Mother Wavelet

wavelet scales that lead to high CCR might differ from a sensing device to another. Moreover,

different scales might lead to better performance isolating a specific class. In other words, a specific

scale might have low (or high) overall CCR but lead to superior (or poor) performance isolating a

specific class. Therefore, this experiment selects the best “sensor” (i.e., sensing device + wavelet

scale) for each class (i.e., selects optimal sensor-class pairs).

The sensor set is defined as S = {s1, s2, . . . sm} where m = 6 × 32 = 192 and each sensor

sj ∀ j = 1, 2, . . .m is a combination of a sensing device and a wavelet scale. After that, the AR

criterion is applied for sensor selection, where the resultant D∗-Fuse Tree is shown in Fig. 4.10

and the sensor set definition is in Table 4.8. Table 4.8 also shows the sensor set selected using

the mRMR and MR criteria for comparison. In this experiment, the number of optimal sensors is

automatically determined by the D∗-Fuse algorithm to be m∗ = n − 1 = 6 sensors. Interestingly,

the AR, mRMR and MR criteria selected different sensor sets.

For feature extraction, PCA is applied on the wavelet transformed data. For a sensor s ∈ S,

denote the time series data by wt ∀ t = 1, 2, . . . 2112, where wt is a vector of size 300× 1. Denote

the wavelet transformed data at a scale by w̃t, which is also a vector of size 300 × 1. To apply

PCA, each w̃t is reshaped to a matrix W̃t matrix of size 30 × 10, then a matrix W is formed by

93

Figure 4.10: D∗-Fuse Tree for Application III

Table 4.8: Optimal Sensor Sets for Application III

Rank
Admissible Relevance mRMR Maximum Relevance

sj SD Scale sj SD Scale sj SD Scale

1 s32 ẍ 256 s128 α̈ 256 s128 α̈ 256

2 s128 α̈ 256 s10 ẍ 80 s127 α̈ 248

3 s115 α̈ 152 s65 z̈ 8 s126 α̈ 240

4 s161 γ̈ 8 s64 ÿ 256 s125 α̈ 232

5 s64 ÿ 256 s131 β̈ 24 s124 α̈ 224

6 s192 γ̈ 256 s160 β̈ 256 s123 α̈ 216

SD: Sensing Device

concatenating matrices W̃t∀ t = 1, 2, . . . 2112, where W has 2112 × 30 rows and 10 columns.

After that, the transformation matrix is extracted from W by applying the KL algorithm that is

described in Appendix B.1, which is results in the features W′.

Finally, k-NN classifier is trained for classification at each level of the D∗-Fuse Tree in Fig. 4.10.

Evaluating the D∗-Fuse Tree using 10-Fold cross-validation algorithm, the resultant CCR is 95%,

where the confusion matrix is shown in Table 4.9.

For comparison, majority vote, CaRT and Adaboost fusion algorithms are applied on optimal

sensor sets selected using the AR, mRMR and MR algorithms. The resultant confusion matrices

are shown in Table 4.9 while the CCRs are summarized in table Table 4.10. The D∗-Fuse results in

94

Table 4.9: Confusion Matrices for Application III

Sensor Selection Criterion

Admissible Relevance mRMR Maximum Relevance

Classifier Output Classifier Output Classifier Output

Fusion
Algorithm

c1 c2 c3 c4 c5 c6 c7 c1 c2 c3 c4 c5 c6 c7 c1 c2 c3 c4 c5 c6 c7

D*-Fuse

A
ct

ua
l

c1 2047 0 0 15 68 0 0 - - - - - - - - - - - - - -

c2 11 1913 0 1 1 0 0 - - - - - - - - - - - - - -

c3 4 0 1532 0 0 0 0 - - - - - - - - - - - - - -

c4 1 0 0 1917 254 0 0 - - - - - - - - - - - - - -

c5 5 8 0 225 2156 0 0 - - - - - - - - - - - - - -

c6 0 0 0 0 0 2406 0 - - - - - - - - - - - - - -

c7 50 1 4 0 0 0 53 - - - - - - - - - - - - - -

Majority
Vote A

ct
ua

l

c1 2098 4 2 0 25 1 0 2110 12 2 1 5 0 0 2050 0 0 5 65 10 0

c2 27 1899 0 0 0 0 0 140 1774 9 0 3 0 0 0 1916 0 0 6 4 0

c3 62 52 1422 0 0 0 0 224 68 1244 0 0 0 0 0 0 1532 0 0 2 2

c4 4 5 0 1926 108 129 0 3 0 1 2017 122 29 0 0 0 0 1641 188 343 0

c5 9 7 1 244 2101 32 0 11 1 0 155 2219 8 0 7 8 0 390 1766 223 0

c6 1 3 0 91 18 2293 0 0 0 1 34 22 2349 0 1 7 0 861 307 1230 0

c7 0 5 1 0 0 1 101 0 1 0 0 0 1 106 0 1 2 0 0 1 104

CaRT

A
ct

ua
l

c1 1967 20 6 49 88 0 0 1984 20 6 40 80 0 0 1955 16 6 13 109 31 0

c2 17 1905 4 0 0 0 0 16 1905 4 0 1 0 0 6 1912 4 0 4 0 0

c3 12 0 1524 0 0 0 0 12 0 1524 0 0 0 0 13 0 1522 0 1 0 0

c4 46 0 0 1834 292 0 0 75 0 0 1845 252 0 0 58 0 0 1113 323 678 0

c5 137 24 0 267 1966 0 0 162 24 0 299 1909 0 0 194 24 0 416 1234 526 0

c6 0 0 0 0 0 2406 0 0 0 0 0 0 2406 0 138 18 17 722 521 990 0

c7 6 24 49 25 4 0 0 9 24 49 25 1 0 0 29 24 47 0 8 0 0

Adaboost

A
ct

ua
l

c1 1988 0 0 12 111 19 0 1997 61 46 11 14 1 0 1988 0 0 12 111 19 0

c2 0 1909 0 0 8 9 0 176 1672 53 11 14 0 0 0 1909 0 0 8 9 0

c3 0 0 1526 0 1 5 4 225 135 1155 6 15 0 0 0 0 1526 0 1 5 4

c4 0 0 0 1490 238 444 0 3 0 2 1819 265 83 0 0 0 0 1490 238 444 0

c5 7 7 0 323 1782 275 0 10 2 1 257 2090 34 0 7 7 0 323 1782 275 0

c6 1 6 0 714 292 1393 0 0 0 0 21 11 2374 0 1 6 0 714 292 1393 0

c7 0 1 2 0 0 1 104 0 1 2 0 0 0 105 0 1 2 0 0 1 104

95

the highest CCR of 95%, while the highest CCR achieved by mRMR and MR are 93% and 81%.

The MR algorithm in this experiment results in low CCR because it selected resultant sensors,

which can be clearly seen in Table 4.8. To explain, all the sensors that MR selected use the sensing

device α̈ at consecutive scales 216, 224, . . . 256. Not only are the sensing devices redundant, but

also consecutive scales are not expected to carry different information. The D∗-Fuse algorithm

lead to a higher CCR than mRMR+majority vote, mRMR+CaRT and mRMR+Adaboost because

the D∗-Fuse algorithm extracts sensor-class pair information.

Table 4.10: CCRs for Various Sensor Selection and Fusion Algorithms for the Human Activity
Recognition Dataset

Sensor Selection Criterion

Fusion Method AR mRMR MR

D*-Fuse 95% - -

Majority Vote 93% 93% 81%

CaRT 92% 91% 69%

Adaboost 80% 88% 80%

On a 64-bit Windows 7 operating system, with a Intel(R) Core(TM) i5-2400, 3.10GHz proces-

sor, with 16GB RAM, the execution time for the AR sensor selection is 35s while the D∗-Fuse

training took 9.2s. The testing execution time of the D∗-Fuse is 2.45e− 4s.

4.5 Conclusions

In this theme, the D∗-Fuse algorithm is developed. The D∗-Fuse algorithm uses the novel AR

criterion for sensor-class pair selection. The AR criterion is a novel information theoretic based

sensor-class pair selection. Sensor-class pair selection is important for efficient sensor fusion be-

cause sensors typically differ in the accuracy they isolate classes. It might occur that a sensor

has high overall CCR; however, it has low accuracy isolating a specific class. In contrast, another

sensor might have low overall CCR although it is accurate in isolating a specific class. Therefore,

an efficient sensor fusion algorithm must extract sensor-class pair information where each pair

contains the class that can be isolated with highest CCR and the associated sensor.

96

Moreover, sensor-class pair selection avoids selecting redundant sensors. By sensor-class pair

selection (instead of sensor-only selection), it is assured that selected sensors carry information

about different classes. Hence, the selected sensors carry non-redundant classification information

as discussed in details in Section 4.3. Non-redundant sensors are expected to lead to higher CCR

when fused properly.

The D∗-Fuse algorithm uses the AR algorithm at each level of the D∗-Fuse Tree to select optimal

sensor-class pairs in the training phase. Once a senor-class pair is selected, the class set is reduced

by removing the selected class. At the next level, the AR algorithm is used again to select the next

optimal sensor-class pair using the updated class set. The algorithm continues till all the classes

are selected, which occurs in n− 1 iterations where n is the number of classes.

The D∗-Fuse algorithm is applied in this chapter on three data sets. The first data is generated

using Gaussian distributions with different means and variances for different sensor-class pairs. In

the second application, data are collected using Kinect camera for the objective of gesture phase

segmentation. The third application is a human activity recognition dataset where the data are

collected using smartphones mounted to the waists of the human subjects. The D∗-Fuse results are

compared with majority vote, CaRT and Adaboost fusion algorithms (described in Appendix C)

applied on sensors selected using the AR, mRMR and MR sensor selection criteria. The D∗-Fuse

algorithm shows improvement over other fusion and sensor selection algorithms with reasonable

execution time as discussed in Section 4.4.

For future work, three areas of improvement are considered:

• Extension of the D∗-Fuse algorithm so that it allows for multiple splits at each level instead

of the one-vs-the-rest trees that allows only for binary splits at each level.

• Extension of the D∗-Fuse algorithm so that it allows for selecting multiple sensors at each

level to solve the corresponding classification problems.

• Extension of the D∗-Fuse algorithm to multiple fault diagnosis problems where multiple faults

of different components can co-exist at the same time in the system.

97

CHAPTER 5

CONCLUSIONS

The purpose of this thesis is sensor selection and fusion for pattern recognition in complex in-

terconnected systems. There are typically a large number of sensors in complex interconnected

systems and sensor selection and fusion is challenging. For example, some of these sensors may

misleading classification information. Some other sensors might carry contradicting classification

information. In addition, one of these sensors might carry incomplete information such that it has

to be used with another sensor as a group to lead to accurate classification information. In other

cases, a subset of sensors might carry redundant classification information to each other such that

using them as a group does not improve classification accuracy. This thesis tackles these challenges

by 1) sensor selection and 2) fusion for classification.

5.1 Unsupervised Embedded Algorithm

To solve the above challenges, three themes are developed. The first theme presents a novel sensor

selection algorithm called the Unsupervised Embedded algorithm. The algorithm aims to select

sensors in which the inter-class distances are maximized and the intra-class distances are mini-

mized. This is accomplished in two steps:

1. Candidate List Sensor Selection. In this step, a filter algorithm (e.g., mRMR algorithm) is

used to select the candidate list of sensors.

98

2. Entropy Based Sensor Ranking. Here, the sensors in the candidate list are re-ranked after

that the topm∗ sensors are picked for classification. Re-ranking is accomplished in two steps:

a) The sensor data is clustered using a clustering algorithm (e.g., Kmeans algorithm).

b) The clusters are evaluated using the entropy, then the average entropy for each sensor

(over the clusters) is calculated. Sensors are then ranked based on the average entropy

where sensors with low entropy are given a higher rank and sent to the top of the list.

In comparison to existing sensor selection techniques, the Unsupervised Embedded algorithm

is computationally efficient, leads to high CCR and does not rely on a specific classifier. For ap-

plication, the Unsupervised Embedded algorithm is utilized to design a heat exchanger fouling

diagnosis in the ECS of an aircraft. The ECS is an air conditioning system that is used to regulate

the cabin air temperature, pressure and humidity in an aircraft. The ECS is a complex intercon-

nected system with variety of components and heterogeneous sensors. A major component in the

ECS is the heat exchanger, which exchanges heat with outside ram air. The heat exchanger is

prone to a phenomenon that is known as fouling. Fouling degrades the ECS efficiency and may

occur frequently and/or unexpectedly. This motivates the design of an automated fouling diagnosis

algorithm, which allows for Condition Based Maintenance (CBM).

The fouling diagnosis algorithm that is presented in Chapter 2 is of two phases: training and

testing phases. In the training phase, the data are generated using an experimentally validated

Simulink model that is provided by our industry partner, where data include uncertainties in fouling

levels, ambient temperatures and occupant counts. The Simulink model outputs time series data

of 109 sensors. Noting that the ambient temperature changes data dramatically from a day type

to another, 5 day types are defined based on the ambient temperatures; namely, i) extremely cold,

ii) cold, iii) medium, iv) hot and v) extremely hot day types. The fouling diagnosis algorithm is

applied for each day type separately.

For each day type; after data generation, the Unsupervised Embedded algorithm is used for sen-

sor selection. Then PCA and GMM algorithms are used for feature extraction and k-NN algorithm

is used for classification, and the results are summarized in Tabels 2.5, 2.4 and 2.6. For future

99

work, two improvements are considered for heat exchanger fouling diagnosis:

• Including more types (e.g., humidity level and altitude) of uncertainties in the analysis. Mod-

els that generate data with these uncertainties are being developed by our industry partner.

• Applying the heat exchanger fouling diagnosis on actual flight data as soon as the data is

available from our industry partner.

5.2 BB-Fuse Algorithm

The Unsupervised Embedded algorithm is a computationally efficient and accurate sensor selection

algorithm; however, it does not lead to a classification decision. Next, the optimal sensors have to

be fused to produce a decision with high CCR. For reasons that might be due to selected sensors or

the fusion algorithms themselves, fusion might achieve a CCR that is lower than the the CCR of the

best provided sensor. Moreover, sensors may vary in the ability they isolate specific classes due to

the heterogeneity of sensors in complex interconnected systems. A sensor might have high overall

CCR (may be the best provided sensor); however, it has low performance isolating a specific class.

In contrast, a sensor might have low overall CCR (may be the worst sensor); however, it is superior

isolating a specific class. Hence, the BB-Fuse algorithm extracts sensor-class pair information by

selecting the optimal classes (i.e., they can be isolated from the rest with highest accuracies) and

the optimal sensors that can be used with them (i.e., the best sensors that can be used to isolate the

optimal classes from the rest).

In the second theme, the BB-Fuse algorithm is developed. The BB-Fuse is a sensor-class pair

selection and fusion algorithm which is analytically guaranteed to achieve CCR improvement over

the best sensor. To emphasize, the BB-Fuse algorithm has two main contributions:

1. Sensor-Class Pair Selection, which harvests the ability of sensors to isolate different classes.

2. Guaranteed CCR Improvement, which is accomplished by constructing a one-vs-the-rest

decision tree (BB-Fuse Tree) that uses the optimal sensor-class pairs at each level.

The BB-Fuse algorithm training phase takes the confusion matrices of the individual sensors at

the input, and use them to output the BB-Fuse Tree. The BB-Fuse Tree is a one-vs-the-rest tree

100

that isolates one class at each level; therefore, it has n − 1 levels (or less if node merging can be

applied as explained in Def. 3.3.5) where n is the number of classes.

The BB-Fuse Tree is constructed in n − 1 iterations. Each iteration is of 3 steps. First, the

optimal sensor-class pair is selected. This is accomplished in three steps:

i) constructing binary confusion matrices,

ii) calculating binary CCRs and sensitivities from each confusion matrix,

iii) selecting the candidate list of sensors with sensitivities that are higher than the best sensor

sensitivity, and finally

iv) selecting the optimal sensor-class pairs that maximizes the binary CCRs from the candidate

list of sensors.

After the optimal sensor-class pair is selected, the second step is to reduce the confusion matrices

by removing the rows and columns that correspond to the selected class. After that, the third step is

to reduce the class set by removing the optimal class, then the next iteration is similarly performed.

The BB-Fuse algorithm organizes the optimal sensor-class pairs in a one-vs-the-rest tree that is

called the BB-Fuse Tree. This tree can be applied in the testing phase by sequentially applying the

sensors in the BB-Fuse Tree. The testing phase terminates if a terminal node is reached; i.e., an

optimal sensor decision on the testing data is equal to the corresponding optimal class that it can

best isolate. Theoretically, the BB-Fuse algorithm is guaranteed to achieve CCR improvement as

stated in Theorem 3.5.3.

The BB-Fuse algorithm is applied on two data sets in the second theme for numerical validation.

The first application is a human activity recognition data set where hand interaction with environ-

ment is classified into 10 different classes. The results are summarized in Tables 3.2 and 3.4. In the

second application, the BB-Fuse is applied to identify and authenticate users (10 users) from walk-

ing activities and the results are summarized in Tabels 3.7 and 3.8. The performance of BB-Fuse

algorithm is compared to the performance of various other fusion techniques.

For future work, the BB-Fuse algorithm can be generalized for multiple-split decision trees

where each node splits to a meta-class that is composed of one or more classes.

101

5.3 D∗-Fuse Algorithm

The third theme presents the D∗-Fuse algorithm which is an improvement of both the first and

second themes as they both have limitations. In the first theme, the Unsupervised Embedded

algorithm uses the mRMR criterion as a filter to select the candidate list of sensors. The mRMR

algorithm has been criticized in literature for subtracting the redundancy term [120].

The second theme presents the BB-Fuse algorithm, which performs sensor-class pair selection

and fusion to guarantee CCR improvement. The BB-Fuse algorithm utilizes the confusion matri-

ces, which have two major limitations:

• Computation Complexity. The confusion matrices are computed using the cross-validation

algorithm. The cross-validation algorithm is an iterative technique where in each iteration a

specific classifier is trained and tested. The repetition of training and testing of the classifier

makes the cross-validation algorithm computationally expensive; especially when there is a

large number of sensors or classes.

• Classifier Dependence. Confusion matrices are computed for a specific classifier. Therefore,

a different BB-Fuse Tree (possibly with higher CCR) results if different classifiers are used.

The D∗-Fuse algorithm improves Themes 1 and 2 by using information theory. First, a novel

information theoretic sensor-class pair selection criterion (called the AR criterion) is introduced.

The AR criterion perform sensor-class pair selection instead of sensor-only selection because sen-

sors vary in the accuracy they isolate different classes. The AR criterion assures that the selected

sensors provide different classification information by sensor-class pair selection; hence, avoiding

the use of the redundancy term used by the mRMR criterion. Because the AR criterion is classifier

independent, the selected sensor-class pairs are also classifier independent.

After sensor-class pair selection using the AR criterion, the D∗-Fuse algorithm organizes the

pairs in the D∗-Fuse Tree. The D∗-Fuse Tree is one-vs-the-rest decision tree that is similar to the

BB-Fuse Tree; however, the classifiers are not specified in the D∗-Fuse Tree. Any classifier can be

trained at each level of the D∗-Fuse Tree on the corresponding binary classification problems. In

contrast, the BB-Fuse Tree can only be used with specified classifiers.

102

The D∗-Fuse algorithm is applied in Theme 3 on three datasets. The first dataset is a simulated

data that is generated using Gaussian distributions with means and variances that vary for different

sensor-class pairs, and the results are presented in Tabels 4.3 and 4.2(b). In the second application

gesture phases are identified from video tapes and the results are presented in Tables 4.6 and 4.5(b).

The third application utilizes a human activity recognition dataset and its results are presented in

Tables 4.9 and 4.10. The D∗-Fuse performance is compared to majority vote, CaRT and Adaboost

fusion algorithms applied on sensors selected by AR, mRMR and MR criteria.

For future work, the following improvements to the D∗-Fuse algorithm are considered:

• Allowing multiple splits at each level instead of the one-vs-the-rest trees

• Allowing for multiple sensor selection at each level.

• Extending to multiple fault diagnosis problems.

103

APPENDIX A

MATTERS RELEVANT TO INFORMATION THEORY

A.1 Maximum Entropy Distribution

Consider the optimization problem in Eq. (2.10). Using the method of Lagrange multipliers, define:

J = H(X)−(λ− 1)

(
r∑
j=1

pj − 1

)
(A.1)

where λ ≥ 0 is a real number. Taking the partial derivative with respect to pj , ∀j = 1, ...r, and

equating to zero, we get

∂J
∂pj

= − ln pj − 1− λ+ 1 = 0 (A.2)

Therefore we get:

pj∗ = e−λ (A.3)

Summing Eq. (A.3) for j = 1, ...r, we get:

λ = ln r (A.4)

104

Using Eq. (A.4) into Eq. (A.3), we get the maximum entropy distribution as

pj∗ =
1

r
∀j = 1 . . . r (A.5)

which is the uniform distribution.

A.2 Calculation of Mutual Information

This section describes the calculation of the mutual information quantities I(Si, C) and I(Si, Sj).

Let the symbol alphabet be equal to Σ = {α1 . . . αr} such that αω ∈ Σ, ω ∈ {1, . . . r}. Let

γ ∈ Γ, |Γ| = 1024 denote a particular parametric combination for a simulation run. Let σi(γ, •) =

[σi(γ, 1), . . . σi(γ, L)] denote the symbol sequence for sensor si and simulation run γ, where

σi(γ, t) ∈ Σ, ∀ t = 1, . . . L. Then, lets define a |Γ| × L matrix of all symbol sequences gen-

erated from the sensor si, i = 1, . . . N , under different simulation runs as:

Gi = [σi(γ, •)]γ=1,...|Γ| (A.6)

Lets now associate a label ai(γ) to each row σi(γ, •) of the matrix Gi, such that ai(γ) = m if and

only if σi(γ, •) belongs to the class cm, m ∈ {1 . . .M}. Now, lets define the following:

• µi(αω): the number of occurrences of the event when σi(γ, t) = αω in the matrix Gi.

• νi(αω, cm): the number of occurrences of the joint event when σi(γ, t) = αω and ai(γ) = m

in the matrix Gi.

• χi,j(αω, αυ): the number of occurrences of the joint events σi(γ, t) = αω and σj(γ, t) = αυ.

105

Then the following entropies are calculated:

H(Si) = −
r∑

ω=1

µi(α
ω)

|Γ| · L
ln
µi(α

ω)

|Γ| · L
(A.7)

H(Si, C) = −
M∑
m=1

r∑
ω=1

νi(α
ω, cm)

|Γ| · L
ln
νi(α

ω, cm)

|Γ| · L
(A.8)

H(Si, Sj) = −
r∑

ω=1

r∑
v=1

χi,j(α
ω, αv)

|Γ|2 · L
ln
χi,j(α

ω, αv)

|Γ|2 · L
(A.9)

The mutual information quantities required in Eq. (2.18) are then calculated using Eq. (2.8).

A.3 Fano’s Inequality

Theorem A.3.1 (Fano’s Inequality [119]) Define random variablesC and Ĉ whose sample space

is the training sensor readings of sensor s (that is modeled by the random variable S). However,

the output of C is the true class label and the output of Ĉ is the classifier decision. Let E be the

classification error random variable such that

E =

 1 if Ĉ 6= C

0 otherwise.

and define the probability of error Pe = p(Ĉ 6= C). Then,

H(E) + Pe log |C| ≥ H(C|Ĉ) ≥ H(C|S) (A.10)

This inequality can be weakened to

1 + Pe log |C| ≥ H(C|S) (A.11)

106

or

Pe ≥
H(C|S)− 1

log |C|
=
−I(C;S) +H(C)− 1

log |C|
(A.12)

Proof:

H(E,C|Ĉ) = H(C|Ĉ) +H(E|C, Ĉ)

but the probability of making an error is zero given both C and Ĉ; so, H(E|C, Ĉ) = 0

However,

H(E,C|Ĉ) = H(C|Ĉ) +H(C|E, Ĉ) (A.13)

where it can be easily shown that H(E|Ĉ) ≤ H(E). Now, H(C|E, Ĉ) can be expressed as:

H(C|E, Ĉ) = P (E = 0)H(C|Ĉ, E = 0)

+ P (E = 1)H(C|Ĉ, E = 1)

≤ Pe log |C| (A.14)

Therefore,

H(E) + Pe log |C| ≥ H(X|Ĉ)

where the log operator is of base 2 [119]. �

The Fano’s Inequality shows that the lower bound of the probability of classification error is

inversely proportional to the mutual information between the class lables and the sensor data.

Therefore, various research papers proposed to maximize the mutual information for sensor selec-

tion [120].

107

APPENDIX B

MACHINE LEARNING ALGORITHMS

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are used in this

thesis for feature extraction. PCA is a feature extraction method that projects the data into the

direction on which data change is maximum. LDA; on the other hand, is a feature extraction

method that projects the data on the direction that different classes are the most separable.

The k-Nearest Neighbor (k-NN) algorithm is used in this thesis for classification. The k-NN

algorithm classifies a testing point by performing majority voting on the nearest k neighbors, where

k is a tuning parameter. A feature extraction method and a k-NN classifier is applied on each

sensor; after that, the decisions are fused using a fusion method be it BB-Fuse or other fusion

methods discussed in the thesis. This appendix explains the PCA, LDA and k-NN algorithms.

For mathematical notation, let P be the classification problem under consideration with class

set C = {c1, c2, . . . cn} where the data is collected using the sensor set S = {s1, s2, . . . sm}. Let

the input training data be X = {(xt,j, yt) ∀ t = 1, 2, . . . T, j = 1, 2, . . .m}, where xt,j ∈ R is

the training sample t of the sensor sj and yt ∈ C is the associated label. Furthermore, define

the data matrix to be X ∈ R T×m where xt,j is the element at the tth row and jth column ∀ t =

1, 2, . . . T and j = 1, 2, . . .m.

108

B.1 Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) [124] is a data reduction method. The objective of PCA

is to transform the data matrix X into a matrix X′ of size T ×m′, where m′ < m. The columns

of X′ hold the Score Vectors (also known as the Principal Components). This transformation

is accomplished using the Karhunen-Loéve (KL) algorithm as summarized here. First, the m ×

m covariance matrix Q of X is computed and the corresponding eigenvalues are obtained and

sorted in descending order. Second, the eigenvectors associated with the m′ largest eigenvalues

are generated and arranged into an m×m′ transformation matrix Ω. Finally, the scores of X′ are

computed using the following linear transformation

X′ = X×Ω (B.1)

In case X is one dimensional time series data vector (i.e., X is of size T ×m and m = 1), the

data vector X is first reshaped to a matrix X̃, which is of size m1 × m2 where T = m1 × m2.

After that the KL algorithm is applied to extract the Score Vectors X′ as described above, where

the scores X′ is of size T ×m′ such that m′ ≤ m2.

B.2 Linear Discriminant Analysis

Linear Discriminant Analysis(LDA) [125] is a feature extraction method that converts the data

matrix X into features X′, where X′ ∈ R T×m′ , m′ ≤ m and the classes are separable. Let

Ω ∈ R m×m′ be a liner transformation matrix such that X′ = X × Ω. Let the columns of Ω be

ω1, ω2, . . . ωm′ , then the optimal transformation matrix Ω∗ can be found by solving the following

optimization problem

Ω∗ = arg max
Ω∈R m×m′

tr(
ΩtQbΩ

ΩtQwΩ
)

s.t. ||ωi|| = 1 ∀i = 1, 2, . . .m′ (B.2)

109

where (•)t denotes the transpose operator, tr(•) denotes the trace operator and

Qb =
n∑
i=1

pi(µi − µ)(µi − µ)t and

Qw =
n∑
i=1

piQi (B.3)

are respectively the between-class covariance and the within-class covariance. pi ∀i = 1, 2, . . . n is

the prior probability of the classes ci ∈ C. The vectors µi ∈ R m×1 ∀ i = 1, 2, . . . n is calculated

from the subset of data that belong to class ci, which is Xi = {Θ : Θ ∈ X & yt = ci ∀ t =

1, 2, . . . |Xi|}, and µ =
n∑
i=1

piµi ∈ R m×1 is the sample mean vector of the columns X. Qi is

the covariance the data subset Xi ∀i = 1, 2, . . . n. The optimal solution Ω∗ = [ω∗1, ω
∗
2, . . . ω

∗
m′] is

composed of the eigenvectors that correspond to the largest eigenvalues of the symmetric matrix

Q−1
w Qb.

Steps to find the transformation matrix Ω∗ are similar to the KL algorithm, except that the

eigenvectors are calculated from the matrix Q−1
w Qb. The “reshaping trick” as described in the PCA

section can also be used to extract LDA features from one dimensional time series data (m = 1).

B.3 k-Nearest Neighbor Classification Algorithm

Due to simplicity, efficiency and low complexity, the k-Nearest Neighbor (k-NN) [124] classifica-

tion algorithm is applied in this thesis on the labeled feature set {(x′t, yt)∀t = 1, 2, . . . T}, where

the vector x′t ∈ R 1×m′ is a row in the feature matrix X′ obtained by PCA, GMM or LDA. The

k-NN classifier is composed of two phases: training and testing. The purpose of the training phase

is to specify the parameter k (where k represents the number of nearest neighbors to observe in the

testing phase) which maximizes the CCR. In the testing phase, the unlabeled testing feature, say

x ∈ R 1×m′ , is classified by applying the majority rule in the k-neighborhood of the testing feature

using the equation:

ĉ = arg max
i=1...n

ki
k

(B.4)

110

where ĉ is the classifier output and ki is the number of training features that belong to class ci ∈C

among the k nearest neighbors of the testing feature x in the set {x′t ∀ t = 1, 2, . . . T}.

111

APPENDIX C

FUSION ALGORITHMS

In literature, several fusion algorithms for classification have been proposed and frequently used for

improving the classification decisions. In this work, the BB-Fuse algorithm performance is com-

pared with 7 fusion methods which are Classification and Regression Tree (CaRT), C4.5, Bayes

Belief Integration, Majority Voting, Adaptive Boosting (Adaboost), Borda Count Voting and Con-

dorcet Count Voting. These algorithms are explained in brevity in this appendix. Due to similarity,

CaRT and C4.5 are explained together in the next subsection.

C.1 CaRT and C4.5

Both CaRT and C4.5 are data level decision tree algorithms and they construct the decision tree

using the Hunt’s algorithm [124]. The Hunt’s algorithm recursively splits the input data at each

node into two partitions till it reaches a leaf node where all the data are of the same class.

At a node v`, let X` ⊆ X be the input data. To construct the decision tree, the Hunt’s algorithm

performs two steps at the node v`:

1. Evaluate the input data X` to the node. If all the input data belong to one class, the algorithm

terminates. Otherwise, step 2 is performed.

112

2. Find the optimal test that minimizes the impurity measure J , such that:

(s`, θ`) = arg min
sj∈S,θj

J(sj, θj) (C.1)

where sj ∈S is a sensor and θj is a threshold on sensor sj , and (sj, θj) comprises a “test”. Based

on the test θj , the input data X` can be split into two partitions X`,L = {(x, y) : (x, y) ∈ X` & xj ≤

θj} and X`,R = X \X`,L. Once the optimal test is found, the node v` is established, then the same

steps are repeated on its children. The Hunt’s algorithm tends to grow large trees; therefore, an

optional pruning step is performed. Pruning is the act of replacing sub-trees with a leaf node based

on some criterion (e.g., classification error). Although both CaRT and C4.5 algorithms uses the

Hunt’s method, they differ in the impurity measure and pruning methods they use.

In particular, Classification and Regression Tree (CaRT) algorithm utilizes the Gini Index J =

JGI for the impurity measure, which is defined as:

JGI =
|X`,L|
T

(1−
n∑
i=1

[p(ci|X`,L)]2

+
|X`,R|
T

(1−
n∑
i=1

[p(ci|X`,R)]2 (C.2)

where p(ci|X`,R) and p(ci|X`,R) are the probabilities that class ci occurs in the sets X`,R and X`,L

respectively.

However, C4.5 uses the Split Information JSI for impurity measure [113], which is explicitly

defined as:

JSI =
|X`,L|
T

H(C|X`,L) +
|X`,R|
T

H(C|X`,R) (C.3)

where H(C|X`,L) and H(C|X`,R) are the conditional entropy of the classes given the sets X`,L

and X`,R, respectively. The conditional entropy is defined as:

H(C|X) = −
n∑
i=1

p(ci|X) log p(ci|X) (C.4)

113

CaRT uses cross-validation for pruning while C4.5 algorithm prunes the trees using the pes-

simistic pruning algorithm [113]. In comparison to CaRT, C4.5 has several advantages (e.g.,

handling missing data). On the other hand, there is not theoretical evidence that one of the two

algorithms is better than the other.

Both of CaRT and C4.5 algorithms are popular and can achieve high CCRs on some data sets.

However, both of them are sensitive to noise and may construct very complex trees for very simple

data sets. CaRT and C4.5 are not guaranteed to outperform the best sensor.

C.2 Bayes Belief Integration

Bayes Belief Integration is a Bayesian Fusion method. In this method, Bayes theorem is used to

calculate a belief measure, Bel(ci) ∀ i = 1, 2, . . . n and the class that has the maximum belief wins.

Let hj be the classifier that is trained on the data of sensor sj ∀ j = 1, 2, . . .m in the training phase.

Given a testing point in the testing phase, let the classification decisions obtained from the sensors

be ĉj ∈C ∀ j = 1, 2, . . .m. The belief measure Bel(ci) is defined by the equation:

Bel(ci) = p(ci)

∏m
j=1 p(ĉ

j | ci)∏m
j=1 p(ĉ

j)
(C.5)

where p(ci) is the probability of class ci, p(ĉj | ci) is the probability that the classifier hj output is

ĉj ∈C given that the actual class of a testing point is ci. Both p(ci) and p(ĉj|ci) can be calculated

using the confusion matrices of the classifiers hj ∀ j = 1, 2 . . .m. To be specific, let the confusion

matrix for a specific classifier hj be:

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann


where each element ai,` ∀ i = 1, 2, . . . n, ` = 1, 2, . . . n represent the number of testing points that

are classified as class ci while they are actually of class c`. Then, the variables in Eq. C.5 can be

114

calculated as:

p(ĉj = c` | ci) =
ai,`∑n
`=1 ai,`

(C.6)

p(ĉj = c`) =

∑n
i=1 ai,`∑n

i=1

∑n
`=1 ai,`

(C.7)

and the final decision is obtained using the equation:

ĉ = arg max
i=1,2,...n

Bel(ci) (C.8)

Despite its effectiveness, the Bayes Belief Integration method is computationally expensive be-

cause it requires the decisions of all the classifiers hj ∀ j = 1, 2, . . .m to make the final decision.

There is not theoretical evidence that Bayes Belief Integration outperforms the best sensor in CCR.

C.3 Majority Voting

The voting methods are called so because of their similarity with the voting process in elections. In

this context, the voters are the classifiers hj ∀ j = 1, 2, . . .m while the candidates are the classes

in the set C = {ci ∀ i = 1, 2, . . . n}. Each classifier hj casts a vote ĉj ∈ C, and the objective is

to fuse the decisions ĉj ∀j = 1, 2, . . .m to reach a final decision ĉ, which is more likely to be the

correct class of the testing point under consideration.

The simplest form of voting algorithms is the Majority Voting method, where the class that has

the maximum number of votes wins. The Majority Voting algorithm subdivides from the category

of Un-Weighted Voting algorithms where all the classifiers’ decisions ĉj ∀ j = 1, 2, . . .m are

assumed to have equal weights. Mathematically, the Majority Voting algorithm is explained in

Eq. C.9.

ĉ = arg max
i=1,2,...n

p(ĉj = ci) =

m∑
i=1

e(ĉj, ci)

m
(C.9)

115

where e(ĉj, ci) = 1 when ĉj = ci and 0 otherwise [92].

C.4 Adaptive Boosting

Adaptive Boosting (Adaboost) [105] is a popular iterative fusion method that combines sensors’

decisions using optimal weights that minimizes the pseudo-loss. Adaboost is originally designed

for binary classification problems (i.e., problems with 2 classes); however, several extensions to

multi-class classification problems. The algorithm used in this thesis and explained here is called

the Adaboost.M1 and is explained next.

The classifiers used with Adaboost in this thesis are modified so that they can accept distribution

over the training samples in the training phase, but no distribution is used in the testing phase.

Initializing the training data distribution pt = 1/T ∀ t = 1, 2, . . . T , the following steps are applied

in iteration ` of the Adaboost algorithm:

• Step 1:

– Train a classifier h` using sensor data x`t and distribution pt ∀ t = 1, 2, . . . T

– Obtain ŷ`t = h`(x`t, pt)

– Compute the error ε` =
T∑
t=1

pt · e(ŷ`t , yt)

where e(ŷ`t , yt) = 1 if ŷ`t = yt and 0 otherwise.

• Step 2: Set β` = ε`

1−ε`

• Step 3: Update

pt ←
pt
N.F.

·

 β` if ŷ`t = yt

1 otherwise

where N.F. is the appropriate normalization factor.

The iterations are repeated for a pre-specified number of iterations L. Finally, the training phase

outputs are:

• The sensors and the trained classifiers s`, h` ∀ ` = 1, 2, . . . L

116

• The associated parameters β` ∀ ` = 1, 2, . . . L

The final decision in the testing phase is obtained using weighted majority vote, where the

weight for each classifier h` is log(1/β`). Mathematically, the final decision ĉ for any testing

sample is obtained using the equation:

ĉ = arg max
ci∈C

L∑
`=1

log
1

β`
· e(ĉ`, ci) (C.10)

where e(ĉ`, ci) = 1 if ĉ` = ci and 0 otherwise, and ĉ` is the decision obtained from classifier h`.

Adaboost is an effective and popular fusion algorithm; however, it is not guaranteed to perform

better than the best provided sensor.

C.5 Borda Count Voting

Borda Count Voting method is a subcategory of Ranked Voting methods, where each classifier

ranks the classes based on some preferences. In Borda Count Voting method training phase, each

classifier hj ∀ j = 1, 2, . . .m ranks the classes based on classification accuracy; after that, a

function (called the Borda Count) BC(ci, hj) is defined to be the number of classes that ranks

below the class ci ∈ C by classifier hj . To illustrate, let the ranked classes by a classifier h0

to be c(i) ∈ C ∀ i = 1, 2, . . . n; then, BC(c(1), h0) = n − 1, BC(c(2), ho) = n − 2, ... and

BC(c(n), h0) = 0.

In the testing phase, each classifier casts a vote ĉj ∈ C ∀ i = 1, 2, . . .m. Next, the Borda

Count of each class ĉj is calculated, and the class that achieves the maximum Borda Count wins.

Mathematically,

ĉ = arg max
i=1,2,...n

m∑
j=1

e(ĉj, ci) · BC(ci, hj) (C.11)

where e(ĉj, ci) = 1 if ĉj = ci and 0 otherwise. Despite its simplicity, Borda Count Voting method

ignores the possible existence of several erratic classifiers that could reinforce the errors [101].

117

C.6 Condorcet Count Voting

An improvement over the Majority Voting method is the Condorcet Count Voting method. In this

method, the classifiers hj ∀ j = 1, 2, . . .m vote for a pair of classes, say (ci, c`) ∈ C ×C, ∀ i =

1, 2, . . . n, ` = 1, 2, . . . i − 1. The winning class for this pairwise election scores a point, then

the class that scores the highest number of points wins. To be specific, denote the winner of the

two classes in the pair (ci, c`) by ĉi,` ∈ C. Define the function e(ĉi,`, cr) so that e(ĉi,`, cr) = 1 if

cr = ĉi,` and 0 otherwise. Then the Condorcet Count is described by Eq. C.12.

ĉ = arg max
cr ∀ r=1,2,...n

n∑
i=1

i−1∑
`=1

e(ĉi,`, cr) (C.12)

where ĉ is the final decision. Condorcet Count Voting method decreases the chances of winning

of a minority candidate. However, it is compuatationally expensive because of the pairwise elec-

tions [92].

118

BIBLIOGRAPHY

[1] S. Kumar, J. Ghosh, and M. Crawford, “Hierarchical fusion of multiple classifiers for hyperspectral data anal-

ysis,” Pattern Analysis & Applications, vol. 5, no. 2, pp. 210–220, 2002.

[2] N. Najjar and S. Gupta, “Better-than-the-Best Fusion algorithm with application in human activity recogni-

tion,” in Proceedings of SPIE Multisensor, Multisource Information Fusion: Architectures, Algorithms, and

Applications 2015, SPIE, 2015, pp. 949805-1 – 949805-10.

[3] R. Marshall, “The use of Classification and Regression Trees in clinical epidemiology,” Journal of Clinical

Epidemiology, vol. 54, no. 6, pp. 603–609, 2001.

[4] A. Ross and A. Jain, “Information fusion in biometrics,” Pattern Recognition Letters, vol. 24, no. 13, pp. 2115–

2125, 2003.

[5] Y. Ding and A. Ross, “A comparison of imputation methods for handling missing scores in biometric fusion,”

Pattern Recognition, vol. 45, no. 3, pp. 919–933, 2012.

[6] S. Ribaric and I. Fratric, “A biometric identification system based on eigenpalm and eigenfinger features,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 11, pp. 1698–1709, 2005.

[7] N. Poh and J. Kittler, “A unified framework for biometric expert fusion incorporating quality measures,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 1, pp. 3–18, 2012.

[8] V. Dasigi, R. Mann, and V. Protopopescu, “Information fusion for text classification —- an experimental

comparison,” Pattern Recognition, vol. 34, no. 12, pp. 2413–2425, 2001.

[9] A. Temko, D. Macho, and C. Nadeu, “Fuzzy integral based information fusion for classification of highly

confusable non-speech sounds,” Pattern Recognition, vol. 41, no. 5, pp. 1814–1823, 2008.

119

[10] H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information criteria of max-dependency,

max-relevance, and min-redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

27, no. 8, pp. 1226–1238, 2005.

[11] C. Sakar, O. Kursun, and F. Gurgen, “A feature selection method based on kernel canonical correlation analysis

and the minimum Redundancy–Maximum Relevance filter method,” Expert Systems with Applications, vol. 39,

no. 3, pp. 3432–3437, 2012.

[12] T. Chow and D. Huang, “Estimating optimal feature subsets using efficient estimation of high-dimensional

mutual information,” IEEE Transactions on Neural Networks, vol. 16, no. 1, pp. 213–224, 2005.

[13] R. Kohavi and G. John, “Wrappers for feature subset selection,” Artificial Intelligence, vol. 97, no. 1–2,

pp. 273–324, 1997.

[14] M. Dash and H. Liu, “Feature selection for classification,” Intelligent Data Analysis, vol. 1, no. 3, pp. 131–156,

1997.

[15] R. Battiti, “Using mutual information for selecting features in supervised neural net learning,” IEEE Transac-

tions on Neural Networks, vol. 5, no. 4, pp. 537–550, 1994.

[16] I. Guyon and A. Elisseeff, “An introduction to variable and feature selection,” The Journal of Machine Learn-

ing Research, vol. 3, pp. 1157–1182, 2003.

[17] M. Dash and H. Liu, “Consistency-based search in feature selection,” Artificial Intelligence, vol. 151, no. 1–2,

pp. 155–176, 2003.

[18] N. Najjar, S. Gupta, J. Hare, S. Kandil, and R. Walthall, “Optimal sensor selection and fusion for heat ex-

changer fouling diagnosis in aerospace systems,” IEEE Sensors Journal, vol. 16, no. 12, pp. 4866–4881, 2016.

[19] J. Hare, S. Gupta, N. Najjar, P. D’Orlando, and R. Walthall, “System-level fault diagnosis with application

to the environmental control system of an aircraft,” in Proceedings of SAE 2015 AeroTech Congress and

Exhibition- Technical Paper 2015-01-2583, SAE International, 2015.

[20] T. Pogiatzis, D. Wilson, and V. Vassiliadis, “Scheduling the cleaning actions for a fouled heat exchanger

subject to ageing: MINLP formulation,” Computers & Chemical Engineering, vol. 39, pp. 179–185, 2012.

[21] H. Han, B. Gu, T. Wang, and Z. Li, “Important sensors for chiller fault detection and diagnosis from the

perspective of feature selection and machine learning,” International Journal of Refrigeration, vol. 34, no. 2,

pp. 586–599, 2011.

[22] S. Namburu, M. Azam, J. Luo, K. Choi, and K. Pattipati, “Data-driven modeling, fault diagnosis and optimal

sensor selection for HVAC chillers,” IEEE Transactions on Automation Science and Engineering, vol. 4, no.

3, pp. 469–473, 2007.

120

[23] S. Jiang, R. Kumar, and H. Garcia, “Optimal sensor selection for discrete-event systems with partial observa-

tion,” IEEE Transactions on Automatic Control, vol. 48, no. 3, pp. 369–381, 2003.

[24] V. Gupta, T. H. Chung, B. Hassibi, and R. Murray, “On a stochastic sensor selection algorithm with applica-

tions in sensor scheduling and sensor coverage,” Automatica, vol. 42, no. 2, pp. 251–260, 2006.

[25] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Transactions on Signal Processing,

vol. 57, no. 2, pp. 451–462, 2009.

[26] A. Hero and D. Cochran, “Sensor management: Past, present, and future,” IEEE Sensors Journal, vol. 11, no.

12, pp. 3064–3075, 2011.

[27] J. Xu, Y. Wang, and L. Xu, “PHM-oriented sensor optimization selection based on multiobjective model for

aircraft engines,” IEEE Sensors Journal, vol. 15, no. 9, pp. 4836–4844, 2015.

[28] X. Shen, S. Liu, and P. Varshney, “Sensor selection for nonlinear systems in large sensor networks,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 50, no. 4, pp. 2664–2678, 2014.

[29] C. Lo, P. Chan, Y.-K. Wong, A. Rad, and K. Cheung, “Fuzzy-genetic algorithm for automatic fault detection

in HVAC systems,” Applied Soft Computing, vol. 7, no. 2, pp. 554–560, 2007.

[30] K. Choi, S. Namburu, M. Azam, J. Luo, K. Pattipati, and A. Patterson-Hine, “Fault diagnosis in HVAC

chillers,” IEEE Instrumentation Measurement Magazine, vol. 8, no. 3, pp. 24–32, 2005.

[31] Q. Zhou, S. Wang, and Z. Ma, “A model-based fault detection and diagnosis strategy for HVAC systems,”

International Journal of Energy Research, vol. 33, no. 10, pp. 903–918, 2009.

[32] S. Katipamula and M. Brambley, “Review article: Methods for fault detection, diagnostics, and prognostics

for building systems - a review, part I,” HVAC & R Research, vol. 11, no. 1, pp. 3–25, 2005.

[33] ——, “Review article: Methods for fault detection, diagnostics, and prognostics for building systems - a re-

view, part II,” HVAC & R Research, vol. 11, no. 2, pp. 169–187, 2005.

[34] R. Buswell and J. Wright, “Uncertainty in model-based condition monitoring,” Building Services Engineering

Research and Technology, vol. 25, no. 1, pp. 65–75, 2004.

[35] R. Kelso and J. Wright, “Application of fault detection and diagnosis techniques to automated functional

testing,” ASHRAE Transactions, vol. 111, no. 1, pp. 964–970, 2005.

[36] H. Yang, S. Cho, C.-S. Tae, and M. Zaheeruddin, “Sequential rule based algorithms for temperature sensor

fault detection in Air Handling Units,” Energy Conversion and Management, vol. 49, no. 8, pp. 2291–2306,

2008.

121

[37] S. Wang and F. Xiao, “AHU sensor fault diagnosis using Principal Component Analysis method,” Energy and

Buildings, vol. 36, no. 2, pp. 147–160, 2004.

[38] J. Pakanen and T. Sundquist, “Automation-assisted fault detection of an Air-Handling Unit; implementing the

method in a real building,” Energy and Buildings, vol. 35, no. 2, pp. 193–202, 2003.

[39] J. Qin and S. Wang, “A fault detection and diagnosis strategy of VAV air-conditioning systems for improved

energy and control performances,” Energy and Buildings, vol. 37, no. 10, pp. 1035–1048, 2005.

[40] T. Rossi and J. Braun, “A statistical, rule-based fault detection and diagnostic method for Vapor Compression

Air Conditioners,” HVAC & R Research, vol. 3, no. 1, pp. 19–37, 1997.

[41] Y. Zhao, S. Wang, and F. Xiao, “A statistical fault detection and diagnosis method for centrifugal chillers based

on exponentially-weighted moving average control charts and Support Vector Regression,” Applied Thermal

Engineering, vol. 51, no. 1–2, pp. 560–572, 2013.

[42] N. Najjar, C. Sankavaram, J. Hare, S. Gupta, K. Pattipati, R. Walthal, and P. D’Orlando, “Health assess-

ment of liquid cooling system in aircrafts: Data visualization, reduction, clustering and classification,” SAE

International Journal of Aerospace, vol. 5, no. 1, pp. 119–127, 2012.

[43] L. Shang and G. Liu, “Sensor and actuator fault detection and isolation for a high performance aircraft engine

bleed air temperature control system,” IEEE Transactions on Control Systems Technology, vol. 19, no. 5,

pp. 1260–1268, 2011.

[44] D. Gorinevsky, K. Dittmar, D. Mylaraswamy, and E. Nwadiogbu, “Model-based diagnostics for an aircraft

auxiliary power unit,” in Proceedings of the 2002 International Conference on Control Applications, vol. 1,

2002, 215–220 vol.1.

[45] R. Isermann, “Model-based fault-detection and diagnosis – status and applications,” Annual Reviews in Con-

trol, vol. 29, no. 1, pp. 71–85, 2005.

[46] S. Lingfang, Z. Yingying, Z. Xinpeng, Y. Shanrang, and Q. Yukun, “Research on the fouling prediction of

heat exchanger based on Support Vector Machine,” in International Conference on Intelligent Computation

Technology and Automation (CICTA), vol. 1, 2008, pp. 240–244.

[47] S. Lingfang, Z. Yingying, and S. Rina, “Fouling prediction of heat exchanger based on genetic optimal SVM

algorithm,” in Third International Conference on Genetic and Evolutionary Computing, 2009, pp. 112–116.

[48] N. Najjar, J. Hare, P. D’Orlando, G. Leaper, K. Pattipati, A. Silva, S. Gupta, and R. Walthall, “Heat exchanger

fouling diagnosis for an aircraft air-conditioning system,” in Proceedings of SAE 2013 AeroTech Congress and

Exibition- Technical Paper 2013-01-2250, SAE International, 2013.

122

[49] H. Kaneko, S. Inasawa, N. Morimoto, M. Nakamura, H. Inokuchi, Y. Yamaguchi, and K. Funatsu, “Statistical

approach to constructing predictive models for thermal resistance based on operating conditions,” Industrial

and Engineering Chemistry Research, vol. 51, no. 29, pp. 9906–9912, 2012.

[50] L. Shang and G. Liu, “Heat exchanger fouling detection in a simulated aircraft engine bleed air temperature

control system,” in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 2010,

pp. 774–778.

[51] C. Riverol and V. Napolitano, “Estimation of fouling in a plate heat exchanger through the application of

neural networks,” Journal of Chemical Technology and Biotechnology, vol. 80, no. 5, pp. 594–600, 2005.

[52] R. Garcia, “Improving heat exchanger supervision using neural networks and rule based techniques,” Expert

Systems with Applications, vol. 39, no. 3, pp. 3012–3021, 2012.

[53] A. Adili, N. Hasni, C. Kerkeni, and S. Ben Nasrallah, “An inverse problem based on genetic algorithm to

estimate thermophysical properties of fouling,” International Journal of Thermal Sciences, vol. 49, no. 6,

pp. 889–900, 2010.

[54] I. Perez-Grande and T. Leo, “Optimization of a commercial aircraft Environmental Control System,” Applied

Thermal Engineering, vol. 22, no. 17, pp. 1885–1904, 2002.

[55] H. Zhao, Y. Hou, Y. Zhu, L. Chen, and S. Chen, “Experimental study on the performance of an aircraft Envi-

ronmental Control System,” Applied Thermal Engineering, vol. 29, no. 16, pp. 3284–3288, 2009.

[56] J. Vargas and A. Bejan, “Thermodynamic optimization of finned crossflow heat exchangers for aircraft En-

vironmental Control Systems,” International Journal of Heat and Fluid Flow, vol. 22, no. 6, pp. 657–665,

2001.

[57] A. Alebrahim and A. Bejan, “Thermodynamic optimization of heat-transfer equipment configuration in an

Environmental Control System,” International Journal of Energy Research, vol. 25, no. 13, pp. 1127–1150,

2001.

[58] S. Wright, G. Andrews, and H. Sabir, “A review of heat exchanger fouling in the context of aircraft air-

conditioning systems, and the potential for electrostatic filtering,” Applied Thermal Engineering, vol. 29, no.

13, pp. 2596–2609, 2009.

[59] H. Peng and X. Ling, “Optimal design approach for the plate-fin heat exchangers using neural networks coop-

erated with genetic algorithms,” Applied Thermal Engineering, vol. 28, no. 5–6, pp. 642–650, 2008.

[60] M. Mishra, P. Das, and S. Sarangi, “Second law based optimisation of crossflow plate-fin heat exchanger

design using genetic algorithm,” Applied Thermal Engineering, vol. 29, no. 14–15, pp. 2983–2989, 2009.

[61] T. Kuppan, Heat exchanger design handbook, 2nd ed. CRC PressI Llc, 2013.

123

[62] C. E. Shannon, “A mathematical theory of communication,” ACM SIGMOBILE Mobile Computing and Com-

munications Review, vol. 5, no. 1, pp. 3–55, 2001.

[63] S. Gupta and A. Ray, “Statitical mechanics of complex systems for pattern identification,” Journal of Statistical

Physics, vol. 134, no. 2, pp. 337–364, 2009.

[64] D. Lind and M. Marcus, An introduction to symbolic dynamics and coding. Cambridge University Press,

United Kingdom, 1995.

[65] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review, vol. 106, no. 4, p. 620, 1957.

[66] D. Huang and T. Chow, “Effective feature selection scheme using mutual information,” Neurocomputing, vol.

63, pp. 325–343, 2005.

[67] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained K-means clustering with background knowl-

edge,” in ICML, vol. 1, 2001, pp. 577–584.

[68] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,”

Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[69] A. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,”

Pattern Recognition, vol. 30, no. 7, pp. 1145–1159, 1997.

[70] S. Mallat, A wavelet tour of signal processing: The sparse way, 3rd ed. Elsevier Science, 2008.

[71] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor data fusion: A review of the state-of-

the-art,” Information Fusion, vol. 14, no. 1, pp. 28–44, 2013.

[72] J. Dai and J. Zhou, “Multifeature-based high-resolution palmprint recognition,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 33, no. 5, pp. 945–957, 2011.

[73] J. Nunez, X. Otazu, O. Fors, A. Prades, V. ˜Pala, and R. Arbiol, “Multiresolution-based image fusion with

additive wavelet decomposition,” IEEE Transactions on Geoscience and Remote Sensing, vol. 37, pp. 1204–

1211, 1999.

[74] Y. Barshalom, P. Willett, and X. Tian, Tracking and data fusion: A handbook of algorithms. YBS Publishing,

2011.

[75] D. Smith and S. Singh, “Approaches to multisensor data fusion in target tracking: A survey,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 18, no. 12, pp. 1696–1710, 2006.

[76] A. Noulas, G. Englebienne, and B. Kröse, “Multimodal speaker diarization,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 34, no. 1, pp. 79–93, 2012.

124

[77] X. Zhou, D. Wang, F. Tian, C. Liu, and M. Nakagawa, “Handwritten Chinese/Japanese text recognition using

semi-Markov conditional random fields,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 35, no. 10, pp. 2413–2426, 2013.

[78] Y. Shi, Y. Gao, S. Liao, D. Zhang, Y. Gao, and D. Shen, “Semi-automatic segmentation of prostate in CT

images via coupled feature representation and spatial-constrained transductive lasso,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 37, no. 11, pp. 2286–2303, 2015.

[79] X. Jin, S. Sarkar, A. Ray, S. Gupta, and T. Damarla, “Target detection and classification using seismic and pir

sensors,” IEEE Sensors Journal, vol. 12, no. 6, pp. 1709–1718, 2012.

[80] R. Singh, M. Vatsa, and A. Noore, “Hierarchical fusion of multi-spectral face images for improved recognition

performance,” Information Fusion, vol. 9, pp. 200–210, 2010.

[81] M. Demirkus, D. Precup, J. Clark, and T. Arbel, “Hierarchical spatio-temporal probabilistic graphical model

with multiple feature fusion for estimating binary facial attribute classes in real-world face videos,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 6, pp. 1185–1203, 2016.

[82] J. Lu, X. Zhou, Y. Tan, Y. Shang, and J. Zhou, “Neighborhood repulsed metric learning for kinship verifica-

tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 2, pp. 331–345, 2014.

[83] X. Jin, S. Gupta, A. Ray, and T. Damarla, “Multimodal sensor fusion for personnel detection,” in Fusion, 2011.

[84] T. Marcard, G. Pons-Moll, and B. Rosenhahn, “Human pose estimation from video and IMUs,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, pp. 1–14, 2016.

[85] N. Neverova, C. Wolf, G. Taylor, and F. Nebout, “ModDrop: Adaptive multi-modal gesture recognition,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 1–14, 2015.

[86] H. Yin, S. Li, and L. Fang, “Simultaneous image fusion and super-resolution using sparse representation,”

Information Fusion, vol. 14, pp. 229–240, 2013.

[87] T. Stathaki, Image fusion: Algorithms and applications. Academic Press, 2011.

[88] Z. Liu, E. Blasch, Z. Xue, J. Zhao, R. Laganiere, and W. Wu, “Objective assessment of multiresolution im-

age fusion algorithms for context enhancement in night vision: A comparative study,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 34, no. 1, pp. 94–109, 2012.

[89] K. Kiguchi, S. Kariya, K. Watanabe, K. Izumi, and T. Fukuda, “An exoskeletal robot for human elbow motion

support—sensor fusion, adaptation, and control,” IEEE Transactions on Systems, Man, and Cybernetics-Part

B: Cybernetics, vol. 31, no. 3, pp. 353–361, 2001.

[90] S. Majumder, S. Scheding, and H. F. Durrant-Whyte, “Multisensor data fusion for underwater navigation,”

Robotics and Autonomous Systems, vol. 35, no. 2, pp. 97–108, 2001.

125

[91] O. Basir and X. Yuan, “Engine fault diagnosis based on multi-sensor information fusion using Dempster –

Shafer evidence theory,” Information Fusion, vol. 8, no. 4, pp. 379–386, 2007.

[92] M. Erp, L. Vuurpijl, and L. Schomaker, “An overview and comparison of voting methods for pattern recogni-

tion,” in Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition (IWFHR’02),

IEEE, 2002, pp. 195–200.

[93] W. Kim, J. Chai, and I. Kim, “Development of a majority vote decision module for self diagnostic monitoring

system for an air-operated valve system,” Nuclear Engineering and Technology, vol. 47, no. 5, pp. 624–632,

2015.

[94] C. Orrite, M. Rodriguez, F. Martinez, and M. Fairhurst, “Classifier ensemble generation for the majority vote

rule,” in Progress in Pattern Recognition, Image Analysis and Applications, vol. 5197, Springer, 2008, pp. 340–

347.

[95] L. Kuncheva, C. Whitaker, C. Shipp, and R. Duin, “Limits on the majority vote accuracy in classifier fusion,”

Pattern Analysis & Applications, vol. 6, no. 1, pp. 22–31, 2003.

[96] A. Ahmed, F. Saeed, N. Salim, and A. Abdo, “Condorcet and Borda count fusion method for ligand-based

virtual screening.,” Journal of Cheminformatics, vol. 6, no. 1, p. 19, 2014.

[97] S. Wu, “The weighted condorcet fusion in information retrieval,” Information Processing & Management, vol.

49, no. 1, pp. 108–122, 2013.

[98] T. Ho, J. Hull, and S. Srihari, “Decision combination in multiple classifier systems,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 16, no. 1, pp. 66–75, 1994.

[99] C. Perez, L. Cament, and L. Castillo, “Methodological improvement on local Gabor face recognition based on

feature selection and enhanced Borda count,” Pattern Recognition, vol. 44, no. 4, pp. 951–963, 2011.

[100] G. Niu, S. Lee, B. Yang, and S. Lee, “Decision fusion system for fault diagnosis of elevator traction machine,”

Journal of Mechanical Science and Technology, vol. 22, no. 1, pp. 85–95, 2008.

[101] D. Ruta and B. Gabrys, “An overview of classifier fusion methods,” Computing and Information Systems, vol.

7, no. 1, pp. 1–10, 2000.

[102] J. Qu, Z. Zhang, and T. Gong, “A novel intelligent method for mechanical fault diagnosis based on dual-tree

complex wavelet packet transform and multiple classifier fusion,” Neurocomputing, vol. 171, pp. 837–853,

2016.

[103] G. Kabir, G. Demissie, R. Sadiq, and S. Tesfamariam, “Integrating failure prediction models for water mains:

Bayesian belief network based data fusion,” Knowledge-Based Systems, vol. 85, pp. 159–169, 2015.

126

[104] M. Jin, R. Li, Z. Xu, and X. Zhao, “Reliable fault diagnosis method using ensemble fuzzy ARTMAP based on

improved Bayesian belief method,” Neurocomputing, vol. 133, pp. 309–316, 2014.

[105] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-line learning and an application to

boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[106] L. Guo, P. Ge, M. Zhang, L. Li, and Y. Zhao, “Pedestrian detection for intelligent transportation systems

combining AdaBoost algorithm and Support Vector Machine,” Expert Systems with Applications, vol. 39, no.

4, pp. 4274–4286, 2012.

[107] W. Cheng and D. Jhan, “Triaxial accelerometer-based fall detection method using a self-constructing cascade-

AdaBoost-SVM classifier,” IEEE Journal of Biomedical and Health Informatics, vol. 17, no. 2, pp. 411–419,

2013.

[108] S. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology,” IEEE Transactions on

Systems, Man, and Cybernetics, vol. 21, no. 3, pp. 660–674, 1991.

[109] G. Death and K. Fabricius, “Classification and regression trees: A powerful yet simple technique for ecological

data analysis,” Ecology, vol. 81, pp. 3178–3192, 2000.

[110] J. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106, 1986.

[111] D. Denison, B. Mallick, and A. Smith, “A Bayesian CaRT algorithm,” Biometrika, vol. 85, no. 2, pp. 363–377,

1998.

[112] Y. Yasami and S. Mozaffari, “A novel unsupervised classification approach for network anomaly detection by

K-means clustering and ID3 decision tree learning methods,” The Journal of Supercomputing, vol. 53, no. 1,

pp. 231–245, 2010.

[113] J. Quinlan, C4.5: Programs for machine learning. San Mateo, CA, USA: Morgan Kaufmann Publishers Inc.,

1993.

[114] K. Polat and S. Gunes, “A novel hybrid intelligent method based on C4.5 decision tree classifier and one-

against-all approach for multi-class classification problems,” Expert Systems with Applications, vol. 36, no. 2,

pp. 1587–1592, 2009.

[115] D. West, Introduction to graph theory. Upper Saddle River, NJ: Prentiss Hall, 1996.

[116] R. Chavarriaga, H. Sagha, A. Calatroni, S. Digumarti, G. Troster, J. Millan, and D. Roggen, “The Opportunity

challenge: A benchmark database for on-body sensor-based activity recognition,” Pattern Recognition Letters,

vol. 34, no. 15, pp. 2033–2042, 2013.

127

[117] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Forster, G. Troster, P. Lukowicz, D. Bannach, G. Pirkl,

A. Ferscha, J. Doppler, C. Holzmann, M. Kurz, G. Holl, R. Chavarriaga, H. Sagha, H. Bayati, M. Creatura,

and J. Millan, “Collecting complex activity datasets in highly rich networked sensor environments,” in 2010

Seventh International Conference on Networked Sensing Systems (INSS), IEEE, 2010, pp. 233–240.

[118] P. Casale, O. Pujol, and P. Radeva, “Personalization and user verification in wearable systems using biometric

walking patterns,” Personal and Ubiquitous Computing, vol. 16, no. 5, pp. 563–580, 2012.

[119] T. Cover and J. Thomas, Elements of information theory, 2nd ed. Wiley-Interscience, 2006.

[120] G. Brown, A. Pocock, M. Zhao, and M. Luján, “Conditional likelihood maximisation: A unifying framework

for information theoretic feature selection,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 27–

66, 2012.

[121] R. Madeo, C. Lima, and S. Peres, “Gesture unit segmentation using support vector machines: Segmenting

gestures from rest positions,” in Proceedings of the 28th Annual ACM Symposium on Applied Computing,

ACM, 2013, pp. 46–52.

[122] R. Madeo, S. Peres, and C. Lima, “Gesture phase segmentation using support vector machines,” Expert Systems

with Applications, vol. 56, pp. 100–115, 2016.

[123] J. Reyes-Ortiz, L. Oneto, A. Sama, X. Parra, and D. Anguita, “Transition-aware human activity recognition

using smartphones,” Neurocomputing, vol. 171, pp. 754–767, 2016.

[124] P. Tan, V. Kumar, and M. Steinbach, Introduction to data mining. India: Pearson Education, 2006.

[125] H. Li, T. Jiang, and K. Zhang, “Efficient and robust feature extraction by maximum margin criterion,” IEEE

Transactions on Neural Networks, vol. 17, no. 1, pp. 157–165, Jan. 2006.

128

	University of Connecticut
	OpenCommons@UConn
	1-19-2016

	Information Fusion for Pattern Classification in Complex Interconnected Systems
	Nayeff Najjar
	Recommended Citation

	List of Figures
	List of Tables
	Chapter Introduction
	Background and Motivation
	Outline and Contributions
	List of Publications

	Chapter Unsupervised Embedded Sensor Selection for Classification Algorithm
	Introduction
	Application
	Approach and Contributions

	Literature Review
	Sensor Selection Algorithms
	Fault Diagnosis Algorithms

	System Description
	Primary and Secondary Heat Exchangers
	Data Generation Process
	Heat Exchanger Fouling Diagnosis Architecture

	Optimal Sensor Selection Methodology
	Information-theoretic Measures
	Data Partitioning for Symbol Sequence Generation
	minimum Redundancy Maximum Relevance (mRMR)
	Embedded Algorithm
	Unsupervised Embedded Algorithm

	Data Analysis for Fouling Diagnosis
	Feature Extraction
	Classification
	Sensor Fusion

	Results and Discussion
	Conclusions

	Chapter BB-Fuse: Optimal Sensor-Class Pair Selection and Fusion Algorithm for Classification
	Introduction
	Literature Review
	Voting Methods
	Bayesian Fusion Methods
	Boosting Methods
	Decision Tree Methods

	Mathematical Preliminaries
	BB-Fuse Algorithm
	Objective
	BB-Fuse Training Phase
	BB-Fuse Testing Phase

	BB-Fuse Performance
	BB-Fuse Optimality
	BB-Fuse Complexity

	Results and Discussion
	Application I: Human Activity Recognition
	Application II: User Identification

	Conclusions

	Chapter D*-Fuse: Optimal Sensor-Class Pair Selection and Fusion Algorithm for Classification
	Introduction
	Basics of Information Theory

	Literature Review
	MD Criterion
	MR Criterion

	D*-Fuse Algorithm
	Objectives
	D*-Fuse Training Phase
	D*-Fuse Testing Phase

	Results and Discussion
	Application I: Simulated Data
	Application II: Gesture Phase Segmentation
	Application III: Human Activity Recognition Dataset

	Conclusions

	Chapter Conclusions
	Unsupervised Embedded Algorithm
	BB-Fuse Algorithm
	D*-Fuse Algorithm

	Appendix Matters Relevant to Information Theory
	Maximum Entropy Distribution
	Calculation of Mutual Information
	Fano's Inequality

	Appendix Machine Learning Algorithms
	Principal Component Analysis (PCA)
	Linear Discriminant Analysis
	k-Nearest Neighbor Classification Algorithm

	Appendix Fusion Algorithms
	CaRT and C4.5
	Bayes Belief Integration
	Majority Voting
	Adaptive Boosting
	Borda Count Voting
	Condorcet Count Voting

	Bibliography

