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ABSTRACT

Autonomous vehicles are rapidly advancing with a variety of applications, such as area

surveillance, environment mapping, and intelligent transportation. These applications re-

quire coverage and/or time-optimal motion planning, where the major challenges include

uncertainties in the environment, motion constraints of vehicles, limited energy resources

and potential failures. While dealing with these challenges in various capacities, this dis-

sertation addresses three fundamental motion planning problems: (1) single-robot com-

plete coverage in unknown environment, (2) multi-robot resilient and efficient coverage

in unknown environment, and (3) time-optimal risk-aware motion planning for curvature-

constrained vehicles.

First, the ε? algorithm is developed for online coverage path planning in unknown en-

vironment using a single autonomous vehicle. It is computationally efficient, and can gen-

erate the desired back-and-forth path with less turns and overlappings. Moreover, the algo-

rithm prevents the local extrema problem, thus can guarantee complete coverage. Second,

the CARE algorithm is developed which extends ε? for multi-robot resilient and efficient

coverage in unknown environment. In case of vehicle failures, it guarantees complete cov-

erage via proactively filling coverage gaps through dynamic task reallocations for other
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vehicles, hence provides resilience. Moreover, CARE reallocates idling vehicles to support

others in their tasks, hence reduces coverage time and improves team efficiency. Finally,

the T? algorithm is developed to address the time-optimal risk-aware motion planning prob-

lem for curvature-constrained variable-speed vehicles. To the best of our knowledge, this

problem has not been solved in the presence of obstacles. We present a novel risk function

based on the concept of collision time, and seamlessly integrate it with the time cost for op-

timization. Further, an adaptive state pruning technique is developed that can significantly

reduce the computation time, while maintaining the solution quality and the completeness

of this algorithm.

The above-mentioned algorithms have been validated via simulations in complex sce-

narios and/or real experiments, and the results have shown clear advantages over existing

popular approaches.
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Chapter 1

Introduction

1.1 Background and Motivation

With recent advancements in sensor technologies, mobile vehicles and communication sys-

tems, vehicle autonomy has become an area of rising interest. Autonomous vehicles have

been widely used in area exploration [1], floor cleaning [2], lawn mowing [3][4], terrain-

map generation [5][6][7][8], oil spill cleaning [9][10], humanitarian de-mining [11][12],

and intelligent transportation [13]. These applications either involve the Coverage Path

Planning (CPP) problem, which requires to plan collision-free paths that can guide one

or multiple autonomous vehicles to completely cover a target search area; or the Point-

to-Point (PTP) planning problem, which requires to plan a collision-free, feasible path for

an autonomous vehicle to move from a start state to a goal state, while optimizing certain

metrics such as minimum time, shortest length, minimum energy, and/or maximum safety.

The major difficulties in the above-mentioned two problems include unknown environ-

ment, vehicle motion constraints, limited energy resources and potential failures. A brief
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Figure 1.1: The objectives and challenges in motion planning problems

overview of these motion planning problems and their challenges is summarized in Fig. 1.1.

While dealing with these challenges in various capacities, this dissertation addresses three

fundamental motion planning problems as follows.

The first addressed problem is the single-robot CPP problem in unknown environment.

Typically, the target area for coverage is either partially known or completely unknown,

that is, the information about the exact geometrical shapes and locations of obstacles and

area boundaries, may be incomplete or unavailable. Thus, it is imperative to rely on real-

time sensor measurements to dynamically unfold the environment via discovering obstacles

along the path, and then generate the coverage path in situ.

Existing online single-robot CPP approaches either rely on the cellular decomposition

of the search area [14][15][16] to generate back-and-forth coverage paths, or they produce

spiral paths to fill areas [17][18]. The major drawsbacks in these methods are that, spiral

paths are usually embedded with a large number of turns which is undesirable. On the

other hand, it must identify the so-called critical points on obstacles for accurate cellular

decomposition of the search area, and this can be difficult in complex environment; also, it

may not work for rectilinear environment [19] where critical points do not exist.
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The desired online CPP algorithm is expected to operate in the presence of obstacles

of arbitrary shapes, and it should generate the back-and-forth coverage paths, while not

relying on critical point detection on obstacles. Also, it should be computationally efficient

hence suitable for online applications. Moreover, in order to guarantee complete coverage,

it should prevent the local extrema problem. In particular, in the context of CPP, a local ex-

tremum describes a situation where the autonomous vehicle cannot find the next waypoint

hence gets stuck, even though there still exist unexplored regions.

The second problem addressed in this dissertation is the Multi-robot Coverage Path

Planning (MCPP) problem with a focus on system resilience and efficiency. Although

many works have been presented for coverage using a single autonomous vehicle, only a

limited body has focused on MCPP. Since autonomous vehicles typically operate in un-

certain environment, they are prone to different failures, such as sensor or actuator mal-

functions, mechanical defects and loss of power [20]. The consequences of these failures

include coverage gaps, loss of critical data, performance degradation (e.g., missed detec-

tion of targets), prolonged operation time, and in extreme cases overall mission failure. It

is therefore critical that the whole team is resilient to individual failures, in the sense that it

can still ensure complete coverage even in the presence of a few robot failures [21].

Existing online MCPP methods typically partition the search area into sub-regions, and

then extend certain single-robot CPP algorithm to search in parallel [22][23][24]. However,

if some robot fails, the resulting coverage gaps can only be passively passed on to the rest

team members. This means that the critical gaps cannot be immediately filled, but have to

wait until some other robots finish their tasks.

Moreover, due to unknown environment, it is very likely that all robots may not finish

at the same time. This results in the idling problem, where the robots that finish earlier will

become idle while others are suffering from longer operation time with constantly depleting
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batteries. Therefore, in order to improve the team efficiency, it should dynamically identify

and then proactively reallocate these idling robots.

In addition, regarding the control architecture, Multi-robot Systems (MRS) are con-

trolled either in a centralized [25] or decentralized [26] manner. In a centralized architec-

ture, either an extra host or a leader robot is assigned to maintain the global information

about the whole team. Although such structure can provide the global optimal decision for

the whole team, they may suffer from the scalability problem due to limited computational

resources and communication restrictions. In contrast, a decentralized MRS treats each

robot as an independent unit, which makes decisions based on its local information. This

promotes system scalabilty, thus suitable for the MCPP problem. However, due to lack of

complete information, it is critical that the local decisions of each robot can also benefit the

whole team in terms of resilience and efficiency.

The third problem addressed in this dissertation involves the PTP planning for curvature-

constrained vehicles, and the objective is to find the optimal trajectory with jointly mini-

mized time and risk costs. The PTP planning problem has been researched for decades, and

literature has abundant methods to find the shortest path in known environment [27][28][29],

or in unknown environment [30][31]. However, due to kinematic constraints like bounded

curvature and bounded turn rate [32], many vehicles such as cars and air-planes, are sub-

ject to a non-zero minimum turning radius. This means that they cannot make sharp turns

without following a circular arc. Such motion constraints can seriously restrict the manu-

verbility of non-holonomic vehicles [33], and if they are ignored during the planning phase,

it can lead to intractable paths.

As shown in [34], the problem of deciding whether a curvature-constrained collision-

free path exists between two given configurations amid polygonal obstacles is NP-hard [35].

This implies that no exact algorithms exist for curvature-constrained time-optimal motion
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planning in arbitrary environment [34]. For a constant-speed curvature-constrained vehi-

cle moving in the absence of obstacles, the pioneering work by Dubins [36][32] utilized a

geometrical approach and showed that the shortest path between a pair of poses belongs to

a set of 6 path types. Such results were later verified in [37] using Pontryagin’s maximum

principle. Thus, one has to solve for all 6 candidate path types, and then picks the one

with the minimum length. However in practice, autonomous vehicles can travel at variable

speeds, which range from a lower bound (e.g., idle speed) to an upper bound (e.g., max-

imum speed). Recent works [38] showed that for a variable-speed curvature-constrained

vehicle moving in the absence of obstacles, the time-optimal path belongs to a sufficient set

of 34 path types. However, to the best of our knowledge, when obstacles are present, the

time-optimal motion planning problem for curvature-constrained variable-speed vehicles

still has not been solved.

Moreover, due to complexities of the environment, it is also important that the time-

optimal path is safe for the autonomous vehicle. Existing literature on risk-aware path plan-

ning either builds risk maps about the environment [39][40], or constructs risk zones [41]

or inevitable collision states [42] for the vehicle to avoid obstacles. The risk measures

presented in these approaches have considered vehicle location with respect to nearby ob-

stacles or threats, while ignoring its speed and/or heading angle. Clearly, when a vehicle

operates near obstacles, both its heading and speed can be critical factors to its safety.

Therefore, the full information about the vehicle state should be incorporated into planning

the time-optimal risk-aware path.
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Figure 1.2: Thesis outline and the features of each theme

1.2 Outline and Contributions

This dissertation consists of three themes as presented below. The outline along with the

features for each theme are summarized in Fig. 1.2.

1.2.1 Theme 1: Single-robot Coverage Path Planning in Unknown En-
vironment

The first theme focuses on the online single-robot CPP problem. We present a novel ap-

proach, named ε?, for complete coverage in unknown environment. The ε? algorithm

utilizes a supervisory control structure, where the Exploratory Turing Machine (ETM) is

developed and acts as a supervisor to guide the autonomous vehicle with navigation com-

mands. The ETM consists of a two-dimensional multilevel tape formed by Multiscale

Adaptive Potential Surfaces (MAPS), and a tape head. Based on real-time sensor measure-

ments, the MAPS store and update the information corresponding to unexplored, explored
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and obstacle-occupied regions. On the other hand, the tape head possesses a finite set of

states, while it can only be in one state at a time. The state of tape head indicates the opera-

tion status of the ETM. By default, the ETM uses the lowest level of MAPS to compute for

the new waypoints, while it switches to higher levels as needed to prevent the local extrema

problem. It is shown that the ETM halts in finite time, and upon halting, complete coverage

is achieved [43]. The ε? algorithm has been validated in various complex scenarios, and

the coverage performances in terms of total trajectory length and total number of turns have

shown clear advantages over existing popular online coverage methods.

This theme makes the following contributions:

• developed a novel online CPP algorithm, which generates the desired back-and-forth

coverage path, but does not rely on critical point detection on obstacles;

• it prevents the local extrema problem, guarantees complete coverage, and it is com-

putationally efficient; and

• validated in high-fidelity simulations and also on a physical autonomous ground ve-

hicle equipped with heterogeneous sensing systems.

1.2.2 Theme 2: Multi-robot Resilient and Efficient Coverage in Un-
known Environment

The second theme builds on the first theme, and addresses the multi-robot resilient and

efficient CPP in unknown environment. We present a distributed yet cooperative algo-

rithm, named Cooperative Autonomy for Resilience and Efficiency (CARE), that provides

system-level resilience and efficiency for mutli-robot coverage operations under failures.

For coverage control, the entire target area is partitioned into sub-areas that are referred as

tasks. Each robot is assigned with one task at a time, and it adopts the ε? algorithm to cover
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its assigned task. Periodically, the robots exchange their local information in a pair-wise

manner, hence each robot also maintains a copy of the global knowledge about the team.

The decision-making for each robot is controlled by a Discrete Event Supervisor (DES).

In particular, when an event of vehicle failure or idling appears, the DES triggers potential

games [44][45] between a set of feasible players to make collaborative decisions for task

reallocations. These games are carefully designed such that the local task reallocation deci-

sions are always aligned with the global objective of the whole team. In case of no failures,

CARE reallocates idling vehicles to support other vehicles in their tasks, hence reduces

coverage time and improves team efficiency. In case of vehicle failures, it guarantees com-

plete coverage via filling coverage gaps by optimal reallocation of other vehicles, hence

providing resilience, albeit with a possibly small degradation in coverage time. The CARE

algorithm has been validated in complex scenarios, and the results showed that the team

achieves complete coverage even under failures. Also, it enables faster target discovery as

compared to alternative MCPP methods.

This theme makes the following contributions:

• developed a distributed multi-robot resilient and efficient coverage method, which

guarantees complete coverage under some robot failures, as well as prevents robots

idling;

• developed a game-theoretic dynamic task reallocation method, where the local task

reallocation decision for a subset of robots can always benefit the global objective of

the whole team; and

• considered various time-varying optimization factors for task reallocation, including

estimated task worths, robot remaining energy and their relative locations.
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1.2.3 Theme 3: Time-optimal Risk-aware Motion Planning for Curvature-
constrained Vehicles

The third theme focuses on the point-to-point motion planning problem for variable-speed

vehicles with curvature constraints. We present a grid-based method, named T?, to address

the time-optimal risk-aware motion planning problem for such vehicles in a priori known

environment. To the best of our knowledge, this problem has not been solved in the pres-

ence of obstacles. Due to the NP-hardness of this problem [35], we compute the optimal

path in a piece-wise manner in the discrete domain. The configuration space is constructed

by populating each grid cell with a finite set of vehicles states. Then, T? computes for

the optimal path by identifying the optimal state sequence, along which the total cost of

time and risk are jointly minimized. The time cost between two consecutive states located

in neighboring cells is determined by the time-optimal collision-free path between them

subject to curvature constraints [38]. Moreover, we proposed a risk function based on the

concept of collision time, which relies on the full information of the vehicle state, includ-

ing its location with respect to nearby obstacles, heading angle as well as speed. The risk

function has been seamlessly integrated into the time-optimal cost for optimization, and

the framework of A? is used to search for the optimal state sequence. The T? algorithm can

provide multiple path choices to the planner with decreasing risk costs but at the expense

of increasing time costs.

Besides, in order to reduce the computational complexity of T? in the high-dimensional

configuration space, we also developed an adaptive state pruning technique which can

maintain the solution quality while significantly reducing the computation time. The al-

gorithm has been validated in complex obstacle-rich scenarios, and the resulting paths are

shown to be superior than the Dubins paths.
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This theme makes the following contributions:

• presented a solution to the time-optimal risk-aware motion planning problem in the

presence of obstacles;

• presented a risk function based on the concept of collision time and integrated it with

the time cost; and

• developed an adaptive state pruning technique that can significantly reduce the com-

putation time while maintaining the path quality and ensuring completeness.

The rest of this dissertation is organized as follows. Chapter 2 presents the ε? algorithm

for single-agent coverage path planning in unknown environment. Chapter 3 presents the

CARE algorithm which extends ε? for multi-robot resilient and efficient coverage in un-

known environment. Chapter 4 presents the T? algorithm to address the time-optimal risk-

aware motion planning problem for curvature-constrained vehicles, and we summarize the

research impacts of these proposed methods and their future works in Chapter 5.
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Chapter 2

Single-robot Coverage Path Planning in
Unknown Environment

2.1 Introduction

This chapter presents the ε? algorithm (that stands for ε-STAR or “ε-coverage via Struc-

tural Transitions to Abstract Resolutions”) for single-robot coverage path planning in un-

known environment. The algorithm utilizes an Exploratory Turing Machine (ETM) that

acts as a supervisor to the autonomous vehicle and guides it with adaptive navigation com-

mands. As shown in Fig. 2.1, the ETM consists of a two-dimensional multilevel tape

formed by Multiscale Adaptive Potential Surfaces (MAPS). The ETM stores and updates

the information corresponding to unexplored, explored, and obstacle-occupied regions, as

time-varying potentials on MAPS. In essence, it takes advantage of both the potential field-

based and sensor-based planning methods by incrementally building the MAPS using real-

time sensor measurements. While, by default the ETM uses the lowest level of MAPS for
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Figure 2.1: ETM as a supervisor of the autonomous vehicle

generating the coverage path online, it switches to higher levels as needed to escape from

a local extremum.

The advantages of ε? algorithm in comparison to existing online methods are that it

produces the desired back-and-forth motion and does not rely on critical points detection.

Furthermore, the algorithm is computationally efficient, guarantees complete coverage, and

does not suffer from the local extremum problem. The ε? algorithm is validated via both

high-fidelity simulations on Player/Stage and real experiments in a laboratory setting.

2.2 Related Work

A variety of coverage algorithms exist in literature; a review of such algorithms is pre-

sented in [19]. The CPP methods are categorized into two types: offline or online (i.e.
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sensor-based). While offline approaches [46] assume the environment to be a priori known,

online approaches [16] compute the coverage path in situ based on sensor information. In-

dependently, CPP methods are also characterized as randomized or systematic. Random

strategies follow simple behavior-based rules, requiring neither localization system nor

costly computational resources; however, they generate strongly overlapped trajectories.

In contrast, the systematic coverage strategies are typically based on cellular decomposi-

tion [16] of the search area into cells of varying shapes. Lumelsky et al. [47] decomposed

the area into fixed-width cells and presented the sightseer and the seed-spreader strategies

for coverage. This algorithm was later improved by Hert et al. [48] by reducing the up-

per bound on path length; however, these algorithms are limited to a small set of obstacle

geometries.

Zelinsky et al. [46] used a grid of equal-sized cells to partition an a priori known area

and assigned a potential to each cell; then the coverage path was generated along the steep-

est ascent from the start to the goal. Koenig et al. [49] used the so-called ‘ant robots’ with

limited sensing and computational capabilities to scan unknown areas. Gabriely and Ri-

mon [50] used the Spanning Tree Covering (STC) algorithm for online coverage, which

was later improved to Full Spiral STC (FS-STC) algorithm [17]. Gonzalez et.al. [18] pro-

posed the Backtracking Spiral Algorithm (BSA), which utilizes a spiral filling path for

online coverage. Both STC and BSA generate spiral paths, and this limits their application

when turning is regarded expensive and undesired. More recently, Acar and Choset [16]

developed a sensor-based coverage method that is based on detection of the critical points

on obstacles to divide the area into cells; coverage is then achieved via back-and-forth mo-

tion in each cell. However, this method relies on correct detection and pairing of the IN and

OUT critical points [51], which could be difficult in complex environment. Furthermore,

this method cannot function in rectilinear environment. Ferranti et. al. [52] presented the
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Table 2.1: A comparison of key features of ε? with other algorithms

ε? FS-STC [17] BSA [18]
Cellular De-

composition [16]

Environment any any any non-rectilinear

Path
Pattern

back-and-forth
with adjustable
sweep direction
in known areas

spiral spiral back-and-forth

Approach
uses ETM as a

supervisor

circumvents the
spanning tree
constructed

uses spiral path to
fill areas and
backtracking

to escape
spiral endings

relies on critical
point detection for

Morse decomposition;
then uses Reeb graph
and cycle algorithm

Brick and Mortar (B&M) algorithm for ‘ant robots’, which selects unexplored waypoints

while maintaining the connectivity of the res explored and unexplored cells; however, it

may suffer from the looping problem. This method was later improved by Andries et.

al [53] for multi-agent coverage. Table 2.1 summarizes the comparison between the fea-

tures of ε? and other popular online coverage algorithms.

The rest of this chapter is organized as follows. Section 2.3 describes and formulates

the CPP problem. Section 2.4 presents the details of the ε? algorithm. The results and

discussions are presented in Section 2.5. At last, this chapter is concluded in Section 2.6.

2.3 Problem Description

This section presents the concept of ε-coverage of an environment that is populated with

unknown obstacles of arbitrary shapes.

The autonomous vehicle as shown in Fig. 2.2 contains:

• a localization device (e.g., GPS [54] or SLAM [55]) to obtain vehicle location;

16



• a range detector (e.g. a laser scanner) to detect obstacles within a circular region of

radius Rs ∈ R+; and

• a task-specific sensor for performing its main task (e.g., cleaning) with a circular area

of radius rt ≤ Rs.

Let R ⊂R2 be the estimated region which includes the desired area to be covered. First

we construct a tiling on R as follows.

Definition 2.3.1 (Tiling). A set T = {τα ⊂ R2,α = 1, . . . |T |} is called a tiling of R if

its elements: i) have mutually exclusive interiors, i.e. τ◦α
⋂

τ◦
β
= /0, ∀α , β ∈ {1, . . . |T |},

α 6= β , where ◦ denotes an interior, and ii) form an exact cover of R, i.e. R =
⋃|T |

α=1 τα .

If an exact cover is not possible (e.g., square tiles cannot exactly cover a circular region),

condition ii) can be relaxed to R ⊆
⋃|T |

α=1 τα , to form a minimal tiling of R, s.t. removal of

any single tile destroys the covering property.

The tiling formed by square tiles of side ε is called an ε-cell tiling. It is recommended

that an ε-cell should be atleast big enough to contain the autonomous vehicle and small

enough for the tasking sensor to be able to cover it when the vehicle passes through it.

Within these two bounds, the choice of ε depends on the following factors. A smaller ε

provides a better approximation of the search area and its obstacles. On the other hand, a

larger ε reduces the computational complexity by requiring less number of ε-cells to cover

the area and it also improves robustness to uncertainties for localization within a cell.

The tiling T is partitioned into three sets: i) obstacle (T o), ii) forbidden (T f ), and iii)

allowed (T a), as shown in Fig. 2.2. While the obstacles cells are occupied by obstacles,

the forbidden cells create a buffer around the obstacles to prevent collisions due to inertia

or large turning radius of the vehicle. The remaining cells are allowed which are desired to
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Figure 2.2: An autonomous vehicle working in its environment

be covered. The autonomous vehicle discovers the obstacles online, updates the obstacle

and forbidden cells, and performs tasks in the allowed cells. Now, we present the concept

of ε-coverage.

Definition 2.3.2 (ε-Coverage). Let Ra denote the total area of the allowed cells in T a ⊆

T . Let τ(k) ∈ T be the ε-cell visited by the autonomous vehicle at time k and explored

by its tasking sensor. Then, R is said to achieve ε-coverage if ∃ K ∈ N+ s.t. the sequence

{τ(k), k = 1, . . .K} covers Ra, i.e.

Ra ⊆
K⋃

k=1

τ(k). (2.1)

Remark 2.3.1. ε-coverage achieves complete coverage if the tasking sensor completely

covers every explored ε-cell.

18



2.4 The ε? algorithm

The ε? algorithm utilizes the concept of ETM for ε-coverage of unknown environment. As

shown in Fig. 2.1, the ETM constantly takes feedback from the autonomous vehicle and in

turn acts as its supervisor to guide it with operational commands and navigation waypoints;

thus, it falls in the category of Interactive Transition Systems [56][57]. The ETM consists

of a single tape head and a two-dimensional multilevel tape formed by MAPS (see Section

2.4.1), which act as guidance surfaces for decision-making. Formally, the ETM is defined

as follows.

Definition 2.4.1 (Exploratory Turing Machine). An Exploratory Turing Machine is a

7-tuple M = (Q,Ξ, Ip,Op,δ ,q0,F) where:

• Q = {ST,CP0, ...,CPL,WT,FN} is the set of machine states, where ST ≡‘Start’,

CP ≡‘Compute’, WT ≡‘Wait’, and FN ≡‘Finish’. The superscript on CP specifies

the level of MAPS at which the head is operating. The WT state implies waiting for

the vehicle to finish tasking in the current cell.

• Ξ = {Ξ` : `= 0,1, ...L}, where Ξ` = {Ξ`
min, ...Ξ

`
max} is the set of potential values that

can be encoded on each cell at Level ` of the MAPS.

• Ip is the set of input parameters containing the feedback information received from

the autonomous vehicle. An input vector ip ∈ Ip includes:

i. λ ∈ {1, . . . |T |}: Index of the ε-cell where the vehicle is currently located on

tiling T . It is computed using the onboard positioning system.

ii. ol⊂ {1, . . . |T |}: Vector of the obstacle locations which consists of the indexes

of all ε-cells where obstacles are detected using the range detectors.
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iii. ts∈{cm, ic}: Task status of the vehicle in its current ε-cell, where cm≡‘Complete’

and ic≡‘Incomplete’.

• Op is the set of output parameters containing instructions for the autonomous vehicle.

An output vector op ∈ Op includes:

i. cd ∈ {mv, tk, id,sp}: Operational command, where mv ≡‘Move’, tk ≡‘Task’,

id ≡‘Idle’, and sp≡‘Stop’.

ii. wp ⊂ {1, . . . |T |}: Candidate set of navigation way-points for the vehicle tra-

jectory on tiling T .

• δ is the control function that is a partial mapping from Ip×Q×ΠN `→Q×Π×Op,

where Π is the set of all possible configurations of potentials on MAPS generated by

the sets Ξ`, while ΠN ` is the above set restricted to a local neighborhood N ` at

Level ` of the MAPS.

• q0=ST is the initial state, and

• F=FN is the final state implying complete coverage.

Remark 2.4.1. An advantage of Turing Machine (TM) over Finite State Automaton (FSA) [58]

is that TM has the capacity of containing memory which is a necessary feature for coverage

problems.

Before delving into the operational details of the ETM, we describe the process of

dynamic construction of the MAPS.
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2.4.1 Construction of MAPS

To build MAPS, first a hierarchical multiscale tiling (MST) is constructed on the area R

by recursive decomposition [9][59]. As shown in Fig. 2.1, the ε-cell tiling T of the search

area forms the finest level of MST and is referred as T 0 from now on. Let n ∈ N be the

maximum number of ε-cells along x-axis over all rows. If n is even, then the axis is divided

into two regions of n
2 elements each. If n is odd, then the axis is divided into two regions

with n′ and n′− 1 elements, such that n′ ∈ N and 2n′− 1 = n. This procedure is repeated

along the y-axis over all columns to generate 4 coarse cells in total, which form the coarsest

tiling, i.e. T L, L ∈ N. Now, again let n ∈ N be the maximum number of ε-cells along the

x-axis in a coarse cell. Then, using the above procedure, each of these four coarse cells

are further divided into two regions along each axis to generate 16 cells in tiling T L−1.

This procedure is repeated until n/2 < 2 or n′− 1 < 2 to generate a MST with tilings

T 0,T 1, ...T L such that T ` = {τα` : α` = 1, . . . |T `|}, ∀` ∈ {0, . . .L}, where α`, ∀`≥ 1,

indexes coarse cells at Level ` of the MST, while α0 indexes ε-cells.

Modeling of the Potential Surface at the Lowest Level

For level ` = 0, the potential surface is constructed using a simple process. First, the

environmental information is encoded on T 0 by assigning a symbolic state [60] to each ε-

cell τα0 ∈ T 0 from the alphabet set S= {O, F, E, U}, where O ≡ obstacle, F ≡ forbidden,

E≡ explored, and U≡ unexplored. Then, the potential surface E 0(k)={Eα0(k)∈Ξ0 : α0 =

1, ...|T 0|}, is constructed by assigning a discrete potential to each τα0 , such that
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Eα0(k) =


−1, if sα0(k) = O or F

0, if sα0(k) = E

Bα0, if sα0(k) = U

, (2.2)

where sα0(k) ∈ S is the state of τα0 at time k. The first condition in Eq. (2.2) assigns

a potential of −1 to τα0 , if it contains an obstacle or if it is forbidden, i.e. it lies in an

obstacle neighborhood. The latter creates a forbidden zone around the obstacles to prevent

the vehicle from colliding with the obstacles due to inertia, skidding, large turning radius, or

localization errors. The second condition in Eq. (2.2) assigns a potential of 0 to τα0 , if it has

been explored by the tasking sensor. The third condition assigns a potential of Bα0 to τα0 ,

if it is yet unexplored, where B = {Bα0 ∈ {1, ...Bmax},α0 = 1, ...|T 0|} is a time-invariant

exogenous potential field. It is designed offline to have plateaus of equipotential surfaces

along each column of the tiling. As shown in Fig. 2.3, the plateaus monotonically increase

in height by one unit from 1 on the rightmost column to Bmax on the leftmost column. This

field facilitates back-and-forth motion in an obstacle-free region by following the highest

equipotential surface from left to right. The sweep direction could be adapted by modifying

B according to the users’ needs. Clearly, Ξ0
min = −1 and Ξ0

max = Bmax. The symbolic

encoding is updated by the ETM using sensor information and results in a dynamically

changing potential surface E 0(k) as shown in Fig. 2.3.

Modeling of the Potential Surfaces at Higher Levels

For 1 ≤ ` ≤ L, the potential surface E `(k)={Eα`(k) ∈ Ξ` : α` = 1, ...|T `|}, is constructed

by assigning a potential to each coarse cell τα` ∈ T `. This is done by assigning τα` the
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Figure 2.3: Dynamic construction of the potential surface E 0

average potential generated by all the unexplored ε-cells within τα` , such that

Eα`(k) = pU
α`(k)Bα`, (2.3)

where Bα` is the mean exogenous potential of τα` and pU
α`(k) is the probability of unex-

plored ε-cells in τα` . The probability could be computed using a simple counting process.

With little inspection, it could be seen that Ξ`
min = 0 and Ξ`

max= max
τ

α`∈T `
Bα` .

2.4.2 Operation of the ETM as a Supervisor

The ETM functions as follows. Its head has a state q ∈ Q and it operates on one level of

the MAPS at a time; by default Level 0. Fig. 2.4 shows the state transition graph of the
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ETM, which realizes the control function δ . The input vectors ip j ∈ Ip, j = 1,2, the output

vectors op j ∈ Op, j = 1, . . .4 and the state transition conditions are defined therein. While

the operational details in each state are presented later, a summary is provided here.

In state ST , the ETM initializes the MAPS. Since the whole area is initially unexplored,

all ε-cells are assigned the state U, thus MAPS are constructed using only the potential

field B. Then, the ETM cycles on and between the states CP0 and WT , as follows. In each

iteration of state CP0, the ETM takes input from the autonomous vehicle about the newly

discovered obstacle locations and its current position (λ ). Then, it moves the head on the

tape to λ and updates the MAPS in accordance with the discovered obstacles, and performs

the following operations: i) reads the potentials from the local neighborhood N 0(λ ) of λ

to compute the new waypoint, ii) changes the head state to WT if waypoint is reached

otherwise stays in CP0, and iii) generates an output vector for the vehicle containing the

operational command and the new waypoint. In each iteration of state WT , it receives the

task status from the vehicle, and continues to send tasking command until it is complete.

Once the current cell is tasked, it updates the MAPS and returns to the state CP0.

If the head gets stuck in a local extremum in state CP0, i.e. no waypoint with positive

potential could be found in the local neighborhood at Level 0 of the MAPS, then it switches

to CP1 and operates on Level 1. Here it searches for the coarse cell with the highest positive

potential in a local neighborhood N 1(λ ) to find a waypoint. If no such coarse cell exists,

hence no waypoint is found even at Level 1, then it switches to state CP2 and so on until it

finds one, then it comes down to state CP0 and continues. If no waypoint is found even at

the highest level then the ETM halts in state FN and the coverage is complete. The details

of operations in each state are explained below.
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Figure 2.4: State transition graph of the ETM

Operation in the ST State

The ETM starts in state q = ST at k = 0 when vehicle is turned on. Since no a priori

information is available, all ε-cells in T 0 are initialized with the state U, i.e. unexplored.

Then all ε-cells are assigned potentials according to field B as per Eq. (2.2). Subsequently,

all higher level cells are assigned potentials using Eq. (2.3), by substituting pU
α`(0) = 1.

This MAPS initialization process is denoted as E `← U, ∀` ∈ {0, ...L}.

Next, the autonomous vehicle detects its current location λ and obstacle locations ol

using its onboard sensors, and sends this information to the ETM via the input vector ip1 .

The ETM moves its tape head to λ and initializes the waypoint wp = λ . Then it updates the
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Algorithm 1: Update wp(k)
input : wp(k−1), λ , EN ` , q ∈ {CP`, `= 0, . . .L}
output: wp(k)

1 if q =CP0 then
2 compute D0 // form the computing set D0 using Eq. (2.4)
3 if λ ∈D0 then // current cell λ is unexplored
4 if {λ up,λ down} ⊂D0 then // λ up & λ down unexplored
5 wp(k) = {λ up,λ down} // Vehicle picks one per Eq. (2.5)
6 else wp(k) = λ // set λ as waypoint and start tasking
7 else if D0 6= /0 then // other eligible ε-cells exist
8 wp(k) = argmax

α0∈D0
Eα0 // pick the ones with max potential

9 else if Ewp(k−1) > 0 then // pre-computed wp still available
10 wp(k) = wp(k−1)
11 else wp(k) = /0 // local extremum detected at Level 0
12 end
13 if q =CP`,1≤ `≤ L then
14 compute D` // form the computing set D` using Eq. (2.4)
15 if D` 6= /0 then // coarse cells with positive potentials exist
16 wp(k) = I(argmax

α`∈D`

Eα`)

17 else wp(k) = /0 // no waypoint found at Level `

18 end

symbolic encoding by flipping the states at all newly discovered obstacle indexes ol to O,

and their associated neighborhood cells to F; subsequently, their potentials are updated to

−1 using Eq. (2.2). As a next step, the probabilities pU
α`(0) are updated at all higher levels,

for the corresponding coarse cells containing the newly discovered obstacles, by counting

the remaining unexplored ε-cells inside those coarse cells. Then, using Eq. (2.3), the po-

tential surfaces are updated ∀` ∈ {1, ...L}. In short, this entire MAPS updating process is

denoted as E `← O, ∀` ∈ {0, ...L}.

Then, the ETM transitions to the computing state q =CP0 and sends the output vector

op1 to command the vehicle to go ‘idle’.
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Operation in the CP0 State

CP0 is the default state to compute waypoints. Every time the ETM reaches CP0, it receives

the input vector ip1 from the vehicle containing its current position λ and the newly discov-

ered obstacle locations ol, if any. Then, it moves its head to λ and updates the MAPS at

all levels, i.e. E `← O, ∀` ∈ {0, ...L}, as described previously. Next, it reads the potentials

EN 0(λ ) in the local neighborhood N 0(λ ) including λ . Based on these it computes the

next waypoint by following Algorithm 1 (Lines 1-12) as follows.

First, it forms a computing set D0 ⊆ N 0(λ ) (Line 2) that consists of eligible ε-cells

for the next waypoint. An ε-cell is considered eligible if it is: i) directly reachable, i.e. it

is not behind an obstacle, and ii) unexplored, i.e. it has positive potential.

Definition 2.4.2 (Directly Reachable Set). An ε-cell is called directly reachable from λ if

the line segment joining the centroids of λ and that cell is not obstructed by any obstacle

cell. The set of all directly reachable cells in N 0(λ ) is defined as the directly reachable

set DR(λ ).

In general, the computing set D` is defined as

D` =


{α0 ∈N 0(λ ) : Eα0 > 0,α0 ∈ DR(λ )} if `= 0

{α` ∈N `(λ ) : Eα` > 0} if `≥ 1
, (2.4)

which means that D0 contains eligible ε-cells, while D`, 1 ≤ ` ≤ L, contains eligible

coarse cells with positive potentials, implying that they contain unexplored ε-cells. The

sets D`,1 ≤ ` ≤ L, are used in the CP` states later. Note that the direct reachability con-

dition is only enforced at Level 0 to prevent unnecessary distortions in the back-and-forth

trajectory. At higher levels, Bug2 [61] is used to reach the cells behind obstacles.
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Next, if the current cell λ is unexplored, i.e. λ ∈D0 (Line 3), then it further checks if

the cell above (λ up) and the cell below (λ down) both belong to D0 (Line 4). This condition

means that the vehicle is in the middle of unexplored cells both above and below λ . If this

is true, then it should rather first move to a cell that is adjacent to a forbidden or explored

cell. This step is imposed such that the trajectory is not distorted by tasking in the middle

of unexplored cells, and allows for maintaining a nice back-and-forth motion. Thus, the

waypoint candidate set is chosen as wp = {λ up,λ down} (Line 5). The vehicle picks one

of these based on its turn and travel cost as per Eq. (2.5) below. After computing wp, the

ETM loops in state q =CP0 and sends the output vector op3 to move the vehicle to the next

waypoint.

If λ is unexplored and the cells above and below are not both unexplored (Line 6),

then the vehicle is well positioned for tasking. Then, wp is set equal to λ and the ETM

transitions to the state q =WT while sending an output vector op2 commanding the vehicle

to task at λ . The operation of WT is described later.

If the current cell λ is not unexplored but there exist other eligible ε-cells in D0 (Line

7), then the candidate set wp is selected to consist of the ε-cells that have the highest

potential in D0 (Line 8). Note that there could be more than one cell with the highest

potential, if they belong to an equipotential surface. Finally, if D0 = /0, but a pre-computed

wp(k− 1) is still accessible, s.t. Ewp(k−1) > 0 (Line 9), then wp remains the same (Line

10). If a wp is obtained from the above steps, then the ETM stays in state q = CP0 and

sends the output vector op3 to move the vehicle to the next waypoint, as seen in Fig. 2.4.

It is possible that wp contains more than one elements. In that case, the autonomous

vehicle selects the cell with the least total travel and turn cost to reach it from λ . Let the

current position of the vehicle be (λx,λy)∈τλ . Then, for each µ ∈ wp, a cost Cµ,λ is defined

as the total travel and turn cost needed to reach the centroid (µxc,µyc) of the ε-cell τµ such
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that

Cµ,λ , dµ,λCTr +θµ,λCTu, (2.5)

where CTr is the cost of traveling per unit distance; CTu is the cost of turning per degree

from the heading angle θ ; and dµ,λ =||(µxc ,µyc)− (λx,λy)||2 and θµ,λ =|θ(µxc ,µyc)
− θ | are

the distance and the turning angle, respectively.

Operation in the CP` States, 1≤ `≤ L

Although the ETM usually cycles between CP0 and WT states, it may sometimes happen

that the computing set D0 = /0 and the pre-computed waypoint is also not available since

Ewp(k−1) ≤ 0. Then wp = /0 (Line 11) and the ETM is said to be in a local extremum.

Escaping from the Local Extremum: As shown in Fig. 2.4, when wp = /0, the ETM

transitions to the computing state q =CP1, while its head moves to Level 1 on the MAPS

and points at the coarse cell containing the current ε-cell λ . Here it reads the potential

surface EN 1(λ ) in the local neighborhood N 1(λ ) including the coarse cell where λ falls

in, and forms the computing set D1 ⊆N 1(λ ) (Line 14). If there exist coarse cells with

positive potentials (Line 15), then it first picks the coarse cell with the highest potential in

D1. Subsequently, the function I(·) randomly selects an unexplored ε-cell in this coarse cell

and assigns it to wp (Line 16). However, it may happen that even at ` = 1, @ α1 ∈N 1(λ )

with positive potential, then wp = /0 (Line 17). In that case, the ETM switches to the state

q = CP2 and its head moves up to Level 2 on the MAPS. This process continues until

it finds the lowest level ` ∈ {1, ...L} where D` 6= /0. Once the ETM finds a waypoint it

switches back to the state q = CP0 and sends the output vector op3 to move the vehicle to

the waypoint. If it is unable to find a coarse cell with positive potential even at the highest
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Level L, it implies that no coarsest cell contains any unexplored ε-cell. In that case, it

switches to the state q = FN and sends the output vector op4 commanding the vehicle to

stop its machinery since the coverage is complete.

Operation in the WT State

The ETM comes to the state q=WT from the state q=CP0 if wp= λ . Here the ETM waits

while the vehicle performs task at λ and reports back the task status via input vector ip2 . If

it is ‘Complete’, then the ETM updates the state of the current cell to E, i.e. explored, which

is assigned with 0 potential according to Eq. (2.2). Subsequently, the potential surfaces E `,

∀`∈ {1, ...L}, are updated according to Eq. (2.3). This MAPS update process is represented

as E `← E, ∀` ∈ {0, ...L}. Then, the ETM transitions back to the computing state q =CP0

and resumes searching for a new waypoint. If the task is not completed yet then the ETM

loops in the state q =WT , while sending the output vector op2 to continue tasking.

In states CP0 and WT , the MAPS are updated by assigning −1 and 0 potentials to ob-

stacle and explored regions, respectively, while in unexplored regions, the MAPS maintain

the positive potentials defined by B, as shown in Fig. 2.3. Since the waypoint is mainly

chosen as the ε-cell in the neighborhood with the highest positive potential, this enables

tracking the highest equipotential surfaces of B and produces the desired back-and-forth

motion.

Remark 2.4.2. The ETM uses the f lood f ill algorithm to fill the unexplored cells inside a

closed obstacle with the obstacle symbol O, when the boundary of the obstacle is detected

but interior is not detected. This prevents the ETM from trying to pick undetected cells

inside large obstacles.

Remark 2.4.3. At higher levels, if the computed waypoint is behind an obstacle, then the
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vehicle could use any existing shortest path algorithm to reach it. Here we use Bug2 [61]

for simplicity.

Theorem 1. The ETM halts in finite time.

Proof. From the ETM state transition graph in Fig. 2.4, we see that the ETM halts when

q = FN. Also, there are two kinds of cycles in the graph: i) between CP0 and WT states,

where the primary operation in these states is to compute wp and check task status ts,

respectively; and ii) between CP0 and CP`,1 ≤ `≤ L, states, where the primary operation

in any of these states is to compute wp. Since the computing set D` used to compute wp

in any CP` state, and the tasking time spent in WT state, are both finite; therefore, the total

time spent in each cycle is finite.

Further, during the execution of these cycles, the unexplored ε-cells with state U are

constantly flipped to states O, F or E accordingly. This implies that pU
α`(k), ∀α` ∈{1, ...|T `|},

∀` ∈ {1, ...L}, decreases monotonically. Thus, ∃ a finite K ∈ N+, s.t. pU
α`(K) = 0. This in

turn implies that Eα`(K) = 0, as per Eq. (2.3). Therefore, at time K, D` = /0, ∀` ∈ {1, ...L},

as per Eq. (2.4); hence, wp(K) = /0. Thus, at time K the control will exit from all the cycles

and transition to the FN state where it halts.

Remark 2.4.4. Since DL = /0 upon halting, ε-coverage is achieved.

Corollary 2.4.1. Each allowed ε-cell is tasked only once.

Proof. From Theorem 1, the ETM achieves ε-coverage in finite time, thus each allowed

cell is tasked, its state is set to E and its potential is updated to 0. Therefore, according to

Algorithm 1, this cell will never be assigned to wp and hence cannot be tasked again. Thus,

every allowed cell is tasked only once.
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2.4.3 Computational Complexity

The ε? algorithm has fairly low computational complexity and is real-time implementable.

Suppose the local neighborhood N 0(λ ) contains N ε-cells. Similarly, suppose the local

neighborhood N `(λ ), ∀`≥ 1, contains M coarse cells. The ETM first searches in the local

neighborhood at Level 0 to find navigation waypoints and only if it is stuck into a local

extremum, it switches to higher levels as needed. Thus, for Level 0 decisions the algorithm

has a complexity of ∼ O(N); and even in the worst case, when the ETM has to go to the

highest Level L to make a decision, the complexity is ∼ O(N +L ·M). Since the coarse

cells at higher levels contain the mean potentials of all unexplored ε-cells within them, this

bottom-up hierarchical approach to escape from a local extremum avoids searching for an

exponentially increasing number of ε-cells; thus significantly reducing the computational

complexity.

2.5 Results and Discussion

The ε? algorithm is validated by simulations as well as experiments and its performance is

compared with other algorithms.

2.5.1 Validation on a Simulation Platform

The first level of validation was done via simulation runs on a high-fidelity robotic platform

called Player/Stage [62]. The robot server Player provides a software base whose libraries

contain models of different types of robots, sensors, and actuators. On the other hand,

Stage is a highly configurable robot simulator. In this chapter, a Pioneer 2AT robot of

dimensions 0.44m×0.38m×0.22m was simulated with kinematic constraints such as the
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(a) Coverage started with dynamic obstacle discovery (b) Escaping from a local extremum using MAPS

(c) Escaping from another local extremum (d) Complete coverage achieved

Figure 2.5: Scenario 1: Trajectories (left) and corresponding color-coded symbolic encodings (right) for the
ε? algorithm in a complex environment with arbitrary obstacles

top speed 0.5m/s, maximum acceleration 0.5m/s2, and the minimum turn radius 0.04m. It

was equipped with a laser sensor with a detection range of 4m, having 16 beams located

around the robot to detect obstacles. A computer with 3.40 GHZ CPU and 16GB RAM was

used for simulations. Several complex scenarios of 50m×50m search areas with different

obstacle layouts were drawn and partitioned into a 50× 50 tiling structure consisting of

1m×1m ε-cells. This resulted in an MST with L = 5. For computation, the neighborhood

was chosen to contain 7× 7 cells at the lowest level and 3× 3 cells at higher levels. The

simulations were run 8 times faster than the real-time speed.

Fig. 2.5 shows the results of ε? algorithm in Scenario 1, which has a complex envi-

ronment with arbitrary obstacles. We show the snapshots of the trajectory generated by ε?

and the corresponding symbolic encodings discovered in situ at four different instants, as
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(a) A house environment (b) Exogenous potential field B for Scenario 2

Figure 2.6: Scenario 2: Validation for adaptive sweeping direction if provided a priori knowledge

shown in Fig. 2.5a∼Fig. 2.5d. These snapshots show several instances when the vehicle

gets stuck into a local extremum, or surrounded by either obstacle or explored cells in the

local neighborhood. Specifically, as shown in Fig. 2.5b and Fig. 2.5c, the vehicle success-

fully comes out of two local extrema using higher levels of MAPS, respectively. Finally, as

seen in Fig. 2.5d, ε? achieves complete coverage. Since the vehicle sees only the periphery

of large obstacles, the floodfill algorithm is used by the ETM at regular intervals to fill the

interiors of all closed obstacles.

Further, we illustrate that if a priori knowledge of the environment is available, it could

be used to adapt the sweep direction of the vehicle. Fig. 2.6a presents the environment

layout for Scenario 2, which is a house with several rooms and structures. It was assumed

that the layouts of all rooms are a priori known but the inside obstacles are unknown.

Since the shape of the upper left room is a rectangle with longer width, we constructed the
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(a) Coverage started with dynamic obstacle discovery (b) Adaptive sweeping if layout is a priori known

(c) Adapt to the shape of obstacle (d) Complete coverage achieved

Figure 2.7: Scenario 2: Trajectories (left) and corresponding color-coded symbolic encodings (right) for the
ε? algorithm in a house with several rooms and structures

exogenous potential field B in that room such that it has plateaus of equipotential surfaces

along each row of the tiling, while monotonically increasing in height by one unit starting

from the uppermost row. For the rest of the search area, B follows the regular design.

Therefore, the vehicle was able to sweep the upper left room horizontally and the other

rooms vertically. A visualization for the potential field B is shown in Fig. 2.6b.

Fig. 2.7 presents the coverage trajectories of ε? and the corresponding color-coded sym-

bolic encodings at four time instants for Scenario 2. As seen in Fig. 2.7b, the autonomous

vehicle cleans the upper left room horizontally, which helps to further reduce the total

number of turns. Moreover, as shown in Fig. 2.7d, ε? again achieves complete coverage.

On average, the computation time to update wp in state CP0 was ∼ 0.577 milliseconds,

while it was ∼ 0.437 milliseconds in any CP`,1 ≤ ` ≤ L state; hence it is suitable for
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(a) ε? (b) FS-STC (c) BSA (d) Brick & Mortar

(e) Comparison of trajectory length (f) Comparison of number of turns

Figure 2.8: Scenario 1: A comparison of trajectories and coverage performances with alternative methods

real-time applications.

2.5.2 Comparison with Alternative Coverage Methods

The results of ε? are compared with three other online coverage algorithms: FS-STC [17],

BSA [18] and Brick & Mortar [52]. Three metrics are used for performance evaluation,

including: i) coverage ratio CR = ∪kτ(k)∩Ra

Ra , ii) number of turns, and iii) trajectory length.

Fig. 2.8a∼Fig. 2.8d present the coverage trajectories for Scenario 1 using ε?, FS-STC,

BSA and Brick & Mortar, respectively. It is seen that the trajectories of FS-STC, BSA and

Brick & Mortar algorithms are spiral in contrast to the back-and-forth trajectories generated

by ε?. Fig. 2.8e and Fig. 2.8f compare the number of turns and total trajectory length for

these methods in Scenario 1, respectively. Clearly, all four methods have achieved complete
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(a) ε? (b) FS-STC (c) BSA (d) Brick & Mortar

(e) Comparison of trajectory length (f) Comparison of number of turns

Figure 2.9: Scenario 2: A comparison of trajectories and coverage performances with alternative methods

coverage, i.e., CR = 1, while ε? produces significantly less number of turns and shorter

trajectory length than others.

Moreover, Fig. 2.9a∼Fig. 2.9d show the coverage trajectories for Scenario 2 using ε?,

FS-STC, BSA and Brick & Mortar, respectively. Fig. 2.9e and Fig. 2.9f compare the num-

ber of turns and total trajectory length for these methods in Scenario 2, respectively. Again,

it is seen that all four methods have achieved complete coverage, while ε? again generates

much less number of turns and shorter trajectory length as compared to others.

2.5.3 Performance in the Presence of Uncertainties

For uncertainty analysis, noise was injected into the measurements of range detector (laser),

the heading angle (compass), and the localization system.

37



Figure 2.10: Coverage ratio vs. noise

A laser sensor typically admits an error of 1% of its operation range. Similarly, a

modestly priced compass can provide heading information as accurate as 1o [63]. The

above errors were simulated with Additive White Gaussian Noise (AWGN) with standard

deviations of σlaser = 1.5cm and σcompass = 0.5o, respectively. The Hagisonic StarGaze

indoor localization system provides a precision of 2cm [64], while the GPS system using

Real-Time Kinematic (RTK) can achieve an accuracy of 0.05 ∼ 0.5m [63]. Thus, the

uncertainty due to localization system is studied using AWGN with standard deviation

ranging from σ = 0.05m to 0.25m. Fig. 2.10 shows the average coverage ratio vs. noise

over ten Monte Carlo runs for the two scenarios.

2.5.4 Performance using Different Sizes of ε

This section examines the effects of using different sizes of ε for coverage. A general guide

to select a proper size of ε is provided in Section 2.3.

Fig. 2.11a and Fig. 2.11b present the coverage trajectories and the corresponding color-
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(a) Scenario 1

(b) Scenario 2

Figure 2.11: Coverage trajectories and the corresponding color-coded symbolic encodings for different ε
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Figure 2.12: The autonomous ground vehicle for real experiments

coded symbolic encodings using different sizes of ε for Scenario 1 and Scenario 2, respec-

tively. It is seen that, with a larger ε , the tiling of the search area consists of less number of

ε-cells. However, at the same time it results in a coarser approximation of the search area

with a lower resolution. For both scenarios, ε? is able to achieve ε-coverage in all cases.

2.5.5 Validation by Real Experiments

The ε? algorithm was further validated by real experiments in a laboratory setting. An

iRobot Create, as shown in Fig. 2.12, was utilized that was equipped with the Hagisonic

StarGazer system [64] for indoor localization, the Hokuyo URG-04LX scanning laser [65]

with∼ 2m detection range, and 10 ultrasonic sensors evenly placed around the vehicle body

for collision avoidance. Table 2.2 provides the specifications of these sensing systems.

The laboratory area was partitioned into a 8× 8 tiling structure with each ε-cell of

dimension 0.61m. This resulted in an MST with L = 2. The forbidden region was not

defined due to limited laboratory space. For computation, a neighborhood of size 3× 3

was chosen at all levels. A hardware-in-the-loop setup was established, where the vehicle
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Table 2.2: Specifications of onboard sensing systems

Localization Laser Ultrasonic
Model StarGazer URG-04LX XL-MaxSonar-EZ

Range − 0.02m∼ 5.6m,240o 0.2m∼ 7.65m

Resolution 1cm,1o 1mm,0.36o 1cm

Accuracy 2cm,1o ±1% of Measurement −

carries an onboard laptop that runs the Player, which acts as the server to collect the real-

time sensor measurements. The autonomous vehicle stops every few seconds to collect

data. The client computer runs the ETM which incrementally builds the map by real-time

obstacle discovery. The server and the client communicate through a wireless connection

for real-time control and navigation.

Fig. 2.13 shows the results of a real experiment, where at each time instant, it shows

the snapshot of the autonomous vehicle in the environment (left), its trajectory (middle)

and the corresponding symbolic encodings (right), respectively. The vehicle successfully

evacuated from a local extremum and explored different rooms to achieve ε-coverage, thus

revealing the effectiveness of the ε? algorithm.

Below, we use the local extremum in Fig. 2.13b as an example, and dive deep into the

mechanism that ε? utilizes to prevent local extrema.

Since the search area was constructed into a tiling of 8×8 ε-cells, the MST has L = 2,

i.e. it contains Levels 0, 1 and 2. Fig. 2.14a shows the time instant when the autonomous

vehicle got stuck in the local extremum. At that moment, the ETM was operating in state

CP0 at Level 0, while all ε-cells in the local neighborhood were either explored or obstacles.

Accordingly, as shown in Fig. 2.14b, there was no ε-cell with positive potential in its local

neighborhood at Level 0 of MAPS. Thus, the ETM switched to state CP1 and scanned in

the local neighborhood at Level 1 of MAPS to look for coarse cells with positive potentials.
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(a) Coverage started

(b) Escaping from a local extremum using wall following

(c) Continue coverage in another room

(d) Complete coverage

Figure 2.13: Real experiment in a laboratory environment
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(a) Local extremum situation

(b) Use higher levels of MAPS to find the next waypoint

Figure 2.14: Use higher levels of MAPS to evacuate from a local extremum

Since each coarse cell on Level 1 contains four ε-cells, it was able to discover unexplored

cells in a larger local region. In this scenario, there were unexplored cells spotted in its

local neighborhood at Level 1. Then, it selected the coarse cell with the highest positive

potential and picked an unexplored ε-cell from it as the next waypoint. Thereafter, the ETM

switched back to state CP0 and resumed its regular operations using Level 0 of MAPS.

43



2.6 Conclusions

This chapter presents an algorithm, called ε?, for online coverage of unknown environment.

The algorithm utilizes the concept of an ETM which supervises the vehicle with adaptive

navigation decisions. It is shown that the ε? algorithm is computationally efficient, pro-

duces the desired back-and-forth motion with adjustable sweep direction, does not rely on

the critical point detection concept, and guarantees complete coverage. In comparison with

other online algorithms, ε? produces less number of turns and shorter trajectory lengths.

The algorithm has been validated via: i) high-fidelity simulations including sensor uncer-

tainties, and ii) real experiments in a laboratory setting.
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Chapter 3

Multi-robot Resilient and Efficient
Coverage in Unknown Environment

3.1 Introduction

In Chapter 2, we presented the ε? algorithm to address the single-robot CPP problem in

unknown environment. This algorithm is computationally efficient, and can generate back-

and-forth coverage path with guaranteed complete coverage. In this chapter, we extend

the ε? algorithm and address the Multi-robot Coverage Path Planning (MCPP) problem in

unknown environment.

The typical control architecture for MCPP is to first partition the target area into mul-

tiple sub-areas, which constitute the set of coverage tasks. Then, one can coordinate the

team of robots by using some single-robot CPP method for coverage operations in each

task [24][66]. However, since the autonomous vehicles typically operate in uncertain envi-

ronment, they are prone to different failures such as sensor or actuator malfunctions, me-
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Figure 3.1: Concepts of resilience and efficiency of a robot team

chanical defects, loss of power [20]. The consequences of these failures include coverage

gaps, loss of critical data, performance degradation (e.g., missed detections of targets), pro-

longed operation time, and in extreme cases overall mission failure. For example, coverage

gaps in mine countermeasure operations can leave undetected underwater mines which are

serious threats to traversing vessels. It is therefore critical that the robot team is resilient to

failures, in the sense that it can sustain the overall team operation and protect the mission

goals (e.g., complete coverage) even in presence of a few robot failures [21]. The role of

resilience is to assure system-level survivability and fast recovery to normalcy from unan-

ticipated emergency situations (e.g., robot failures). In the context of the MCPP problem, a

resilient robot team is expected to autonomously re-organize the active robots in an optimal

manner to complete the unfinished tasks of failed robots.

Secondly, it is also important that the robot team operates efficiently. Typically, due

to incorrect, incomplete or lack of a priori knowledge of the environment, the initial task

allocation may be sub-optimal. As a result, some robots may finish their tasks earlier and

become idle, which is a waste of their resources. Thus, it is critical that the robot team
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autonomously reallocates these idling robots in an optimal manner to assist other robots to

reduce the total coverage time.

Fig. 3.1 illustrates the above concepts of resilience and efficiency. Fig. 3.1a shows an

example of resilience where the neighbors of a failed robot proactively negotiate to decide

whether any of them should leave its current task to fill the coverage gap. Fig. 3.1b shows

an example of efficiency where a group of robots that have finished (or are close to finish)

their current tasks negotiate to optimally reallocate to new tasks or to help other robots in

their existing tasks.

The challenges associated with the problem of resilient and efficient MCPP include:

• Scalability: The MCPP algorithm should be scalable for a growing number of tasks

and/or robots, thus making a distributed control structure appropriate.

• Optimization factors: The optimization for task reallocation must consider the fol-

lowing factors:

1. Task worths, which can be quantified by the expected number of undiscovered

targets (e.g., crops to cut or mines to discover) in the tasks.

2. Probabilities of success of the available robots in finishing the contested tasks,

which depend on various factors including their current energy levels, the costs

of traveling to the contested tasks, and the costs of finishing those tasks.

• Dynamically changing conditions: The conditions of robots as well as tasks change

dynamically during coverage. The task worths decrease as targets are discovered. On

the other hand, the robots drain their batteries during exploration, hence decreasing

their probabilities of success. Therefore, the optimization process must accommo-

date these dynamic factors.
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• Computation time: First of all, the optimization must be event-driven, i.e., triggered

only in case of failures and/or idling. Secondly, once the optimization is triggered,

the task reallocation decision must be made in a timely manner to avoid prolonged

coverage time, thus motivating a local distributed event-focused optimization over

only a subset of available robots and tasks.

• Connection between local and global objectives: Although the local optimization

decision can be sub-optimal for the whole team, it is important that it is still aligned

with the global objectives of the team. In other words, the local optimization must not

only benefit the involved robots but also the whole team, in terms of early detection

of remaining targets, reduction in the total coverage time, and complete coverage.

• Complete coverage: The MCPP algorithm must guarantee complete coverage even

under some robot failures.

To the best of our knowledge, the concept of resilient coverage has not been adequately

addressed in the existing MCPP methods. In this regard, we present a novel online MCPP

algorithm for resilient and efficient coverage in unknown environment, which addresses the

challenges discussed above. The algorithm is called Cooperative Autonomy for Resilience

and Efficiency (CARE). For coverage control in each task, CARE utilizes the ε? algorithm

as described in Chapter 2.

The CARE algorithm operates in a distributed yet cooperative fashion. Each robot is

controlled using a Discrete Event Supervisor (DES), which triggers games between a set

of feasible players in the event of a robot failure or idling, to make collaborative decisions

for task reallocations. The game-theoretic structure is modeled using Potential Games [67],

where the utility of each player is connected with a shared objective function for all players.

In case of no failures, CARE reallocates idling robots to support other robots in their
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tasks, hence reduces coverage time and improves team efficiency. In case of robot fail-

ures, it guarantees complete coverage via filling coverage gaps by optimal reallocation of

other robots, hence providing resilience, albeit with a possibly small degradation in cov-

erage time. The CARE algorithm has been validated on Player/Stage in various complex

obstacle-rich scenarios. The results demonstrate that the team achieves complete coverage

under failures and enables faster target discovery as compared to three alternative methods.

The rest of this chapter is organized as follows. Section 3.2 presents a brief review of

the existing MCPP algorithms. Section 3.3 formulates the MCPP problem and Section 3.4

presents the details of the CARE algorithm. The results are discussed in Section 3.5 and

this chapter is concluded in Section 3.6.

3.2 Related Work

Regarding MCPP, Batalin and Sukhatme [68] proposed two local approaches for unknown

environment, based on mutually dispersive interaction between robots. Latimer et al. [69]

presented a boustrophedon cellular decomposition-based approach using a team of circu-

lar robots. The robots operate together, but can split up into smaller teams when cells are

created or completed. Rekleitis et al. [70] presented a distributed auction-based coopera-

tive coverage algorithm, where the whole space is partitioned into tasks of fixed height and

width, and robots utilized the Morse decomposition based single-robot CPP algorithm to

search within each task. Sheng et al. [71] proposed a multi-robot area exploration method

with limited communication range, where the waypoint of each robot is computed using

a distributed bidding mechanism based on frontier cells. The bids rely on the information

gain, communication limitation, and traveling costs to frontier cells. Rutishauser et al. [72]
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presented a distributed coverage method using miniature robots that are subject to sensor

and actuator noise. Xu and Stentz [73] presented the k-Rural Postman Problem (k-RPP)

algorithm to achieve environmental coverage with incomplete prior information using k

robots, that seeks to equalize the lengths of k paths. Bhattacharya et al. [74] generalized

the control law towards minimizing the coverage functional to non-Euclidean spaces, and

presented a discrete implementation using graph search-based algorithms for MCPP. Kara-

petyan et al. [75] presented two approximation heuristics for MCPP in known environment,

where the search area is divided into equal regions and exact cellular decomposition based

coverage was used to search each region. Later, these methods were improved to consider

vehicle kinematic constraints [76]. Yang et al. [77] proposed an online neural network

based MCPP approach. In their method, the discovered environment was represented ac-

cording to the dynamic activity landscape of the neural network, which is used to compute

robot waypoints; and robots treat each other as moving obstacles during operation.

However, the above-mentioned algorithms have not addressed the problem of resilience

in MCPP. In this regard, Agmon et al. [22] presented a family of Multi-robot Spanning Tree

Coverage (MSTC) algorithms, where the Online Robust MSTC (ORMSTC) algorithm en-

ables each robot to incrementally construct a local spanning tree to cover a portion of the

whole space. If some robot fails, its local tree is released and taken over by its neighbors,

but the already explored region of the failed robot must be scanned again. Also, the tree

grows on the scale of 2× 2 cells, while if any cell within such larger cell is occupied by

obstacles, the whole larger cell would not be covered, thus leading to incomplete cover-

age. Zheng et al. [23] presented a polynomial-time Multi-Robot Forest Coverage (MFC)

algorithm that computes tree covers for each robot with trees of balanced weights, and they

showed the superiority of MFC in time to MSTC via simulations; however, their algorithm

does not consider failures. Song et. al. [24] presented the First-Responder (FR) cooperative
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coverage strategy, where early completed robots are reassigned to available new tasks that

can maximize their own utility. However, this algorithm is not proactive, i.e., the coverage

gaps caused by robot failures will not be filled until some other robots complete their tasks.

Ferranti et. al. [52] presented the Brick and Mortar (B&M) algorithm, where the waypoint

of each robot is computed locally based on the states of cells in the neighborhood. The idea

behind B&M is to gradually thicken the blocks of inaccessible cells (i.e., visited or wall

cells), while maintaining the connectivity of accessible cells (i.e., explored or unexplored

cells). An unexplored cell can be marked as explored or visited, where the latter is allowed

if it does not block the path between any two accessible cells in the neighborhood. The

waypoint gives priority to the unexplored cell in the neighborhood, which has the most

inaccessible cells around it. When some robot fails, the remaining robots continue regu-

larly and the coverage gap becomes an extra workload; however, their method may produce

redundant coverage due to the looping problem.

Although resilience concepts have been discussed in robot design [78], robot damage

detection and recovery [79], flocking of robot teams [80] and networked control systems

security under attacks [81], there is a scarcity of efforts that deal with the resilient coverage

using multiple robots. Some of above-mentioned papers considered robot failures during

coverage, however, their remedy was to simply release the coverage gaps to the remaining

team, without optimization over the criticality (i.e., available worth) of such coverage gaps

and the reliability of remaining robots. Thus, they are not proactive in filling the coverage

gaps immediately if they satisfy optimization criteria, they wait until some other robots

finish their tasks. In this regard, this chapter presents the CARE algorithm for resilient

and efficient coverage, which incorporates these optimization factors while making event-

driven proactive task reallocations. Table 3.1 and Table 3.2 presents a comparison of the

key features of CARE with the other relevant online MCPP algorithms.
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Table 3.1: A comparison of key features with other online MCPP algorithms

CARE First-responder [24]

Path Pattern Back and forth Back and forth

Resilience
Strategy

Neighbors jointly optimize to
reorganize themselves to

immediately fill the coverage
gap caused by the failed robot if

the optimization criteria are satisfied

Wait until some robot
finishes its task and is

reassigned to fill
the coverage gap

No-idling
Strategy

The idling robot and its near-finishing
neighbors jointly optimize to help
other robots to reduce coverage

time and collect more worth early

Idling robots are
reallocated to new

tasks that maximize
their own utility

Optimization
Factors

Estimated worths of contested
tasks, remaining reliability and

traveling time of live robots

Unexplored portion of
tasks and traveling

time of robots

Table 3.2: A comparison of key features with other online MCPP algorithms (Cont.)

Brick & Mortar [52] ORMSTC [22]

Path Pattern No obvious pattern observed Spiral

Resilience
Strategy

Remaining robots continue re-
gularly. The coverage gaps be-

come extra workloads. May pro-
duce strongly overlapped paths

due to the looping problem

Neighbors extend their trees
to fill the coverage gap of the
failed robot, but the approach

is not proactive and the already
explored area by the failed

robot is scanned again
No-idling
Strategy

None None

Optimization
Factors

None None
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3.3 Problem Description

This section presents the description of the robots, the MCPP problem and the performance

metrics.

3.3.1 Description of the Robots

Let V = {v`, `= 1, . . .N} be the team of N ∈ N+ robots, which are unmanned autonomous

vehicles, as shown in Fig. 3.2. It is assumed that each robot is equipped with:

• a localization system (e.g., GPS [54] or SLAM [55]) to access vehicle location;

• a range detector (e.g., laser scanner) to detect obstacles within a radius Rs ∈ R+;

• a task specific sensor for performing the desired task (e.g., target detection); and

• a wireless communication device for (periodic or event-driven) information exchange

between all pairs of robots. The communication is assumed to be perfect.

Since the robots continuously deplete their energies from the batteries during operation,

their reliability is assessed based on the remaining energy as presented below.

Battery Reliability: Each robot v` ∈ V , is assumed to carry a battery whose relia-

bility [82], denoted as Rv`(t), can be computed as Rv`(t) = 1−F(t), where F(t) is the

probability of battery being drained up to time t. Typically, the state-of-charge of a battery

can be model using the realistic Kinetic Battery Model (KiBaM), which takes into account

many important non-linear properties of batteries such as the rate-capacity effect and the

recovery effect [83]. It is shown in [84] that with KiBaM, F(t) follows a S-shaped curve

when operating under different stochastic workload models (e.g., the on/off model and the
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Figure 3.2: Example of a search area and its tiling. A team of 3 robots are scanning in three different tasks
R1, R2 and R3. Robots are equipped with lasers for obstacle mapping

burst model). The S-shaped curve can be approximated using a sigmoid function [82]. As

such, the reliability of a robot v` is given as:

Rv`(t) =
1

1+ eρ0(t−ρ1)
, (3.1)

where ρ0 and ρ1 indicate the curvature of the growth part and the inflection point, respec-

tively. Their exact values depend on the choice of batteries. More details on the selection

of these parameters are presented in Section 3.5.

3.3.2 The MCPP Problem

The search area R ⊂ R2 is assumed to be a planar field whose borderline is defined either

by a hard barrier (e.g., walls or obstacles) or by a soft boundary (e.g., sub-area of a large

field). A finite but unknown number of obstacles with arbitrary shapes are assumed to

populate this area, but their exact locations and shapes are a priori unknown.
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For the purpose of coverage path planning, a tiling T = {τα ⊂ R2,α = 1, . . . |T |} is

constructed to cover R using the same procedure as explained in Chapter 2, i.e. R ⊆⋃|T |
α=1 τα , as shown in Fig. 3.2. The tiling T is partitioned into three sets: i) obstacle (T o),

ii) forbidden (T f ), and iii) allowed (T a). While the cells in T o are occupied by obstacles,

the cells in T f create a buffer around the obstacles to prevent collisions due to inertia or

large turning radius of the robots. Due to lack of a priori knowledge of the environment, the

obstacle cells and forbidden cells are discovered online using sensor measurements. The

remaining cells are allowed, which form the free space Ra =
⋃

τα∈T a τα that is desired to

be covered.

For distribution of multiple robots, an initial task allocation is required. Thus, the tiling

T is grouped into M disjoint regions {Rr ⊂ T ,r = 1, . . .M}, s.t. R =
⋃M

r=1 Rr. Each

region Rr is regarded as one task and is referred as task r. Fig. 3.2 shows an example of

the area with M = 3 tasks. Each robot can work on one task at a time, but one task can be

assigned to multiple robots. Note that M may not be equal to N.

Remark 3.3.1. The problem of optimal space partitioning into disjoint tasks and optimal

initial robot allocations may require consideration of several factors (e.g., obstacle distri-

bution, robot capabilities, bathymetry) and is beyond the scope of this chapter. Here, we

assume that no a priori knowledge of the environment is available, thus the tasks are made

of equal sizes. However, as more information is obtained during exploration, event-driven

task reallocations are performed for performance improvement.

Definition 3.3.1 (Complete Coverage). Let τ`(k) ∈ T be the ε-cell that is visited and

explored by the robot v` at time k. Then the robot team V is said to achieve complete

coverage, if ∃K ∈ N+, s.t. the sequences {τ`(k),k = 1, . . .K},∀` = 1, . . .N, jointly cover

the free space Ra, i.e.,
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Ra ⊆
N⋃
`=1

K⋃
k=1

τ`(k). (3.2)

In other words, the coverage is said to be complete if every cell in Ra is explored by at

least one robot.

Next, it is assumed that each task contains randomly distributed targets, and their exact

numbers and locations are unknown (see Section 3.4.2). However, it is assumed that the

expected number of targets in each task is known, which in practice could be obtained by

various means such as field surveys, aerial views or prior knowledge from other sources.

Remark 3.3.2. If the total number and spatial distribution of targets is a priori known,

then complete coverage may not be necessary and an optimal traversing strategy could be

constructed to find all the targets. However, in this chapter, we assume that the planner

neither knows the exact number of these targets, nor their exact locations, thus complete

coverage becomes mandatory to guarantee finding all the targets.

Due to non-uniform spatial distribution of targets and obstacles within each task, the

targets are discovered at unequal rates by all robots. Thus, at any point of time all tasks

could contain significantly different numbers of undiscovered targets. It is therefore critical

that the regions with the maximum number of targets are scanned earlier and are given

priority. Early detection of targets helps when the mission is terminated prematurely due

to emergencies, failures or other reasons. For example, once the highly utilized areas of a

building floor are cleaned then other areas could be cleaned gradually at ease.

Furthermore, the robots may suffer from unexpected failures during the coverage oper-

ation due to several reasons (e.g., actuator malfunctions or mechanical defects) which lead

to coverage gaps. Thus, it is important to fill these coverage gaps by task reallocations of

healthy robots. It is also important that the criticality of the task of the failed robot, as
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measured by its expected number of remaining targets, is evaluated for task reallocations

in comparison with the existing tasks of healthy robots.

3.3.3 Performance Metrics

The quality of multi-robot coverage can be evaluated based on the following performance

metrics:

• Coverage ratio (CR): The ratio of the explored free space to the total free space, i.e.,

CR =

(
∪N
`=1∪

K
k=1τ`(k)

)
∩Ra

Ra ∈ [0,1]. (3.3)

Note that CR < 1 if the coverage gaps caused by robot failures are left unattended.

• Coverage time (CT ): The total operation time of the team. This is measured by the

last robot that finishes its task.

• Remaining reliability (RR): The remaining reliability of all live robots at the end of

the operation.

• Number of Targets Found (NoT F): The total number of targets discovered by the

whole team.

• Time of Target Discovery (ToT D): The time for the whole team to discover a certain

percentage of all targets. Note that the time of discovering all targets is less than

or equal to the coverage time. Only in the limiting case, when the last target is

discovered in the last visited cell by the robot that stops last, the coverage time will

be equal to the ToT D for all targets.
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The objective of MCPP is to achieve CR = 1 even under a few robot failures, hence

maximizing NoT F , while minimizing CT , minimizing ToT D and maximizing RR.

3.4 The CARE Algorithm

The CARE algorithm addresses the above-mentioned MCPP problem via facilitating dis-

tributed event-driven task reallocations. In CARE, a set of local robots jointly re-plan

their task assignments in two situations: (1) when a robot has finished its current task, or

(2) when a robot has failed and is detected as non-responsive. The re-planning strategy

relies on a game-theoretic formulation, which computes the task worths and the success

probabilities for each participating robot-task pair as optimization factors for optimal task

reallocations. The task worths are measured by their expected number of undiscovered tar-

gets, while the success probabilities of robot-task pairs are computed based on the battery

reliabilities, travel times, and predicted times to finish the contested tasks for the robots.

The CARE algorithm adopts a distributed yet cooperative control architecture, where

each robot v` ∈V is controlled by a Discrete Event Supervisor (DES) that is modeled as a

finite state automaton.

3.4.1 Discrete Event Supervisor

The DES as shown in Fig. 3.3 is defined below.

Definition 3.4.1 (DES). The DES, denoted as H, is a deterministic finite state automaton

represented by a 5-tuple as follows

H = (X ,E,δ ,x0,Xm),
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Figure 3.3: The discrete event supervisor in the CARE algorithm

where:

• X = {ST,WK,NG,RG, ID,FL,SP} is the set of states, where ST ≡ ‘Start’, WK ≡

‘Working’, NG ≡ ‘No-idling Game’, RG ≡ ‘Resilience Game’, ID ≡ ‘Idle’, FL ≡

‘Failed’ and SP≡ ‘Stop’.

• E= {e0,e1, . . .e7} is the finite set of events.

• δ : X ×E→ X is the partial state transition function. It is defined from one state to

another if and only if there exists an arrow connecting them carrying an event.
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• x0 = ST is the initial state.

• Xm = {SP,FL} is the set of marked states, which means a robot can either stop after

finishing all the tasks or it may fail unexpectedly.

While the states ST , ID, FL and SP are self-explanatory, the operations in states WK,

NG and RG are described as follows. In state WK, the supervisor H of robot v` adopts the

ε? algorithm [85] for online coverage within its own task. Since no a priori information is

available, all cells are initialized as unexplored. As the robot explores its task, it updates

these cells as explored, obstacles and forbidden as suitable to track the progress of explo-

ration. This information is then periodically shared and synchronized with other robots

such that each robot maintains a symbolic map of the entire region.

In states RG and NG, H triggers the Optimizer to play resilience games and no-idling

games, respectively. The objective of resilience games is to optimally re-organize the

neighbors of the failed robot to immediately fill the coverage gap, if it contains higher

worth; while for no-idling games, the objective is to optimally reallocate the idling robot

and its near-finishing neighbors to help other robots to reduce coverage time and collect

more worth early. Details of Optimizer functionality are explained later in Section 3.4.2.

Events and State Transitions: The events in E enable state transitions in H, which are

explained below. First, we define:

1. rc : V →{1, . . .M} to be the allocation function that indicates the current task alloca-

tions of robots;

2. tc : {1, . . .M}→ [0,∞) to be the remaining time required to complete a given task by

its assigned robots;

3. nU : {1, . . .M}→ N to be the number of unexplored cells in a given task.

60



Now, consider a robot v` ∈ V that is currently working in task rc(v`). Event e0 is

generated when v` is turned on, and H moves to the state WK to start searching in task

rc(v`) using the ε? algorithm.

Event e1 is produced if any of its neighbor robot fails. This transitions H to the state

RG, that in turn invokes the Optimizer to play the resilience game to generate a task real-

location decision for v`. Failure of a robot is detected using a standard mechanism based

on heartbeat signals [86]. Each robot periodically broadcasts heartbeat signals, and also

listening from others. Then a neighbor robot is detected as failed if its message is not re-

ceived by v` constantly for a certain period of time. To ensure robustness to false alarms,

its failure is further confirmed if the majority of κ2 ∈N+ neighbors detect its failure. Event

e2 occurs as soon as task rc(v`) is completed, i.e., the number of unexplored cells in task

rc(v`), denoted as nU(rc(v`)), becomes 0. Event e2 moves H to the state NG, where the

Optimizer is called to play the no-idling game for finding a new task for v`.

Event e3 appears if the Optimizer assigns a new (or current) task to robot v`, which

drives H back to the state WK to search in the assigned task; otherwise if no task is assigned,

event e4 is generated that moves H to the state ID and the robot becomes idle. Event e5 is

produced if some neighbor robot just completed its task and triggered the no-idling game,

while v` is close to finish task rc(v`), i.e., tc(rc(v`)) ≤ η ∈ R+, hence ready to reallocate

after finishing the current task. Specifically, tc(rc(v`)) =
nU (rc(v`))

ω
, where ω ∈ R+ is the

speed of tasking a cell by the assigned robots. Then again, H comes to the state NG and

the Optimizer is invoked to compute for a new task.

Event e6 occurs when the entire area R is covered, by satisfying Eq. (3.2). This happens

when no unexplored cells are left in the whole region, i.e., ∑
M
r=1 nU(r) = 0. This moves H to

the terminal state SP and the coverage is complete. At last, event e7 is generated if v` itself

is diagnosed as failed by its own diagnosis, and H moves to the state FL. An advanced
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failure diagnostic tool is beyond the scope of this chapter.

3.4.2 Distributed Optimizer

The Optimizer is invoked by the supervisor H to compute reallocation decisions under two

conditions: (i) H reaches RG state upon detection of a neighbor failure (i.e., event e1); or

(ii) H reaches NG state upon completion of its own task (i.e., event e2), or completion of a

neighbor’s task (i.e., event e5).

Specifically, the Optimizer is built based on the concept of Potential Games [67], which

have the following advantages: (i) at least one Nash Equilibrium is guaranteed to exist, (ii)

several learning algorithms are available (e.g., the Max-Logit algorithm [87][88]) that can

converge fast to the optimal equilibrium, and (iii) the utility of each player is perfectly

aligned with a globally shared potential function, thus as each player seeks to increase its

own utility, the potential function is simultaneously improved and maximized upon reach-

ing the optimal equilibrium.

Before presenting the details of the Optimizer, we list the various useful parameters in

Table 3.3. Below, we present some mathematical preliminaries.

Preliminaries: A game G in strategic form [89] consists of:

• A finite set of players P= {Pi ∈V, i = 1, . . . |P|}, which includes all available robots

that could be reallocated.

• A non-empty set of actions Ai associated to each player Pi. In this chapter, each

action ai ∈ Ai corresponds to the index of an available task, and the action set is

assumed identical for all players, i.e., Ai =A j = Ã, ∀i, j ∈ {1, . . . |P|}.

• The utility function associated with each player Pi, defined as Ui : AP→ R, where
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Table 3.3: List of key parameters in CARE

Parameter Description

N Total number of robots

M Total number of tasks

ρ0 Curvature of the growth part in battery model

ρ1 Inflection point in battery model

v Robot traveling speed

ω Robot tasking speed

λr Expected number of targets in task r

η
Threshold of time to identify robots that are close to
finishing their tasks

ψ
Threshold to identify incomplete tasks with
sufficient work left

κ1 Neighborhood size in no-idling games

κ2 Neighborhood size in resilient games

AP =A1× . . .×A|P| denotes the set of joint actions for all players.

The utility function computes the payoff that Pi can receive by taking an action ai ∈Ai,

given that the rest of the players jointly select a−i ∈A−i, where A−i :=A1× . . .×Ai−1×

Ai+1× . . .×A|P|. A joint action of all players aP ∈AP is often written as aP = (ai,a−i).

Definition 3.4.2 (Nash Equlibrium). A joint action a?P = (a?i ,a
?
−i) ∈ AP is called a pure

Nash Equilibrium if

Ui(a?i ,a
?
−i) = max

ai∈Ai
Ui(ai,a?−i), ∀Pi ∈ P. (3.4)

Definition 3.4.3 (Potential Games). A game G in strategic form with action sets {Ai}|P|i=1

together with utility functions {Ui}|P|i=1 is a potential game if and only if, a potential function
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φ : AP→ R exists, s.t. ∀ Pi ∈ P

Ui(a′i,a−i)−Ui(a′′i ,a−i) = φ(a′i,a−i)−φ(a′′i ,a−i), (3.5)

∀ a′i,a
′′
i ∈Ai and ∀ a−i ∈A−i.

A potential game requires perfect alignment between the utility of an individual player

and the globally shared potential function φ for all players, in the sense that the utility

change by unilaterally deviating a player’s action is equal to the amount of change in the

potential function. In other words, the potential function φ can track the changes in payoffs

as some player unilaterally deviates from its current action. Therefore, if φ is designed as

the global objective, then as players negotiate towards maximizing their individual utilities,

the global objective is simultaneously optimized.

Now, we present the resilience games and no-idling games modeled as potential games.

Specifics of Resilience Games and No-idling Games: Due to different objectives and

triggering conditions, the player set and action set are fundamentally different for resilience

games and no-idling games. Let Nv`
κ be the set of κ ∈ N+ nearest neighbors of robot v`.

• No-idling Game: A no-idling game is triggered when some robot vid ∈V completes

its current task and becomes idle. Then, it calls its κ1 nearest neighbors v` ∈ N
vid
κ1 that are

close to finish their tasks to participate in the game. Thus, a no-idling game comprises of:

• P= {vid}∪{v` ∈N
vid
κ1 : tc(rc(v`))≤ η}.

• Ã = {r ∈ {1, . . .M} : tc(r) ≥ ψ ∈ R+}, which contains incomplete tasks that have

sufficient work left to be finished by their currently assigned robots. If some players

still have some work left in their current tasks, they are assigned such that they finish

their current tasks before being reallocated to new tasks.
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• Resilience Game: A resilience game is triggered when some robot v f fails. Then,

the κ2 nearest neighbors of v f are involved in the game to re-optimize their current task

allocations. Thus, a resilience game comprises of:

• P=N
v f
κ2 .

• Ã = {rc(v f )}∪{rc(v`),v` ∈ N
v f
κ2 : tc(rc(v`)) > η}, which contains the current tasks

of all players and the failed robot. The condition tc(rc(v`)) > η ensures that those

tasks close to be finished will be completed by their currently assigned robot and

hence not needed to be part of the game.

Remark 3.4.1. If there exist other active robots working in the same task of the failed

robot, then they will take over this task and no resilience game is triggered.

Remark 3.4.2. When a game is initiated, the information is exchanged and synchronized

between all players, including their locations, discovered environment maps, success prob-

abilities and estimated task worths.

Although the game specifics are different for the resilience and no-idling games, they

follow the same design of the potential function and utility function as follows.

Design of Potential Function for Task Reallocations: As explained in Section 3.1,

the players must analyze the following optimization factors during task reallocation:

1. Task worths, which can be quantified by the expected number of undiscovered targets

in the tasks.

2. Probability of success of each player to finish a certain task, which depends on its

current battery reliability, the cost of traveling to the new task, and the cost of finish-

ing the new task.
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Thus, the potential function φ for all players in the game is defined to be the total

expected worth [90] obtained by choosing a joint action aP ∈AP, as follows.

φ(aP) = ∑
r∈Ã

wr

(
1− ∏

Pi∈{P}r

[
1− pr(Pi)

])
, (3.6)

where {P}r , {Pi ∈ P : ai = r} denotes the subset of players that choose the same task r ∈

{1, . . .M} in the joint action aP; wr is the current available worth of task r; and pr(Pi) is the

success probability of player Pi to finish task r. The term p(r) := 1−∏Pi∈{P}r

[
1− pr(Pi)

]
is the joint success probability for all players to finish task r together.

As exploration continues, the conditions of robots and tasks change dynamically. Thus,

the success probability pr(Pi) and the task worth wr in Eq. (3.6) must be updated before a

game is played.

Computation of Success Probability: The success probability pr(Pi) is evaluated on-

line using Eq. (3.1) as follows.

pr(Pi) = RPi(t̃), (3.7)

where RPi(t̃) is the reliability of player Pi at time t̃, which is estimated as

t̃ = tk + ttr + tr, (3.8)

where tk is the total tasking time of Pi since the beginning until the game was initiated, ttr

is the traveling time to task r, and tr is the estimated time to complete task r. Specifically,

ttr =
Dist(Pi,r)

v , where Dist(Pi,r) measures the distance between player Pi’s current location

and the centroid of task r, and v∈R+ is the traveling speed of robot; and the time tr =
nU (r)

ω
,

where ω is the speed of tasking a cell by the assigned robots.

In addition, if a robot is selected as a player to find a new task but it still has a small
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portion left in its current task, then it would like to first finish this task before being reallo-

cated to a new one. Hence, an extra term tc is included in Eq. (3.8) if the estimated time to

complete the unfinished part of its current task rc(Pi) satisfies tc(rc(Pi))≤ η .

Computation of Task Worths: The worth wr in Eq. (3.6) indicates the expected num-

ber of undiscovered targets in task r that are available to the players. Let xr be a random

variable that denotes the total number of targets in task r, which is assumed to follow the

Poisson distribution with parameter λr. Its probability mass function is given as:

Pr
(
xr = x

)
= e−λr · λr

x

x!
, x = 0,1,2 . . . (3.9)

If ξ targets have been already discovered in task r, then the estimated remaining number

of targets, w̃r, is computed as:

w̃r =
∞

∑
x=ξ+1

(x−ξ ) · e−λr · λr
x

x!

=
∞

∑
x=0

x · e−λr · λr
x

x!
−ξ ·

∞

∑
x=0

e−λr · λr
x

x!
−

ξ

∑
x=0

(x−ξ ) · e−λr · λr
x

x!

By definition, Poisson distribution has mean λr, i.e., ∑
∞
x=0 x · e−λr · λr

x

x! = λr. Also, one

has ∑
∞
x=0 e−λr · λr

x

x! = 1. Thus, w̃r is computed as:

w̃r = (λr−ξ )+ e−λr ·
ξ

∑
x=0

(ξ − x) · λr
x

x!
(3.10)

Next, we decide the portion of w̃r available to the players, i.e., wr. Since task r may

contain some robots currently working there but are not participating in the task realloca-

tion, i.e., they are not players, then if a player selects task r, it must work together with

these existing robots. In turn, the maximum payoff a player could expect from task r be-
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comes less due to sharing with the existing robots. Let P̄ , V \P denote the subset of

robots that are not players. Similarly, let {P̄}r be the set of non-player robots that are

currently working in task r, which have a joint success probability q(r) for task r, i.e.,

q(r) = 1−∏v`∈{P̄}r

(
1− pr(v`)

)
. Then wr is computed as:

wr = w̃r ·
(
1−q(r)

)
. (3.11)

Utility Function of Each Player: In order to form a potential game, the utility function,

together with the potential function defined in Eq. (3.6), must satisfy Eq. (3.5). Since the

utility of a player also depends on the actions taken by the rest of the players, thus a rule is

needed to distribute the total produced payoff among contributing players. In this regard,

this chapter adopts the concept of Marginal Contribution due to its low computation burden

thus feasible for online decision-making [90].

Definition 3.4.4 (Marginal Contribution). The marginal contribution of player Pi in a

joint action aP = (ai,a−i) is

MCi = φ(ai,a−i)−φ( /0,a−i), (3.12)

where /0 represents player Pi’s null action, indicating no task is assigned to it.

The utility function is derived as follows. First, substitute Eq. (3.6) into Eq. (3.12), one

has:
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Ui(ai,a−i) =MCi

= ∑
r∈Ã

wr

(
1− ∏

P j∈{P}r

[
1− pr(P j)

])
− ∑

r∈Ã
wr

(
1− ∏

P j∈{P}r\Pi

[
1− pr(P j)

])
= ∑

r∈Ã
wr · ∏

P j∈{P}r\Pi

[1− pr(P j)]− ∑
r∈Ã

wr · ∏
P j∈{P}r

[1− pr(P j)]

Note that for any task r not selected by player Pi, i.e., r 6= ai, one has {P}r = {P}r \Pi.

Thus, the produced potentials in these tasks are canceled in the above equation. It can then

be further simplified as below, where wai is the worth of task ai.

Ui(ai,a−i) = wai · ∏
P j∈{P}ai\Pi

[1− pai(P j)]−wai · ∏
P j∈{P}ai

[1− pai(P j)]

= wai · ∏
P j∈{P}ai\Pi

[1− pai(P j)]−wai · [1− pai(Pi)] ∏
P j∈{P}ai\Pi

[1− pai(P j)]

= wai · pai(Pi) · ∏
P j∈{P}ai\Pi

[1− pai(P j)] (3.13)

Proposition 3.4.1. The game G with potential function φ of Eq. (3.6) and the utility func-

tion Ui of Eq. (3.13) is a potential game.

Proof. Given a joint action a−i, the difference in potential φ when player Pi deviates its

action from a′i to a′′i is:

φ(a′i,a−i)−φ(a′′i ,a−i)

= (φ(a′i,a−i)−φ( /0,a−i))− (φ(a′′i ,a−i)−φ( /0,a−i))

= Ui(a′i,a−i)−Ui(a′′i ,a−i)

Thus game G satisfies Eq. (3.5) and it is a potential game.
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In this chapter, the optimal equilibrium a?P is acquired using the Max-Logit algorithm [87].

Before any game starts, each player computes its success probability pr(Pi),∀r ∈ Ã using

Eq. (3.7), and updates the estimated task worth wr,∀r ∈ Ã using Eq. (3.10). Then, neces-

sary information are communicated and synchronized as mentioned in Remark 3.4.2.

Algorithm 2 presents details to acquire a?P in a distributed manner using the Max-Logit

algorithm. In particular, the initial joint action aP(1) (Line 1) is initialized as follows: for

resilience games, ai(1) is set as the current task rc(Pi) of player Pi, while for no-idling

games, ai(1) is randomly picked from Ã; then, aP(1) is determined via synchronization

with all other players.

Once a?P is obtained using Algorithm 2, the new task r for player Pi is set as its action

a?i in the equilibrium a?P.

Post-game Coordination: If multiple robots (including both existing robots and in-

coming players) are assigned to the same task r, it becomes imperative to utilize some

strategy to ensure their safety and efficiency when searching together. Let nmax ∈ N+ be

the maximum number of robots allowed to work in the same task at the same time. In this

regard, task r is evenly partitioned into nmax sub-regions, where each sub-region is only

allowed one robot at a time.

Consider some non-player robot v` ∈ {P̄}r that is currently working in task r. It con-

tinues as usual but its task is restricted to the sub-region determined by its current location.

This produces n0 ∈ N incomplete sub-regions that are instantly available to the incoming

players. Now consider a player Pi ∈ {P}?r , {Pi ∈ P : a?i = r} that is also assigned to task

r. It selects the sub-region by following the steps below. First, it computes its rank in {P}?r

based on its success probability. If it ranks in the top n0 and all other players ranked above

it have selected their new sub-region, then it selects the new available sub-region for itself
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Algorithm 2: The Optimizer for Pi using Max-Logit [87]
input : wr, pr(Pi),∀r ∈ Ã, and Pi ∈ P

output: a?P
1 Initialize: set initial joint action aP(1) ∈AP using a fixed rule, set the learning

parameter χ and the number of computation cycles Z
2 for k← 1 to Z do
3 Determine randomly if Pi is the single player among others that may alter its

action ai(k);
4 if Pi is not selected then
5 Repeat ai(k+1) = ai(k);
6 Continue;
7 else
8 Select an alternative action âi(k) ∈Ai with equal probability;
9 Compute alternative utility Ui(âi(k),a−i(k)) using Eq. (3.13);

10 Compute µ = eUi(âi,a−i)/χ/max{eUi(ai,a−i)/χ ,eUi(âi,a−i)/χ};
11 Update ai(k+1) as follows:

ai(k+1) =

{
âi(m), with probability µ

ai(m), with probability 1−µ.

12 Inform ai(k+1) to other players P j, j ∈ P\Pi;
13 end
14 end
15 Return a?P = a(k+1).

that minimizes its traveling distance. However, if it ranks after n0, it stays temporarily idle

but can later be reactivated to replace any robot in task r should it fail. Once Pi finds a new

sub-region, its centroid is set as the movement goal. As described previously, Pi resumes

to search its new sub-region using the ε? algorithm upon its arrival, and its supervisor H

transitions to the state WK accordingly.
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3.4.3 Computational Complexity of the Optimizer

As described above, once the Optimizer triggers a game involving the player set P and the

action set Ã, the joint action aP is first initialized locally and then synchronized with other

players. This process takes O(|P|) complexity.

Thereafter, the game follows Algorithm 2 in a distributed manner, which operates in a

loop for a user-defined Z ∈ N+ computation cycles. At each cycle, one player is randomly

selected and is allowed to probabilistically alter its action, which takes O(|P|) to find out

if Pi is selected. If not, its action is repeated, which takes O(1) complexity; otherwise, Pi

first randomly chooses an alternative action âi ∈ Ã with equal probability, which is O(|Ã|).

Then the associated utility Ui(âi,a−i) is computed using Eq. (3.13), which takes O(|P|)

complexity. Thereafter, Pi uses âi to update its action ai in a probabilistic manner, which

has O(1). At the end of each cycle, the updated action ai is transmitted to other players,

which requires O(|P|) complexity.

Therefore, in the worst case where Pi is selected in every cycle, the total complexity

becomes O(|P|+Z ·(3|P|+ |Ã|)). In comparison, for a centralized optimization algorithm,

it must search over |Ã||P| possible joint actions, which grows significantly faster as |A| and

|P| increase.

3.4.4 Connection between Local Games and Team Potential

As discussed earlier, in both resilience games and no-idling games, the potential function

φ is optimized for the set of players, which form a subset of the robot team. Now, we show

that the increase in φ will directly improve the performance of the whole team.

To illustrate this, let Φ(a) denote the total team potential that defines the total expected

worth achievable by the team, where a = (aP,aP̄) is the joint action of the team including
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players P and non-players P̄. Note for the non-players, the action aP̄ simply represent their

current tasks. Since the players and non-players are mixed and distributed over different

tasks, the total team potential Φ(a) is defined as:

Φ(a) =
M

∑
r=1

w̃r

(
1− ∏

v`∈{V}r

[1− pr(v`)]
)
, (3.14)

where {V}r = {P}r ∪{P̄}r is the set of all robots that are assigned to task r in the joint

action a, and the term within the parentheses on the right hand side computes the joint

success probability to complete task r by all of its assigned robots.

As the players reach the optimal equilibrium, the joint action becomes a? = (a?P,aP̄)

and the team potential becomes Φ(a?).

Theorem 3.4.1. The optimal equilibrium a? increases the total team potential Φ(a), i.e.,

Φ(a?)≥Φ(a).

Proof. First, let us show that the team potential Φ(a) is separable by the worth created by

the players (i.e., P) and the rest of the robots (i.e., P̄). Then we will investigate the change

of Φ due to task reallocation. Now Φ(a) can be decomposed as follows.

Φ(a) =
M

∑
r=1

w̃r

(
1− ∏

Pi∈{P}r

[1− pr(Pi)] · ∏
v`∈{P̄}r

[1− pr(v`)]
)

=
M

∑
r=1

w̃r

(
1− [1− p(r)] · [1−q(r)]

)
(3.15)

where p(r) := 1−∏Pi∈{P}r [1− pr(Pi)] and q(r) := 1−∏v`∈{P̄}r
[1− pr(v`)] are used to

denote the joint success probability of the players and the rest of the robots that are assigned

to task r in the joint action a, respectively.

Then we can further break down Φ(a) as follows.
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Φ(a) =
M

∑
r=1

w̃r

(
1− [1−q(r)]+ p(r)[1−q(r)]

)
=

M

∑
r=1

w̃r · [1−q(r)] · p(r)+
M

∑
r=1

w̃r ·q(r)

=
M

∑
r=1

wr · p(r)+
M

∑
r=1

w̃r ·q(r)

=

(
∑
r∈Ã

wr · p(r)+ ∑
r/∈Ã

wr · p(r)
)
+

M

∑
r=1

w̃r ·q(r)

= φ(aP)+ ∑
r/∈Ã

wr · p(r)+
M

∑
r=1

w̃r ·q(r) (3.16)

where the second term in the last step is the worth generated by the players (if any) that

would like to finish the small unfinished part in their current tasks before being reallocated

to new tasks, while the third term indicates the worth generated by the non-player robots P̄.

The values of both these terms do not change by games. Since φ(a?P)≥ φ(aP), ∀aP ∈AP,

we have Φ(a?)≥Φ(a).

Game Performance Metrics: The quality of the task reallocation decision (i.e., a?P

for the players and a? for the team) can be evaluated by the worth gain. Note that in any

task reallocation, there is a tradeoff between whether the robot should continue with its

current task or reallocate to a new task. Thus, where a higher gain implies early detection

of targets. Specifically, at player-level, the Gain of Players (GP) is defined as

GP =
φ(a?P)−φ(aP)

∑r∈Ãwr
∈ [0,1]. (3.17)

Similarly, at team-level, the Gain of Team (GT ) is

GT =
Φ(a?)−Φ(a)

∑
M
r=1 w̃r

∈ [0,1]. (3.18)
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Note that since φ(a?P) ≥ φ(aP) and Φ(a?) ≥ Φ(a), both Gp and GT are non-negative,

which implies that the outcome of a game results in the gain of worth not only for the

players but also for the whole team. Both GP and GT will be quantitatively examined in

Section 3.5.

3.4.5 Complete Coverage under Failures

The success of finding all hidden targets relies on the complete coverage of the whole area

R. Due to the completeness of the ε? algorithm, each task can be fully covered by the

assigned robot in finite time if it stays alive. Now, let us examine coverage under failures.

Theorem 3.4.2. The CARE algorithm guarantees complete coverage in finite time as long

as one robot is alive.

Proof. Consider a robot v` that is alive during the whole operation, whose supervisor H

starts with the state WK upon robot being turned on. We show below that v` must reach the

terminal state SP in finite time, which happens if and only if ∑
M
r=1 nU(r) = 0, i.e., complete

coverage.

First, as shown in Fig. 3.3, any cycle between states in H involves either state NG or

RG. Also, a robot can reach the states NG or RG due to completion of some task or failure

of some robot, respectively. Now, since there are only a finite number of robots (i.e., N)

and a finite number of tasks (i.e., M), each robot can visit these states only a finite number

of times. Thus, H cannot have any live lock. Moreover, in states NG or RG, it takes a finite

amount of time to reach an equilibrium solution using the Max-Logit algorithm. Thus,

H will always switch to either state WK or ID after games. In state WK, the underlying

ε? algorithm is used to explore in the current assigned task rc(v`) of robot v`. Since ε?
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constantly reduces nU(rc(v`)) until task rc(v`) is completed in finite time, so H can only

stay in state WK for finite time.

Further, in state ID, H can either be invoked to play new games and hence move to states

NG or RG, or it can move to the state SP upon complete coverage, i.e., ∑
M
r=1 nU(r) = 0.

Since the former case can only happen for a finite number of times, H will come back to

the state ID when no incomplete task is available to v` anymore. The same logic applies to

all other active robots. Thus, all active robots including v` will reach state ID in finite time,

which implies that no incomplete tasks exist, i.e., ∑
M
r=1 nU(r) = 0. Then, they all transition

to the terminal state SP and the complete coverage is achieved.

3.5 Results and Discussion

The CARE algorithm was validated on the high-fidelity robotic simulator Player/Stage [62],

using a computer with 3.40 GHZ CPU and 16 GB RAM.

In this section, we present the performance of the CARE algorithm in three complex

obstacle-rich scenarios. The search area R of size 50m× 50m, was partitioned into a

50× 50 tiling consisting of ε-cells of size 1m× 1m. The R was partitioned into M = 10

tasks {Rr,r = 1, . . .10}, each of size 10m× 25m. Each task r ∈ {1, . . .10} was initially

assigned with one robot, and a maximum number of nmax = 4 robots were allowed to search

together in one task. Each task r contained an unknown number of targets distributed

randomly according to the Poisson distribution with mean λr ∈ {1, . . .32}.

A team of N = 10 Pioneer 2AT robots was simulated, where each robot has dimensions

of 0.44m×0.38m×0.22m, and was equipped with 16-beam laser scanners with a detection

range of Rs = 5m. The kinematic constraints of the robot, such as the top speed of 0.4m/s
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and the minimum turn radius of 0.04m, were included in the simulations. The tasking speed

was ω = 0.32 cell/s. The parameters ρ0 and ρ1 in the battery reliability model were chosen

such that each robot can finish one and two tasks with more than 0.9 and 0.4 remaining

reliability, respectively. Specifically, based on the size of each task (∼ 250 cells) and the

robot tasking speed, it takes ∼ 780s to finish an obstacle-free task. Then, using Eq. (3.1):


1

1+eρ0(780−ρ1)
= 0.9

1
1+eρ0(2×780−ρ1)

= 0.4
, (3.19)

which lead to ρ0 ∼ 3.0×10−3 and ρ1 ∼ 1400s. Then, considering stochastic uncertainties

in the initial battery charging conditions, these parameters are generated on different robots

using Gaussian distributions, s.t., ρ0 ∼ N(3× 10−3,7.5× 10−5) and ρ1 ∼ N(1400,35),

where the standard deviation is chosen as 2.5% of the corresponding mean value.

Initially, due to lack of a priori knowledge of the environment, all ε-cells are initialized

as unexplored, and as the robot explores the environment, the obstacle and forbidden cells

are discovered and updated accordingly. The game parameters are chosen as: κ1 = 6 and

κ2 = 3, and in Max-Logit, the number of computation cycles is set as Z = 50 and the

learning parameter is χ = 0.05. The other parameters η and ψ are chosen as follows. We

set η such that it corresponds to less than 4% of the time to finish one task, i.e., 780×4% =

31.2s. Thus, robots which have only 4% of the task left will participate as players for no-

idling games. Similarly, we set ψ such that it corresponds to over 25% of the time to finish

one task, i.e., 780×25% = 195s. Thus, tasks which have still more than 25% unexplored

area become contested tasks. Hence, further rounding up we used η = 30s and ψ = 200s.
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3.5.1 Scenario 1: No Failures but Some Robots Idle

Fig. 3.4 presents the cooperative coverage of a complex islands scenario. A total num-

ber of 107 targets were distributed randomly in the field. No failure appeared throughout

the whole search, while two no-idling games were triggered to reallocate early completed

robots to reduce the coverage time. Each subfigure in Fig. 3.4, i.e., Fig. 3.4a∼Fig. 3.4h, is

comprised of a top figure showing the trajectories of robots by different colors, and a bot-

tom figure showing the corresponding overall symbolic map of the entire search area R,

which is periodically synchronized and merged by all live robots. The different colors in

the symbolic map represent the following regions: i) light green for obstacles, ii) medium

green for unexplored, iii) dark green for explored with no obstacles, and iv) yellow for the

forbidden region around the obstacles.

Fig. 3.4a shows that the robots started exploration and used their on-board sensing sys-

tems to explore the a priori unknown environment. Fig. 3.4b shows that the robots continue

searching within their assigned tasks. Fig. 3.4c shows the instance when robot v10 finished

task 10 and triggered a no-idling game G1. The player set was formed as P = {v5,v10},

where v5 was near finishing its task. At that moment, tasks 3, 4, 7 and 9 still had a lot of

area unexplored and required significant time to finish by their currently assigned robots,

thus they formed the action set Ã= {3,4,7,9}. The optimal equilibrium of G1 reassigned

v5 and v10 to task 4 and task 9, respectively. Because task 10 was already completed, v10

immediately traveled to its new task 9, while v5 had to first finish the remainder of its cur-

rent task 5 before moving to task 4. Since there was a robot v9 currently working in task

9, the post-game coordination strategy was used to further partition task 9 into nmax = 4

sub-regions. As observed in Fig. 3.4d, v10 selected the closest sub-region in the upper right

corner and searched in parallel with v9. Similar post-game coordination was performed
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Figure 3.4: Scenario 1: Coverage trajectories and the corresponding symbolic encodings using CARE

when v5 joined to search with v4 in task 4.

Later, another no-idling game G2 was triggered when v6 finished task 6, as shown in

Fig. 3.4e. The player set was formed as P= {v2,v6}, where v2 was near finishing its task.

Since tasks 4 and 9 have been assigned with extra robots after game G1, the estimated time
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Figure 3.5: Scenario 1: Summary of game specifics and performances

to finish these tasks dropped significantly, hence they were excluded from game G2. The

tasks 3 and 7, however, still required significant time to finish, thus they formed the action

set Ã = {3,7}. The optimal equilibrium of G2 in turn reassigned v2 and v6 to task 3 and

task 7, respectively, as shown in Fig. 3.4f. It is observed in Fig. 3.4g that, robot v2 selected

the upper right sub-region of task 3 and continued searching in parallel with robot v3, while

robot v6 joined robot v7 to search task 7 in a similar fashion. Finally, complete coverage

was achieved with all targets discovered, as shown in Fig. 3.4h.

Fig. 3.5 summarizes the specifics and performance of the two games. As observed, the

player-level worth gain GP reached 54.23% and 92.45% in games G1 and G2, respectively,

which means that after task reallocations, the idling robots can expect a higher number of

targets from the remaining tasks. At the team-level, GT is 3.29% for G1 and 2.42% for G2,

thus the whole team also benefits from the task reallocations.

3.5.2 Scenario 2: Some Robots Fail and Some Idle

Fig. 3.6 presents a more complex scenario where two robots failed unexpectedly during

operation. A total number of 106 targets were randomly distributed in the field.

Fig. 3.6a shows that the robots start exploration while using their on-board sensing

systems to discover the environment. Fig. 3.6b shows that robot v7 failed unexpectedly and

a resilience game G1 was triggered involving κ2 = 3 of its closest neighbors. The player set
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Figure 3.6: Scenario 2: Coverage trajectories and the corresponding symbolic encodings using CARE

was formed as P= {v2,v6,v8}. The action set consisted of the current tasks of all players,

as well as the task belonging to the failed robot, i.e., Ã= {2,6,7,8}. As seen in Fig. 3.6c,

the optimal equilibrium of G1 immediately reallocated v8 to drop its current task and help
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Figure 3.7: Scenario 2: Summary of game specifics and performances

v7, because task 7 has a much higher expected worth even at the expense of traveling. Later,

as shown in Fig. 3.6d, robot v4 failed too, which initiated the second resilience game G2.

Similarly, robots v3, v5 and v9 were the closest neighbors, hence they formed the player set

P= {v3,v5,v9}. The action set was Ã= {3,4,5,9}. As observed in Fig. 3.6e, the optimal

equilibrium of G2 lead v3 to drop its task 3 and immediately transition to help v4, in pursuit

of a higher worth task. Since tasks 3 and 8 were dropped by their initially assigned robots

after games G1 and G2, thus they are available to any future no-idling games. Fig. 3.6f

shows that robot v6 has just completed its task and triggered the third no-idling game G3. It

called the other robot v1 to join G3, which was close to finish task 1. Thus the player set was

P= {v1,v6}. The action set Ã= {3,8} included tasks 3 and 8 that were assigned with no

robot. No other region had sufficient task left. The optimal equilibrium of G3 reallocated

v1 and v6 to task 3 and task 8, respectively, as seen in Fig. 3.6g. Finally, complete coverage

was achieved with all targets found, as shown in Fig. 3.6h.

Fig. 3.7 presents the details of all games. It is observed that GP is 37.64% for G1 and

36.98% for G2, thus via event-driven task reallocations, the neighbors of the failed robot

can re-organize to compensate for the loss of expected worth due to robot failures. Also,

GP is 91.16% for game G3, hence the idling robots can expect to discover more targets
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from the remaining tasks after task reallocation. Accordingly, GT is 15.22%, 16.19% and

5.25% for games G1, G2 and G3, respectively. Thus, the whole team also benefits from

each task reallocation.

3.5.3 Performance Comparison with Alternative Methods

Now, we examine the performance of CARE as compared to three other online multi-robot

coverage methods, including: (1) Non-cooperative (Non-Co.) strategy, where each robot

covers its own task using the ε? algorithm without cooperation upon task completion or

robot failures; (2) modified First-responder (FR) strategy [24], where robots that finish

early would selfishly seek for new tasks that can maximize their own utility using Eq.

(3.13); and (3) Brick and Mortar (B&M) algorithm [52]. The performance metrics of the

alternative methods have been examined in both scenarios using the same initial conditions,

and the time was measured in seconds.

Performance Comparison in Scenario 1

Figs. 3.8a∼Fig. 3.8d show the robot trajectories for Scenario 1 using CARE and the three

alternative methods. Since there was no failure in this scenario, complete coverage was

achieved using all methods. The corresponding performance metrics are shown in Fig. 3.9.

As seen in Fig. 3.9a, CARE requires the least coverage time (CT ). As compared to

using the Non-Co method, it saves 694.3−557.9
694.3 ≈ 19.65% in time. Similarly, CARE saves

about 16.41% and 60.47% in CT as compared to using the FR and B&M methods, respec-

tively. These significant savings in CT are due to the no-idling games that reallocated early

completed robots (i.e., v2, v5, v6, and v10) in an optimized way.

Moreover, due to lack of cooperation, the Non-Co. method requires a much higher CT
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(a) CARE (b) Non-cooperative (c) First-responder (d) Brick and Mortar

Figure 3.8: Scenario 1: Comparison of coverage trajectories using different online MCPP methods
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Figure 3.9: Scenario 1: Comparison of coverage performance using different online MCPP methods

than CARE and the FR method. In the FR strategy, since early completed robots selfishly

selects their new tasks that can maximize their own utility, robot v6 ended up picking task

3 upon finishing task 6, which contains higher worth even at the expense of long traveling

time (see Fig. 3.8c). In this regard, the FR method presents higher CT than CARE. Further,

due to lack of task partitioning as well as the looping problem, the B&M method generated
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strongly overlapped trajectories that leads to the highest CT .

Fig. 3.9c shows the minimum, mean and maximum remaining reliability (RR) among

all live robots as the operation ended. It is seen that, although CARE shares the same mean

RR with the Non-Co. and FR methods, it has the smallest difference between minimum and

maximum RR of all robots, which implies a more balanced battery depletion for different

robots. In contrast, the B&M method presents the smallest mean RR due to the highest CT .

As for the number of targets found (NoT F), since CR = 1 in this scenario, all 107

hidden targets were found using all methods, as shown in Fig. 3.9b and Fig. 3.9d.

Fig. 3.9e shows the time of target discovery (ToT D). It is seen that at each percentage

of targets found, CARE always requires the least time, thus leading to the fastest target

discovery progress as compared to other methods. This is due to the optimized task reallo-

cations of early completed robots v2, v5, v6 and v10 after playing no-idling games G1 and

G2. Note that the ToT D when 100% targets are discovered, is different from CT , because

robots must continue searching in unexplored regions towards complete coverage.

Performance Comparison in Scenario 2

Figs. 3.10a∼Fig. 3.10d show the robot trajectories using CARE and the three alternative

methods for Scenario 2. The corresponding performance metrics are presented in Fig. 3.11.

In this scenario, two robots of v4 and v7 failed during operation. The alternative methods

were evaluated using the same failing condition, i.e., the same robots failed after traveling

for the same amount of time.

As shown in Fig. 3.11a, CARE saves about 17.46% and 44.35% in CT as compared

to using the FR and B&M methods, respectively. This is due to the no-idling game G3

that reallocated early completed robots v1 and v6 in an optimized manner; while in the FR
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(a) CARE (b) Non-cooperative (c) First-responder (d) Brick and Mortar

Figure 3.10: Scenario 2: Comparison of coverage trajectories using different online MCPP methods
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Figure 3.11: Scenario 2: Comparison of coverage performance using different online MCPP methods

method, the initially assigned tasks of the failed robots were left unattended until some

other robot completes its task. Again, the B&M method has the highest CT due to strongly

overlapped trajectories.

Fig. 3.11c shows the RR of live robots at the end of the team operation. It is seen that,
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CARE has a higher mean RR, as well as the smallest difference between minimum and

maximum RR of all live robots, as compared to the FR and B&M methods. Also, since

tasks 4 and 7 were left unattended after robots v4 and v7 failed, the Non-Co. method has

the highest mean RR.

As shown in Fig. 3.11b, coverage was incomplete (CR = 0.89) using the Non-Co.

method, while all other methods achieved CR = 1. Accordingly, a total number of 28 hid-

den targets were missed using the Non-Co. method, while all other methods successfully

discovered all 106 targets, as shown in Fig. 3.11d.

Fig. 3.11e shows the performance of ToT D, where CARE again shows the fastest target

discovery progress as compared to other methods. This is mainly because after playing the

resilience games G1 and G2, robots v3 and v6 immediately determined to drop their current

tasks and search tasks 4 and 7 when robots v4 and v7 failed, respectively, in pursuit of

a much higher expected worth than their current tasks. Also, the Non-Co. method only

collected around 73.6% of all targets at the end of the team operation due to incomplete

coverage.

3.5.4 Effects of Different Parameters on Coverage Performance

This section evaluates the effects of different parameters on the coverage performance.

Specifically, we vary the values of N, λr, κ1 and κ2, while keeping the values of all other

parameters constant. The performance metrics presented in Section 3.3.3 are used for eval-

uations.
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Table 3.4: Effects of varying team size N

N CT
RR

min mean max

4 2258.6s 0.071 0.086 0.109

6 1338.2s 0.546 0.610 0.672

8 984.71s 0.777 0.826 0.883

10 747.4s 0.876 0.904 0.926

Effects of Team Size (N)

We examine the effectiveness of CARE when different number of robots are deployed to

search the same area R. For this purpose, we present Scenario 3, where teams of N = 4, 6, 8

and 10 robots were deployed to cover the same 10 tasks, as shown in Fig. 3.12. Fig. 3.12a,

Fig. 3.12b, Fig. 3.12c and Fig. 3.12d present the coverage trajectories at different time

instants for N = 4, 6, 8, and 10, respectively. The scenario setup is kept the same across

all simulations, where robot v4 fails after it travels for the same amount of time. As seen

in Fig. 3.12a(1), Fig. 3.12b(1), Fig. 3.12c(1) and Fig. 3.12d(1), a resilience game was

initiated upon failure of v4, and its neighbor v3 immediately dropped its task 3 to help v4,

due to a higher expected worth. Later several no-idling reallocations occurred and in all

cases complete coverage was achieved. Moreover, it is seen that with a smaller N, task

reallocation appears more often. As shown in Fig. 3.12a(4), Fig. 3.12b(4), Fig. 3.12c(4)

and Fig. 3.12d(4), the total coverage time clearly decreases when N increases.

Table 3.4 presents the corresponding coverage performances. For a smaller N, since

each robot must cover more tasks, the average RR of all live robots become smaller. Also,

the minimum and maximum RR are close to the mean, which implies the live robots have

been operating for similar amounts of time and robot idling was successfully prevented.
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(a) Coverage trajectories using 4 robots (v2,v3,v4 and v5)

(b) Coverage trajectories using 6 robots (v1,v2,v3,v4, v5 and v9)

(c) Coverage trajectories using 8 robots (v1,v2,v3,v4, v5, v7, v8 and v9)

(d) Coverage trajectories using 10 robots (v1,v2,v3,v4, v5, v6, v7, v8, v9 and v10)

Figure 3.12: Scenario 3: CARE using a team of 4, 6, 8 and 8 robots. Robot v4 failed during exploration.
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Effects of Target Distribution (λr)

Here, we utilize a team of 8 robots to examine the performance of CARE under different

target distributions. Fig. 3.13 shows the coverage trajectories at different time instants

under three different target distribution examples. The number of targets in each task r is

labeled in Fig. 3.13a(1), Fig. 3.13b(1), and Fig. 3.13c(1), and λr is set as the actual number

in each task. While the target distributions are randomly generated, in particular, the task

of the failed robot v4 has significantly different λr in the three examples.

In target distribution example 1, as seen in Fig. 3.13a, task 4 has sparse targets. When v4

failed, its neighbors v2, v3 and v5 played a resilience game, but none of them was reallocated

to help v4. This is because they can expect higher utility from their current tasks at the

moment. Later, as shown in Fig. 3.13a(3), when v1 and v5 finished, they were reallocated

to tasks 6 and 10 after playing no-idling games, respectively. At that moment, due to much

higher estimated worths in tasks 6 and 10, again none of them was reallocated to task 4. At

last, as seen in Fig. 3.13a(4), when v2 and v3 finished, they moved to task 4 and eventually

complete coverage was achieved and all targets were found.

Fig. 3.13b shows the coverage trajectories under target distribution example 2. As

compared to the previous example, now tasks 4 and 5 have slightly more targets, but less

targets are present in tasks 3. Thus, upon failure of v4, v3 was reallocated to task 4 to pursue

a higher utility, as shown in Fig. 3.13b(2). Later, multiple no-idling games were played and

the idling robots v2, v7, v8 and v9 were reallocated, as shown in Fig. 3.13b(3). Finally,

complete coverage was achieved as shown in Fig. 3.13b(4).

In target distribution example 3, as shown in Fig. 3.13c(1), task 4 has significantly more

targets, which makes it prioritized for coverage. In contrast, tasks 3 and 5 have much less

targets. Hence, as seen in Fig. 3.13c(2), when v4 failed, a resilience game was initiated
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(a) Target distribution example 1: sparse number of targets in the task of failed robot v4 in a 8-robot
team. Tasking sequence of each robot: v1 : R1→R6,v2 : R2→R4,v3 : R3→R4,v4 : R4,v5 : R5→

R10,v7 : R7→R6,v8 : R8→R10,v9 : R9→R10

(b) Target distribution example 2: medium number of targets in the task of failed robot v4 in a 8-robot
team. Tasking sequence of each robot: v1 : R1→R6,v2 : R2→R3,v3 : R3→R4,v4 : R4,v5 : R5→

R10,v7 : R7→R3,v8 : R8→R10,v9 : R9→R10

(c) Target distribution example 3: dense number of targets in the task of failed robot v4 in a 8-robot team.
Tasking sequence of each robot: v1 : R1→R6,v2 : R2→R3,v3 : R3→R4→R10,v4 : R4,v5 : R5→

R4→R5→R10,v7 : R7→R6,v8 : R8→R10,v9 : R9→R3

Figure 3.13: Coverage trajectories under different target distributions using a team of 8 robots
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involving players v2, v3 and v5; then both v3 and v5 moved to task 4. Upon reaching

task 4, each of them picked a sub-area and worked in parallel. Thereafter, as shown in

Fig. 3.13c(3), multiple no-idling games appeared and all the live robots were reallocated

all around to fill the incomplete tasks. At the end, as shown in Fig. 3.13c(4), complete

coverage was achieved with all targets found.

Based on the above analysis, it is seen that the target distribution has a direct impact on

the game decisions, which tends to drive the players to pursue prioritized coverage in tasks

with higher estimated worth in general.

Effects of Player Set Sizes (κ1,κ2)

Now, we examine the effects of neighborhood sizes κ1 and κ2 on the coverage performance

for a team of 8 robots in total. Specifically, we focus on two aspects: (1) using a varying

κ1 with a fixed κ2; and (2) using a varying κ2 with a fixed κ1. The team-level performance

metric ToT D is used for evaluation.

First, we fix κ2 = 3 and vary κ1 in Scenario 1. Note that κ1 describes the neighborhood

size in no-idling games, which is used to define player set P in Section 3.4.2. However,

the players within the κ1 neighborhood of the idling robot vid , must also satisfy another

condition of being close to finish their current tasks at that moment. Thus, the actual

number of players (i.e., |P|) could be smaller than κ1.

Fig. 3.14a shows the ToT D when κ1 gradually increases from 2 to 7 in Scenario 1.

As described in Section 3.5.1, in this scenario, the no-idling games involved v2, v5, v6

and v10 that finished earlier than the rest; hence, multiple no-idling games were initiated

containing different subset of these players depending on the size of κ1. Clearly, it shows

that with a larger κ1, ToT D is reduced at different target discovery percentages. Moreover,
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Figure 3.14: Time of target discovery (ToT D) using different neighborhood sizes κ1 and κ2

when κ1 = 3,4, and when κ1 = 6,7, ToT D are overlapping. This is due to the same task

reallocation decisions in the corresponding no-idling games.

Next, we fix κ1 = 6, as was used in the previous scenarios, and measure ToT D at

different target discovery percentages when κ2 varies from 2 to 7. Fig. 3.14b shows the

results in Scenario 3, where v4 failed during exploration.

As defined in Section 3.4.2, the neighborhood size κ2 equals the number of players for

resilience games, i.e., |P| = κ2. Thus, as v4 failed, a larger κ2 could benefit the team via

involving more players in the resilience game for optimization. Note that for κ2 = 7, all live
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Figure 3.15: Coverage ratios at various noise levels over 5 runs per scenario

robots in the team participated in the resilience game. It is seen in Fig. 3.14b that ToT D

is reduced when κ2 increases. Moreover, when κ2 = 2,3,4 and when κ2 = 5,6, the ToT D

are almost the same. This is because the same task reallocation decisions were made in the

resilience games.

3.5.5 Performance in the Presence of Uncertainties

In practice, uncertainties in the robot sensing systems could affect the coverage perfor-

mance. Thus, for uncertainty quantification, noise was injected into the measurements

of laser, compass and localization system for each robot. Typically, the uncertainty in

laser measurement is 1% of its sensing range, while a modestly priced compass can be

as accurate as 1o [63]. These errors were simulated with Additive White Gaussian Noise

(AWGN) with standard deviations of σlaser = 1.6cm and σcompass = 0.5o, respectively. On

the other hand, indoor localization systems [64] can achieve an accuracy of 0.02m, while

Real-Time Kinematic (RTK) based GPS system can be as precise as 0.05m [63]. Therefore,

the uncertainty due to localization system is investigated using AWGN at various levels of

σ = 0.05m, 0.10m and 0.15m. Fig. 3.15 shows the minimum, mean and maximum cover-
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Figure 3.16: The computation time for task reallocation

age ratios over five runs under different σ for the three scenarios using 10 robots.

3.5.6 Computation Time for Task Reallocation

As explained earlier, once a resilience game or no-idling game is triggered, the Max-Logit

algorithm was used to rapidly converge to the optimal equilibrium. This section evaluates

the computation time using Algorithm 2 for different numbers of players (i.e., |P|) and

computation cycles (i.e., Z).

As an example, Fig. 3.16 shows the average computation time of game G1 in Scenario

2 under five runs. It is observed that the computation time monotonically increases as more

players are involved; however, due to a distributed computation framework, the slope of

growth is gentle. On the other hand, for a fixed number of players, the computation time is

proportional to the number of computation cycles.

Note that if less players are involved in a resilience game, a larger number of non-player

robots will be able to continue exploration during the task reallocation computation, which

facilitates a smooth operation under failures; however, a game with less number of players
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and tasks may result in a sub-optimal reallocation decision for the whole team. Therefore,

the selection of game size must consider these tradeoffs.

3.5.7 Practical Applications of CARE

In practice, CARE can be useful in the following applications:

• Cleaning tasks: The floor cleaning task in a large area (e.g., manufacturing factory

environment, shopping malls, train stations, airports, and commercial buildings) is

one example, where CARE can be implemented to a team of cleaning robots to co-

operatively clean up a large space containing unmapped obstacles. With appropriate

modifications in the formulation, the spread of dirt on the floor can be treated as tar-

gets; also, based on day to day experience, the planner could get a good estimate of

the regions with heavy or light dirt. Moreover, it is possible that some robot fails

during operation, thus the nearby robots could be reallocated to immediately offer

help based on their task priorities.

• Searching tasks: The searching task in a hazardous environment is another example

of time-critical coverage application, where a robot team is expected to efficiently

find all hidden targets (e.g., underwater or field mines) in a dangerous area. In this

case, since the environment is unknown and dangerous for the robots, CARE can be

implemented for resilient and efficient operation to secure mission success.

• Agricultural tasks: The agricultural tasks can use a team of robots for seeding and

crops cutting in a large farm land. With appropriate modifications in the formulation,

the crops or seeds can be regarded as targets which contribute to the task priorities.

CARE can be implemented to achieve efficient operations.
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3.6 Conclusions

This chapter presents a multi-robot coverage algorithm for resilient and efficient coverage

of a priori unknown environment. The resilience and efficiency of the system are addressed

via event-driven task reallocations, using game theoretic solutions. The reallocation deci-

sions are determined by the optimal equilibrium, which is analytically shown to increase the

team potential gain. Further, the efficacy of this algorithm has been validated in complex

obstacle-rich scenarios on a high-fidelity robotic simulator. The results show that CARE

guarantees complete coverage even in presence of failures of some robots. Also, it shows

superior coverage performances as compared to three alternative methods in terms of less

coverage time and faster target discovery progress.
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Chapter 4

Time-optimal Risk-aware Motion
Planning for Curvature-constrained
Vehicles

4.1 Introduction

The previous chapters addressed the coverage problem using one a single robot or a team

of robots. In this chapter, we investigate another important category of the Point-to-Point

(PTP) motion planning, where the general objective is to plan a collision-free, feasible path

for an autonomous vehicle to safely reach a goal state while optimizing certain metrics,

such as shortest distance and minimum time.

Typically, autonomous vehicles are subject to kinematic constraints. As an example,

a vehicle with bounded curvature indicates that its turning motion is subject to a non-zero

minimum turning radius, which could seriously limit its manoeuvrability. As shown in [34],

the problem of deciding whether a curvature-constrained collision-free path exists between
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(a) Time-optimal path vs.
Dubins path

(b) Time-optimal risk-aware
path vs. Dubins path

Figure 4.1: Time-optimal and time-optimal risk-aware paths vs. the Dubins paths in different environment

two given poses amid polygonal obstacles is NP-hard [35]. This implies that no efficient

exact algorithms exist for curvature-constrained time-optimal motion planning in arbitrary

environment [34].

Besides, autonomous vehicles usually can travel at variable speeds, which range from a

lower bound (e.g., idle speed) to an upper bound (e.g., maximum speed). Since the turning

radius becomes smaller if turning at a lower speed and a higher turn rate, the time-optimal

path could be different from the shortest path. Fig. 4.1a shows an example of time-optimal

path versus Dubins path, where the slow speed segments in the time-optimal path enable

smaller turning radii which help in reducing the total path length.

Furthermore, due to complexities of the environment, it is also critical that the time-

optimal path is safe for the vehicle. Existing risk-aware motion planning approaches eval-

uate vehicle safety based on its locations to nearby obstacles, while ignoring its heading

and/or speed (see Section 4.2 for details). In this regard, we proposed a continuous risk

function based on the concept of collision time, which is the time in which the vehicle can

hit the obstacle along its heading direction, if it loses control. Thus, a vehicle is deemed
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safe if its collision time is greater than the time it takes to stop, maneuver around, or re-

gain its control. The concept of collision time considers the complete information about

the vehicle state, including its location with respect to the obstacles, heading angle, as well

as speed. Fig. 4.1b presents an example where the time-optimal risk-aware path stays away

from the obstacles as compared to the Dubins path.

To the best of our knowledge, the time-optimal motion planning problem for curvature-

constrained variable-speed vehicles has not been solved in the presence of obstacles. In this

context, this chapter presents the T? algorithm [91] that provides an approximate solution

to solve this problem in the discrete domain [92]. Specifically, we construct a discrete

configuration space, and compute the optimal path by finding the optimal sequence of

vehicle states that can lead the vehicle to reach the goal state with minimized total cost

of time and risk. The risk function is seamlessly integrated with the time cost in the joint

optimization function. At last, we used the A? framework to search for the optimal state

sequence, which is then used to reconstruct the optimal path in a piece-wise manner.

The T? algorithm has been validated in complex obstacle-rich scenarios, where the

results showed superiority in time savings over the Dubins paths. The algorithm can also

produce multiple path choices to the planner with decreasing risk costs but at the expense of

increasing time costs. As compared to other grid-based methods under motion constraints

such as Hybrid-A?[93], the motion primitives between two consecutive states in T? are

optimized over both risk and time.

The remainder of this chapter is organized as follows. Section 4.2 briefly reviews exist-

ing approaches related to motion planning for curvature-constrained vehicles. Section 4.3

formulates the time-optimal risk-aware motion planning problem, and Section 4.4 explains

the details of the T? algorithm. Section 4.5 presents the results on simulated scenarios, and

this chapter is concluded in Section 4.6.
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4.2 Related Work

Thus far, plenty of planning algorithms have been proposed for shortest path planning [36].

To name a few, for known environment, there exist Dijkstra’s algorithm [94], A? algo-

rithm [95], Fast Marching algorithm [29], etc.; while for unknown environment, there exist

Lifelong Planning A? (LPA?) algorithm [96], D?-Lite algorithm [97], etc. While these

methods can generate collision-free paths for the vehicle, the constraints in vehicle motion

were not considered, thus the resulting paths could lead to difficulties during path tracking.

Along this line, Dubins [32] addressed the problem of finding the shortest path for

a vehicle with curvature constraints, that moves at a constant speed in an obstacle-free

space. He used a geometric approach and showed that the shortest path between a pair

of vehicle poses must be one of the following 6 types: RSR, RSL, LSR, LSL, RLR and

LRL, where L(R) refer to a left (right) turn with maximum curvature, and S indicates a

straight line segment. These paths are known as the Dubins Curves, which were later ver-

ified in [98] using Pontryagin’s Minimum Principle. Dubins-like path planning is popular

because the resulting path consists of optimized parametric curves that can be expressed

analytically and computed quickly, based on which many path-following methods could be

designed. Further research on this problem considered bounded acceleration [99], field-of-

view constraint [100], the orienteering problem [101][102], polygonal obstacles [34][35],

and external disturbances [103][104].

The above methods following the Dubins’ approach focused on shortest path planning.

However, autonomous vehicles can travel at variable speeds, thus the time-optimal path

can be different from the shortest path. In a recent study, Wolek et al. [38] derived the

solution to find the time-optimal path for curvature-constrained variable-speed vehicles in

an obstacle-free space. They identified a sufficient set of 34 candidate paths, where each
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candidate path contains circular arcs or straight line segments on which the vehicle travels

at extremal (i.e., maximum or minimum) speeds. Then, for a given pair of start and goal

poses, the time-optimal path is the least-cost candidate path. However, to the best of our

knowledge, the time-optimal motion planning problem for curvature-constrained variable-

speed vehicles has not been solved in the presence of obstacles.

On the other hand, regarding risk-aware motion planning, Pereira et al. [39] proposed

a minimum-risk planning strategy using the risk map for autonomous underwater vehicles

(AUVs), where the risk map is constructed offline using Automatic Identification System

(AIS) data. Hernández et al. [41] presented a safe path planning algorithm for AUVs,

where safety is ensured by creating a risk zone around the vehicle for obstacle avoidance.

Liu et al. [105] proposed a episodic memory-based planning method, where the risk in

the local behavioral planning strategy is measured by the minimum distance to danger

areas. De Filippis et al. [106] addressed the minimum-risk path planning problem for

Unmanned Air Vehicles (UAVs) based on orography, where the risk is evaluated using the

altitude information. Pfeiffer et al. [40] assumed a priori known threat zones to UAVs

and presented an approach to find paths with minimized probability of being exposed to

threats. Davoodi [107] proposed a bi-objective optimization approach to find the Pareto-

optimal paths with minimized path length and maximized distance to the obstacles. Wang

et al. [108] presented a multi-objective Particle Swarm Optimization (PSO) approach for

car-like robots, where the objectives are to minimize the path length and the total risk

defined by terrain roughness. Huang and Savkin [109] presented the Shortest Viable Path

Planning (SVPP) algorithm to address a variant of Dubins Travelling Salesman Problem in

the presence of obstacles to visit a set of sensor nodes in a sensing field.

The above-mentioned methods addressed safe-path planning, but the proposed risk

measures were using partial information of the vehicle state, i.e., its location with respect
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to the obstacles or threats, while ignoring its speed and heading angle. Fraichard and

Asama [42] introduced the concept of inevitable collision states into safe-path planning,

where the states that cannot avoid future collision must be prohibited. Clearly, when the

vehicle operates near obstacles, its speed and heading angle are also critical to assess its

safety, thus the full information about vehicle state must be incorporated into planning.

4.3 Problem Formulation

Let R ⊂ R2 be the search area which is populated with a number of a priori known obsta-

cles. The vehicle motion is described as:
ẋ(t) = v(t)cosθ(t)

ẏ(t) = v(t)sinθ(t)

θ̇(t) = u(t),

(4.1)

where (x,y,θ) ∈ SE(2), u is the turn rate, and v is the speed.

It is assumed that the autonomous vehicle is capable of traveling at a variable speed,

s.t., v ∈ [vmin,1], where vmin ∈R+ is the minimum speed, and with a modified distance unit

the maximum speed vmax is normalized to 1 [38]. Note that the Dubins path considered the

special case where v is constant.

Also, the turn rate u is symmetric and bounded, s.t., u∈ [−umax,umax], where umax ∈R+

is the maximum turn rate and the +/− sign refers to a left/right turn. The turn rate and

speed are connected by the curvature κ = u/v, which is the inverse of the turning radius.

The curvature |κ|= 0 means that the vehicle is moving in a straight line, this happens when

u = 0. On the other hand, when the vehicle turns at the maximum turn rate (i.e., ±umax),
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it can do so at the maximum or minimum speed, which result in the curvature |κ| = umax

or |κ|= umax/vmin, respectively. These correspond to the maximum and minimum turning

radii of the vehicle as R = 1/umax and r = vmin/umax, respectively. Thus, the curvature is

bounded as |κ| ∈ [0,umax/vmin].

Now, let us denote the state of the vehicle as p = (x,y,θ ,v). Let Γ denote the set of

all collision-free paths between the start state pstart and the goal state pgoal . Then, for each

path γ ∈ Γ, the control c(s) = (κ,v) at any point s on γ belongs to the following constraint

set [38]:

Ω =

{
(κ,v) | vmin ≤ v≤ 1 and |κ| ≤ umax

v

}
. (4.2)

The admissible control must be piece-wise continuous and should satisfy the boundary

conditions, i.e., c must drive the vehicle from pstart to pgoal along the path γ while avoiding

obstacles. Further, let R(s) denote the risk cost at a point s on γ . Then, the total cost of

time and risk is defined as

J(γ) =
∫

γ

R(s) · 1
v(s)

ds, (4.3)

where the term 1
v(s) evaluates the time cost when the vehicle moves along a small path

segment ds.

Therefore, the objective is to find the control c? ∈ Ω, which generates a collision-free

path γ? with the minimal cost J(γ?), s.t. J(γ?) ≤ J(γ),∀γ ∈ Γ. Note that the outcome of

optimization is a trajectory; however, we use the term path for trajectory in this chapter

with slight abuse of terminology.
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4.4 The T? Algorithm

Since there is no efficient exact algorithm to minimize Eq. (4.3), even when the risk is ig-

nored, in the presence of obstacles [34], this section develops a novel grid-based algorithm,

called T?, to obtain an approximate solution in the discrete domain.

4.4.1 Configuration Space

Since any feasible path γ between pstart and pgoal consists of multiple intermediate states,

the time-optimal risk-aware motion planning problem can be solved by identifying the

optimal sequence of states. This in turn motivates to partition the search area into grid cells

and then assign each cell with a sufficient number of possible discrete states, which forms

a configuration space described as below.

First, the search area R is discretized into a set of grid cells, T = {τα ⊂ R2,α =

1, . . . |T |}, where
⋃|T |

α=1 τα = R, τ◦α
⋂

τ◦
β
= /0, ∀α,β ∈ {1, . . . |T |}, α 6= β , and ◦ denotes

the interior.

Then, each cell τα ∈ T is encoded with a symbolic state sα ∈ {O,A}, where O ≡

obstacle and A≡ accessible. Specifically, sα = O if τα is (partially) occupied by an obsta-

cle; otherwise, sα = A. Then the configuration space Q is constructed as follows.

Definition 4.4.1 (Configuration Space). Let O = {(xα ,yα) ∈ τα : sα = A} be the set of

center positions of all obstacle-free cells. Let Θ = {2π`
L : ` = 0, . . .L− 1} be the set of

L ∈ N+ heading angles. Let V = {vmin,1} be the set of speeds. Then, the configuration

space is defined as:

Q= O×Θ×V
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(a) L= 4 (b) L= 8 (c) L= 16

Figure 4.2: State expansion in each cell when L= 4, 8 and 16, respectively

Fig. 4.2 shows the state expansion for different L. Clearly, the size of Q relies on

the size of obstacle-free space and the value of L. Although a larger L could potentially

produce better results, it will also increase the size of Q that leads to higher computational

complexity for motion planning. This chapter adopts the 8-orientation state expansion with

L= 8.

4.4.2 Approximate Optimization Function

Now, we present an approximation to the optimization problem in Section 4.3. Let P =

{Pm,m = 1, . . . |P|} be the set of all valid state sequences, where Pm = [pm
1 ,p

m
2 , . . .p

m
n ] is a

sequence of states that connects pstart and pgoal . Here pm
i =(xi,yi,θi,vi)∈Q, ∀i∈ {1, . . .n},

and n ∈ N+ denotes the length of the sequence. To satisfy the boundary conditions, it

should have pm
1 = pstart , and pm

n = pgoal . Note that any two consecutive states pm
i and

pm
i+1, ∀i ∈ {1, . . .n−1}, must belong to two neighboring cells. Also, a valid state sequence

cannot contain duplicate states, i.e., pm
i 6= pm

j ,∀i, j ∈ {1, . . .n}, i 6= j; otherwise a loop will

be present, thus it will not be optimal since its cost can be further reduced by removing

such loop.

Then, we compute the total cost of a state sequence Pm in a piece-wise manner as

follows:
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J(Pm),
n−1

∑
i=1

J̃(pm
i ,p

m
i+1), (4.4)

where J̃ is the step-wise cost to move from pm
i to pm

i+1, subject to the vehicle motion con-

straints and the obstacle layout. Let Γc be the set of all feasible paths between pm
i and pm

i+1,

then J̃ is computed as the minimal cost among all paths γi,i+1 ∈ Γc:

J̃(pm
i ,p

m
i+1) = min

γi,i+1∈Γc
J(γi,i+1), (4.5)

where according to Eq. (4.3),

J(γi,i+1) =
∫

γi,i+1

R(s) · 1
v(s)

ds. (4.6)

For simplicity, the risk is assumed constant along γi,i+1 and is measured at the most

dangerous state on γi,i+1 which has the least collision time (see details in Section 4.4.4).

Thus, the risk cost and the time cost can be separated, as follows:

J(γi,i+1) = R(γi,i+1)︸ ︷︷ ︸
risk cost

·
∫

γi,i+1

1
v(s)

ds︸ ︷︷ ︸
time cost T(γi,i+1)

. (4.7)

We aim to find the optimal state sequence P? ∈P , s.t. J(P?)≤ J(Pm),∀Pm ∈P . Then,

the optimal path γ? can be reconstructed in a piece-wise manner using the states of P? and

the optimal paths between adjacent states. While the solution to the optimization problem

is presented in Section 4.4.6, we first present the details on computation of the time cost

T(γi,i+1) and the risk cost R(γi,i+1).
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4.4.3 Time Cost T(γi,i+1)

Now, we define the time cost T(γi,i+1) in Eq. (4.7). As compared to the Dubins curves,

since the vehicle can travel at variable speeds, the time-optimal path that minimizes T(γi,i+1)

can contain arcs of different turning radii (see Fig. 4.1), which implies more choices of can-

didate paths, or in other words, a larger candidate set than the Dubins curves.

The Sufficient Set of Candidate Paths

For any pair of states pm
i and pm

i+1, the authors of [38] showed that the sufficient set, which

guarantees to contain the time-optimal path in the absence of obstacles, consists of 34

candidate paths. These candidate paths form the set Γc, as shown in Table 4.1. Each

path γi,i+1 ∈ Γc consists of up to five segments, where each segment could be one of the

following [38]:

1. Bang arcs (B), where the vehicle turns at maximum speed vmax with maximum turn

rate umax (i.e., with radius R);

2. Cornering arcs (C), where the vehicle turns at minimum speed vmin with maximum

turn rate umax (i.e., with radius r);

3. Straight line segments (S), where the vehicle moves straight at maximum speed vmax.

Any circular arc (i.e., B or C) can be either left (L) or right (R), as shown under the

direction column. Each candidate path is read from left to right, and the consecutive turns

within parentheses are of the same direction. For example, the No.18 path of (B)S(BC)

with direction LSR is read as: a left bang arc, followed by a straight line segment, a right

bang arc, and then a right cornering arc.
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Table 4.1: The set of candidate paths (Γc) between any pair of states

No. Path Type1 Direction2 No. Path Type Direction

1 (B)S(B) LSL 18 (B)S(BC) LSR
2 (B)S(B) LSR 19 (B)S(BC) RSL
3 (B)S(B) RSL 20 (B)S(BC) RSR
4 (B)S(B) RSR 21 (CB)(BCB) LL
5 (BCB)(B) LL 22 (CB)(BCB) LR
6 (BCB)(B) LR 23 (CB)(BCB) RL
7 (BCB)(B) RL 24 (CB)(BCB) RR
8 (BCB)(B) RR 25 (CB)S(B) LSL
9 (B)(BCB) LL 26 (CB)S(B) LSR
10 (B)(BCB) LR 27 (CB)S(B) RSL
11 (B)(BCB) RL 28 (CB)S(B) RSR
12 (B)(BCB) RR 29 (C)(C)(C) LRL
13 (BCB)(BC) LL 30 (C)(C)(C) RLR
14 (BCB)(BC) LR 31 (CB)S(BC) LSL
15 (BCB)(BC) RL 32 (CB)S(BC) LSR
16 (BCB)(BC) RR 33 (CB)S(BC) RSL
17 (B)S(BC) LSL 34 (CB)S(BC) RSR

1 B is a bang arc, C is a cornering arc and S is a straight line
segment. The parentheses are used to indicate consecutive turns
of the same direction.

2 L is a left turn, R is a right turn and S means moving straight.

Each candidate path has to be optimized for its parameters (i.e., the angles for arc

segments and the lengths of straight line segments) to achieve time optimality, thus one

must solve a nonlinear constrained optimization problem [38]. Specifically, the total time

cost for each candidate path between a pair of states is the summation of cost for each

segment. An arc segment (B or C) with angle ∆θ contributes to the time cost by |∆θ |
umax

;

while a displacement of d ∈ R+ for the straight line segment contributes to the cost by d

while moving at vmax = 1.

Since each candidate path is required to exactly reach pm
i+1 from pm

i , there are five

constraints including the total displacement along each axis, the total change in the heading
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angle, and the speeds specified by the first and last arc types. These boundary conditions

ensure the continuity in position, heading and speed when the vehicle reaches every state

pm
i ∈ Pm, including pstart and pgoal .

In this chapter, the path parameters for each candidate path are optimized using the

nonlinear solver IPOPT (Interior Point OPTimizer) [38]. The time-optimal path between

a given pair of states is the candidate path with the least time cost.

Next, we construct the Optimized Candidate Paths for State-pairs (OCPS) table, that

contains the optimized candidate paths for all possible pairs of states pm
i and pm

i+1.

The OCPS Table

To avoid computational burden during motion planning, the parameters of the candidate

paths are optimized offline to construct the OCPS Table.

Specifically, consider a state pm
i located in a center cell and all the possible states pm

i+1

located in its 3× 3 neighborhood. Since pm
i has 8× 2 = 16 choices corresponding to 8

directions and 2 speeds, and pm
i+1 has 8×8×2 = 128 choices corresponding to 8 positions

in the neighborhood, 8 directions, and 2 speeds, the total number of 2048 pairs are consid-

ered. However, by exploring symmetry, one can easily figure out that only 272 pairs must

be optimized for, while the rest can be derived accordingly.

For each pair of pm
i and pm

i+1, depending on the speed information of pm
i and pm

i+1, the

associated candidate paths belong to one of the following four subsets of Γc:

• Γc
BB, which contains No.1-12 paths that start and end with vmax, i.e., they start and

end with bang arcs B;

• Γc
BC, which contains No.13-20 paths that start with vmax and end with vmin, i.e., they

start with a bang arc B and end with a cornering arc C;
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• Γc
CB, which contains No.21-28 paths that start with vmin and end with vmax, i.e., they

start with a cornering arc C and end with a bang arc B; and

• Γc
CC, which contains No.29-34 paths that start and end with vmin, i.e., they start and

end with cornering arcs C.

Thus, for each pair of pm
i and pm

i+1, the path parameters of candidate paths within the

corresponding subset are optimized offline using IPOPT. The resulting optimized candidate

paths and their time costs are stored in the OCPS table.

Computation of T(γi,i+1)

During the planning process, when computing for the time cost T between a certain state

pair pm
i and pm

i+1, the planner can initiate a query to the OCPS table to obtain a set of

optimized candidate paths within the corresponding subset determined by the speed infor-

mation of pm
i and pm

i+1. Then for each obtained optimized candidate path γi,i+1, T(γi,i+1) is

assigned with the associated time cost if it is collision-free; otherwise, T(γi,i+1) = +∞.

4.4.4 Risk Cost R(γi,i+1)

This section presents a state-based risk function to evaluate the risk cost of each candidate

path γi,i+1 ∈ Γc.

As mentioned in Section 4.4.2, the risk cost R(γi,i+1) of a candidate path γi,i+1 between

a pair of states pm
i and pm

i+1 is determined by the most dangerous state along γi,i+1 that re-

sults in the least collision time to an obstacle or the space boundary in its heading direction,

if the vehicle loses control. For any state, the vehicle is considered safe if the corresponding

collision time is greater than a threshold t? ∈ R+, which indicates the time for the vehicle
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(a) Sampling of γi,i+1 (b) Computation of the collision distance d`

Figure 4.3: The collision distance

to fully stop, maneuver around, or re-gain its control. Thus, the risk of the vehicle relies on

its state, including its location, heading and speed.

Now, we present the computation of R(γi,i+1). Consider a candidate path γi,i+1 ∈ Γc.

First, a set of states, {p̂`, ` = 1,2, . . .}, are evenly sampled along γi,i+1 with a sampling

interval ∆d ∈ R+, and the state pm
i+1 is included in this sample set. Specifically, p̂` =

(x`,y`,θ`,v`), where (x`,y`,θ`) ∈ SE(2) and v` ∈ {vmin,1} indicates the speed of the sam-

pled state. Fig. 4.3a shows an example of six sampled states between pm
i and pm

i+1.

Then, for each p̂`, one can geometrically compute the collision distance d`, as shown

in Fig. 4.3b. Denote by line ` the extended line of state p̂` along angle θ`, which hits

the obstacle at the hit point (xh,yh) ∈ R2. Then, d` = ‖(x`− xh,y`− yh)‖. Once d` is

determined, the corresponding collision time t` is computed as:

t` =
d`
v`
. (4.8)
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Algorithm 3: Computation of Collision Time t`
input : p̂` = (x`,y`,θ`,v`), t?

output: t`
1 Initialize: queue q← cell that contains p̂`

2 while q is not empty do
3 Update len← current size of q;
4 for i← 1 to len do
5 Remove the front cell from q and make it τα ;
6 if sα = O or τα contains the space boundary then
7 if line ` intersects τα at (xh,yh) ∈ R2 then
8 Compute d`←‖(x`− xh,y`− yh)‖;
9 Return t`← d`

v`
;

10 end
11 end

// Enqueue the new frontier cells
12 Push into q the neighbor cells of τα that are located within a distance of

d?
` = t?× v` from p̂`;

13 end
14 end
15 Return t`← t? // If t` cannot be found from the above steps

Algorithm 3 computes t`, by sequentially exploring the frontier cells in the quadrant

determined by θ`, until line ` intersects a frontier cell that either contains an obstacle or lies

on the space boundary. The frontier cells are labeled with incrementing numbers during

exploration, i.e., the numbers 0© ∼ 4© in Fig. 4.3b. Note that line ` cannot intersect a

higher numbered frontier cell before intersecting a lower numbered frontier cell. Also, for

all frontier cells that are labeled with the same number, line ` can only intersect one of

them.

Algorithm 3 uses a queue q to record the frontier cells discovered during exploration.

The queue is initialized with the cell that contains the state p̂` and it is labeled with 0© (Line

1). As long as the queue is non-empty (Line 2), the variable len is updated with the size of

the queue (Line 3). Then, within the for loop, these frontier cells are sequentially extracted

113



from the front of the queue (Line 4), and recorded in a variable τα at each iteration (Line

5). Thereafter, it checks whether: (i) τα is occupied by any obstacle (i.e., sα = O) and line

` intersects with any edge of τα ; or (ii) τα lies on the space boundary and line ` intersects

with its boundary edge (Line 6-7). If either is true, then the collision distance d` and the

collision time t` are computed based on the hit point (xh,yh) ∈ R2(Line 8-9).

If t` is not found from the above steps, then new frontier cells (i.e., the neighbor cells of

τα ) are enqueued for further computations and they are labeled with a number incremented

by 1 (Line 12). Note that the new frontier cells are determined by θ`. For example, as

shown in Fig. 4.3b, θ` resides in the first quadrant, hence the new frontier cells are the

neighbor cells located in the north and east directions of τα .

Since the vehicle is safe at p̂` when t` ≥ t?, one only needs to search the frontier cells

located within a distance of d?
` = t?× v` from p̂`. A frontier cell is said to be within a

distance of d?
` from p̂`, if the distance between any of its four vertices and the point (x`,y`)

is smaller than d?
` .

If no t` is returned and the queue becomes empty, then it implies that line ` does not

intersect any obstacle cell or the space boundary up to distance d?
` . Then, t` = t?, i.e., state

p̂` is risk-free. (Line 15).

Based on the collision time t`, the risk at p̂` is defined as

risk(p̂`) =


1+ log

(
t?
t`

)
if t` < t?

1 if t` ≥ t?.
(4.9)

As t`→ 0, the risk approaches +∞; while for t` ≥ t?, the risk reduces to 1, i.e., no risk

penalty is added to the time cost.

The risk cost for a candidate path γi,i+1 is computed as

114



Collision Time

R
is

k

risk  1

Figure 4.4: The risk function (risk(p̂`))
k

R(γi,i+1) = max
`=1,2,...

(
risk(p̂`)

)k
, (4.10)

where k≥ 0 is the weight parameter. Fig. 4.4 shows the curves of (risk(p̂`))
k for different

k when t? = 6. It is seen that for a fixed t` ∈ (0, t?), a larger k produces a higher risk. In

particular, when k = 0, R(γi,i+1) = 1, thus the total cost J̃(pm
i ,p

m
i+1) = T(γi,i+1), hence the

resulting path is time-optimal. Note that R(γi,i+1) ∈ [1,∞), because risk(p̂`) ∈ [1,∞), ∀`.

Planning under Uncertainties

During plan execution, the vehicle may have uncertainties in its heading and position. Thus,

an uncertainty of ∆θ is added to θ` during planning, and the collision distances d+
` and d−`

corresponding to headings of θ +∆θ and θ−∆θ are computed, as shown in Fig. 4.5. Then

t` is computed based on min{d`,d+
` ,d

−
` }. Since a modestly priced compass has an accuracy
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Figure 4.5: Uncertainties in the heading angle θ`

of 1o [63], ∆θ is chosen as 1.5o. Also, a buffer of size 0.1m is added around all obstacles to

compensate position uncertainties, such that any path γi,i+1 which intersects with the buffer

has R(γi,i+1) = +∞.

4.4.5 Adaptive State Pruning for Complexity Reduction

This section presents a three-step adaptive state pruning technique for complexity reduction

of Q, as shown in Fig. 4.6. Consider a state pm
i and the baseline 8-orientation 2-speed state

expansion in its neighbor cells, as shown in Fig. 4.6a.

1. Obstacle-based Pruning: The states close to and facing obstacles or boundaries are

considered as inevitable collision states, thus they are pruned, as shown in Fig. 4.6b.

2. Speed-based Pruning: In open regions away from obstacles, the vehicle is expected

to travel at the highest speed to minimize the time cost; while the low-speed states

are typically useful near obstacles to allow turning with a smaller turning radius for

better controllability. Therefore, the low-speed states in the cells located far from

obstacles can be pruned, as shown in Fig. 4.6c.
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Figure 4.6: Illustration of the adaptive state pruning within each cell

3. Heading-based Pruning: Since the states with a diagonal heading and in an opposite

direction to the goal will very likely produce higher costs, they are less likely to be

part of the optimal state sequence. Thus, they can be dynamically identified and

removed from Q. Note that the states with non-diagonal heading angles of 0, π/2,

π and 3π/2 must be retained to ensure the completeness of the algorithm. In this

regard, first connect the centers of each cell and pgoal using a straight line as shown

in Fig. 4.6d. Then, for each state with a diagonal heading, compute the angle ξ ∈

(−π,π] formed with the corresponding line. If |ξ | > ζ , where ζ ∈ (0,π] is a pre-

defined threshold, then such state is pruned. Fig. 4.6d shows an example when ζ =

π/2.
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4.4.6 Searching for the Time-optimal Risk-aware Path

The step-wise cost J̃(pm
i ,p

m
i+1) between any two consecutive states pm

i and pm
i+1 is deter-

mined by the least product cost of T(γi,i+1) and R(γi,i+1) among all corresponding opti-

mized candidate paths in the OCPS table. Now, for an intermediate state pm
i , we define

f (pm
i ) = g(pstart ,pm

i )+h(pm
i ,pgoal), (4.11)

where the cumulative cost function g is

g(pstart ,pm
i ) =

i−1

∑
j=1

J̃(pm
j ,p

m
j+1), (4.12)

and the heuristic cost h(pm
i ,pgoal) is determined by the length of the shortest Dubins path

using turning radius r divided by the maximum speed vmax. Such heuristic is admissible

thus it guarantees the optimality of P?. Thereafter, we adopt the framework of A? algorithm

to search for P?, where the states are gradually explored and assigned with the cost using

Eq. (4.11). The search process repeats until the goal state is found. Then, the time-optimal

risk-aware path γ? can be reconstructed in a piece-wise manner using the states of P? and

the optimal paths between the adjacent states of P?.

4.5 Results and Discussion

The T? algorithm has been validated in complex obstacle-rich scenarios. The results were

compared with Dubins paths, the effect of risk weight k in Eq. (4.10) was investigated,

and the efficiency of the adaptive state pruning technique in reducing the computational

complexity was quantitatively examined.

The autonomous vehicle is subject to the following kinematic constraints: maximum
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turn rate umax = 0.5rad/s, and speeds vmin = 0.5m/s and vmax = 1m/s. Hence, its turning

radii are R = 2m and r = 1m. Also, t? is chosen as 6s.

The search area R of size 30m × 30m is partitioned into a set T consisting of 15×15

cells, where each cell is of size 2m × 2m. The adaptive state pruning method was applied

with the threshold ζ = π/2.

4.5.1 Comparison of Time-optimal and Dubins Approaches

First, we compare the time-optimal path with the Dubins paths. The time-optimal path

was obtained by using k = 0 in Eq. (4.10), i.e., the effect of risk was not considered. On

the other hand, since a Dubins vehicle must move at a constant speed, we generated two

such paths one at the maximum and the other at the minimum speed. In this section, for

the purpose of illustration, we present the time-optimal paths and the Dubins paths in two

obstacle-rich scenarios as follows.

Scenario 1: Fig. 4.7a shows the two Dubins paths, while Fig. 4.7b shows the time-

optimal path for Scenario 1. The start state was chosen as pstart = (4m,26m,0,vmax), and

the goal state was set as pgoal = (20m,8m,3π/2,vmin).

Since the Dubins path with vmax results in large turning radius R, its movement through

the shortcut taken by the time-optimal path is restricted. Thus, it takes a longer path with a

total time cost of 35.99s. On the other hand, the Dubins path with vmin has better control-

lability with the turning radius r; thus, it produces the minimum-length path through the

shortcut. However, it takes 55.95s which is much higher due to the minimum speed.

In comparison, the time-optimal path shown in Fig. 4.7b is composed of segments with

different speeds. This enables the vehicle to travel at vmax in relatively open regions to

reduce the total time cost, while subject to a larger turning radius R. In congested regions,
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(a) Dubins paths. Total time cost using vmax:
35.99s. Total time cost using vmin: 55.95s

(b) Time-optimal path (for k = 0). Total
time cost: 34.51s

Figure 4.7: Scenario 1: The Dubins paths for min and max speeds vs. the time-optimal path with variable
speed in an obstacle-rich environment

(a) Dubins paths. Total time cost using vmax:
68.65s. Total time cost using vmin: 89.47s

(b) Time-optimal path (for k = 0). Total
time cost: 54.24s

Figure 4.8: Scenario 2: The Dubins paths for min and max speeds vs. the time-optimal path with variable
speed in another obstacle-rich environment

it tends to decrease its speed to vmin to gain better maneuverability with a smaller turning

radius r. The total time cost of the time-optimal path is 34.51s, which is lower than both

the Dubins paths described above.
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Scenario 2: Fig. 4.8a and Fig. 4.8b show the Dubins paths and the time-optimal path

for Scenario 2. The start state was chosen as pstart = (14m,26m,0,vmax), and the goal state

was set as pgoal = (16m,14m,7π/4,vmax).

In this example, the obstacles are more congested, and the vehicle must travel through

one of the three slim tunnels near cells (8,5), (6,7) and (5,10) before reaching the goal.

Due to the large turning radius R at speed vmax, it is seen from Fig. 4.8a that the Dubins

path took the route around cell (6,7); however, when the vehicle travels at vmin, it was able

to travel through the shortcut near cell (8,5) to reach the goal with the minimum length.

The time costs associated with the Dubins paths at vmax and vmin are 68.65s and 89.47s,

respectively.

On the other hand, the time-optimal path shown in Fig. 4.8b comprises of segments

with different speeds. The vehicle tends to utilize the maximum speed vmax at the beginning

segments to minimize the time cost; while it reduces its speed to vmin and turns with r to

travel through the shortcut near cell (8,5). Accordingly, the time cost is 54.24s which is

much less than both of the Dubins paths mentioned above.

4.5.2 Time-optimal Risk-aware Paths for Different k

This section examines the effect of k in Eq. (4.10) on the motion planning. It is expected

that a higher k should produce a safer path, however, its time cost would be potentially

higher.

Scenario 1: Fig. 4.9a, Fig. 4.9c and Fig. 4.9e show the time-optimal risk-aware paths

for k = 0, 0.3 and 3, respectively. These paths are color-coded based on the speed informa-

tion. Fig. 4.9b, Fig. 4.9d and Fig. 4.9f show the same paths but they are color-coded based

on the risk information. The risk of a state along the path was evaluated using Eq. (4.9),
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(a) k = 0, time cost before/after
smoothing: 34.51s/25.51s

(b) k = 0, max risk before/after
smoothing: 2.45/2.40

(c) k = 0.3, time cost before/after
smoothing: 36.30s/33.61s

(d) k = 0.3, max risk before/after
smoothing: 2.01/2.01

(e) k = 3, time cost before/after
smoothing: 41.89s/35.68s

(f) k = 3, max risk before/after
smoothing: 1.48/1.33

Figure 4.9: Scenario 1: Speed (left) and risk (right) encodings of the optimal paths for different k
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where the sample states were generated using the sampling interval of ∆d = 0.4m.

It is seen that, for k = 0, the time-optimal path reaches the goal in 34.51s through the

shortcut in congested regions. However, it has multiple dangerous segments as shown in

Fig. 4.9b by the risk color-coding. The max risk of the whole path is 2.45. For k = 0.3,

the time-optimal risk-aware path selects a less-risky route to avoid the congested region,

but requires a higher time cost of 36.30s. Accordingly, the number of risky segments

is significantly reduced; however, the segments in cells (9,9) and (9,11) still present high

risk. Further, for k = 3, the resulting path picks the safest route, where the max risk reduces

to 1.48, but the corresponding time cost reaches 41.89s.

In addition, a smoothing operation can help remove zigzag-shaped segments, e.g., near

cell (8,7) in Fig. 4.9a; and further reduce J(P?). Here, we re-optimize over randomly sam-

pled state pairs along the optimal path and replace with lower-cost collision-free segments

if they exist. This operation was repeated for four iterations, and the smoothed paths and

their risk color-codings are shown in Fig. 4.9a∼Fig. 4.9f, respectively.

Scenario 2: Fig. 4.10 evaluates the T? algorithm in another obstacle-rich scenario. The

simulations followed the same setup as in Scenario 1.

Fig. 4.10a, Fig. 4.10c and Fig. 4.10e show the time-optimal risk-aware paths for k = 0,

0.3 and 3.5, respectively. As seen in Fig. 4.10a, for k = 0, the time-optimal path can

lead the vehicle to the goal in 54.24s via traversing through the shortcut near cell (8,5).

Although the vehicle tends to slow down to vmin before entering the such shortcut region,

it still consists of multiple dangerous path segments, as shown by the risk color-coding

in Fig. 4.10b. Accordingly, the max risk of the whole path is 2.45. When k increases to

0.3, the optimal path selects a less-risky path, but at the expense of a higher time cost of

56.00s. As shown in Fig. 4.10d, the number of high-risk segments is significantly reduced,
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(a) k = 0, time cost before/after
smoothing: 54.24s/48.99s

(b) k = 0, max risk before/after
smoothing: 2.45/2.01

(c) k = 0.3, time cost before/after
smoothing: 56.00s/53.75s

(d) k = 0.3, max risk before/after
smoothing: 1.83/1.83

(e) k = 3.5, time cost before/after
smoothing: 68.92s/63.10s

(f) k = 3.5, max risk before/after
smoothing: 1.69/1.66

Figure 4.10: Scenario 2: Speed (left) and risk (right) encodings of the optimal paths for different k
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Table 4.2: Scenario 1: Total costs and computation times using adaptive state pruning

Risk
Weight

State Pruning
Threshold

Total Cost
J(P?)

Computation
Time

Saving in Com-
putation Time

k = 0

None 33.31 259.92s −
ζ = π 34.51 73.31s 71.80%

ζ = π/2 34.51 54.29s 79.11%
ζ = π/4 34.51 38.06s 85.36%

k = 0.3

None 38.46 709.56s −
ζ = π 38.87 227.90s 67.88%

ζ = π/2 38.87 169.97s 76.05%
ζ = π/4 39.52 124.78s 82.41%

k = 3

None 62.98 569.43s −
ζ = π 62.98 157.95s 72.26%

ζ = π/2 62.98 116.08s 79.61%
ζ = π/4 71.94 96.56s 83.04%

but there still exist high risks at the path segments near cell (5,6). When k further increases

to 3.5, the optimal path selects the safest route, and the max risk of the whole path reduces

to 1.69, but it has the highest time cost of 68.92s.

Moreover, one can apply the same smoothing operation as described in the previous

scenario to remove zigzag-shaped segments, e.g., near cell (11,11) in Fig. 4.10a and near

cell (12,5) in Fig. 4.10c. The smoothed paths and their risk color-codings in this scenario

are presented in Fig. 4.10a∼Fig. 4.10f, respectively.

4.5.3 Complexity Reduction by Adaptive State Pruning

This section examines the efficiency of the adaptive state pruning technique in reducing

the computational complexity. Table 4.2 and Table 4.3 summarize the total cost J(P?), the

average computation time over 5 runs, and the savings in computation time as compared to
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Table 4.3: Scenario 2: Total costs and computation times using adaptive state pruning

Risk
Weight

State Pruning
Threshold

Total Cost
J(P?)

Computation
Time

Saving in Com-
putation Time

k = 0

None 54.24 97.20s −
ζ = π 54.24 69.53s 28.47%

ζ = π/2 54.24 58.47s 39.85%
ζ = π/4 54.76 34.82s 64.18%

k = 0.3

None 59.50 264.51s −
ζ = π 59.50 204.72s 22.60%

ζ = π/2 59.50 151.03s 42.90%
ζ = π/4 62.87 94.59s 64.24%

k = 3.5

None 138.56 306.10s −
ζ = π 138.56 218.03s 28.77%

ζ = π/2 144.18 128.52s 58.01%
ζ = π/4 255.52 94.74s 69.05%

no pruning, for varying ζ , in Scenario 1 and Scenario 2, respectively. For each scenario,

the results are presented for three values of the risk weight k. The results are generated

using MATLAB on a computer with 3.4GHz CPU and 16GB RAM.

Note that a higher threshold of ζ would retain more diagonally facing states during the

heading-based pruning. The results in Table 4.2 and Table 4.3 show that the adaptive state

pruning technique can significantly reduce the computation time. When ζ is reduced from

π to π/4, the computational cost reduces; however, the total optimization cost remains

more or less the same, thus revealing the effectiveness of the pruning approach.

4.6 Conclusions

This chapter presents the T? algorithm to address the time-optimal risk-aware motion plan-

ning problem for curvature-constrained variable-speed vehicles. The results show superi-
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ority in time savings over the Dubins paths. This algorithm allows users to generate various

path choices of decreasing risk at the expense of increasing time cost. The effectiveness of

the proposed adaptive state pruning technique was thoroughly tested to reduce the compu-

tation time while maintaining the path quality.
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Chapter 5

Conclusions and Future Work

In the past three decades, we have witnessed fast advancements in motion planning re-

search. Motion planning plays a key role in vehicle autonomy, and it has significantly

helped the development and applications for autonomous vehicles. In this context, this dis-

sertation developed three algorithms that have addressed three widely concerned problems

in coverage and time-optimal motion planning for autonomous vehicles.

5.1 The ε? Algorithm

In Chapter 2, we presented a single-robot coverage path planning algorithm, called ε?.

The objective is to compute a collision-free path that can guide the autonomous vehicle to

completely cover an a priori unknown search area.

The ε? algorithm is a grid-based algorithm, where ε specifies the cell size. For the

purpose of navigation, a tiling is first constructed over the search area; however, due to

unknown environment, the obstacle cells must be dynamically detected based on real-time
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sensor measurements. The most recent environment information about discovered obsta-

cles and explored regions are translated into symbols, and then encoded onto the corre-

sponding ε-cells in the tiling. Thereafter, such symbolic encodings are utilized to construct

the MAPS, which are essentially a set of hierarchical two dimensional potential surfaces

that can assist the computation of navigational waypoints. By default, the lowest level

of the MAPS is used for navigation control, while the higher levels can be sequentially

activated only in the occasions of local extrema.

For online coverage control, we developed the concept of the ETM, which uses the

MAPS and works as a supervisor to generate navigational commands to the autonomous

vehicle. The ETM consists of multiple machine states, and it operates in one state at a time.

It is shown in [43] that the ETM always halts in finite time; and upon halting, complete

coverage is achieved.

An important advantage of using the ε? algorithm is that, it generates the desired back-

and-forth path, while does not need to rely on critical point detection on obstacles. The

back-and-forth pattern of path is favorable because it has less number of turns and overlap-

pings, while in general, turning operations can be costly for autonomous vehicles. More-

over, ε? computes the new waypoint based on the information in the local neighborhood,

thus requiring low computation time and suitable for real-time applications.

For the purpose of validation, the ε? algorithm has been examined both in simulations

and real experiments. Simulations were conducted on the high-fidelity Player/Stage sim-

ulator, and the coverage performance in terms of trajectory length and number of turns

have been compared with three alternative online coverage methods (i.e., FS-STC, BSA

and Brick & Mortar). It is seen that ε? achieved complete coverage in all simulations. Fur-

ther, the coverage ratio of ε? was evaluated in the presence of uncertainties, where different

levels of noises in localization, compass and laser measurements were considered. In addi-
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tion, we studied the effects of the size of ε , and a general guide on choosing proper ε was

provided. On the other hand, ε? has also been successfully implemented in a laboratory

setting, using a physical autonomous ground vehicle equipped with heterogeneous sensing

systems, including an indoor localization system, ten ultrasonic sensors and a laser scanner.

Future research areas for single-robot coverage path planning include: i) extension to

multi-robot coverage, and ii) integration of SLAM with coverage control.

5.2 The CARE Algorithm

In Chapter 3, we extended the ε? algorithm and presented a multi-robot resilient and effi-

cient coverage path planning algorithm for unknown environment, called CARE. The ob-

jective is to utilize a team of robots (i.e., unmanned autonomous vehicles) to efficiently

cover the search area and secure complete coverage even under some robot failures.

Due to uncertainties in the environment, the robots may encounter unexpected failures

during operations, which are caused by various factors such as mechanical failures or bat-

tery depletion. Robot failures will immediately lead to coverage gaps, while the critical

information within those coverage gaps would not be retrieved without the helps from the

rest of the team. It is therefore critical that the robot team is resilient to failures, in the

sense that complete coverage is still achieved with the rest of the team in an optimized

manner. Moreover, due to unknown environment, it is very likely that all robots would not

finish at the same time. This means that the early completed robots will become idle, which

prolongs the total coverage time. Thus, it is also important the robots are prevented from

idling and can be reallocated in an optimized manner to assist others for efficient coverage.

In this regard, we developed the CARE algorithm that accounts for the above-mentioned
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issues. This algorithm operates in a distributed manner, and controls each robot with an

event-driven supervisory controller. The supervisor is implemented as a finite state au-

tomaton, where the transitions between states are triggered by discrete events. In particu-

lar, upon detection of robot failure or idling, the robot will collaborate with its neighbors

and independently re-optimize its task assignment. The task reallocation is modeled as a

potential game, which incorporates various optimization factors such as task worth, robot

locations and their remaining energy levels. The game is carefully designed such that the

local task reallocation decision is perfectly aligned with the global potential function for

the whole team. Thus, whenever a local game is played, the outcome would always benefit

the team. Besides, CARE is shown to guarantee complete coverage as long as one robot is

still alive.

The CARE algorithm has been validated in several complex environments, and the cov-

erage performances have been compared with alternative multi-robot coverage approaches

(i.e., FR, Non-Co. and Brick & Mortar). Moreover, the effectiveness of CARE was fur-

ther evaluated by varying different system parameters, including the neighborhood sizes,

numbers of deployed robots, and distributions of hidden targets. Besides, we have also

discussed a number of practical applications for CARE towards the end of Chapter 3.

Future research areas for multi-robot coverage path planning include: i) opportunis-

tic scheduling [110] to enhance the speed of target discovery, ii) extension of the CARE

algorithm to account for restricted communication, iii) integration of SLAM with multi-

robot control in absence of localization devices, and iv) consideration of potential threats

in different tasks to compute the success probability.
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5.3 The T? Algorithm

In Chapter 4, we presented the T? algorithm for time-optimal risk-aware motion planning

for curvature-constrained vehicles in known environment. The autonomous vehicle under

discussion can travel at variable speeds, but its motion is subject to bounded curvature and

symmetric turn rate. This means that its turning motion is limited by a non-zero minimum

turning radius.

To the best of our knowledge, the time-optimal motion planning problem for curvature-

constrained variable-speed vehicles has not been solved in the presence of obstacles. In

this regard, we developed the T? algorithm, which is a grid-based method that constructs

the optimal path in a piece-wise manner in the discrete domain. The configuration space

is constructed by associating each cell with a set of vehicle states, which are located at the

center of the cell but with different heading angles and speed choices. The time cost as the

vehicle travels between two neighboring states is determined by the time-optimal path; and

as presented in [38], it belongs to a sufficient set containing 34 candidate path types.

In addition, due to the presence of obstacles, it is also important that the time-optimal

path is safe for the vehicle. Hence, we introduced the concept of collision time to evaluate

the risk associated to each vehicle state, and then seamlessly integrated it into the time cost

during optimization in T?. The risk function relies on the full information about the vehicle

state, including its relative location to nearby obstacles, heading angle and speed; and its

rate of change is controllable by a risk weight. The framework of A? was used to search

over the configuration space for the optimal state sequence that drives the vehicle to reach

the goal state with minimized total costs of time and risk. The T? algorithm can provide

multiple path choices with decreasing risk costs but at the expense of increasing time costs

by tuning the risk weight. Further, we also presented an adaptive state pruning technique
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to reduce the complexity of the configuration space, so as to significantly decrease the total

computation time.

This algorithm has been validated in several complex scenarios, and the results showed

clear advantages over Dubins paths in terms of time costs. Moreover, we tested the effects

of using different risk weights, where the vehicle tends to select safer path and stay away

from obstacles with a higher risk weight. Also, the effectiveness of the adaptive state

pruning technique has been numerically examined using different pruning thresholds.

Future research areas for this topic include: i) incorporation of other motion constraints

into planning, such as continuous curvature [111], to enhance the tractability of the result-

ing path, ii) consideration of external drifts [112] in the environment such as wind or ocean

currents, and iii) extension to operate in unknown environment.
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