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Bifurcation and Chaos in Complex Systems

Complexity in dynamical systems:
° Nonlinearity

> High-dimensionality
o Time-varying operating conditions
o Environmental uncertainties, etc.

Bifurcations and Chaos: Critical transitions characterized by changes in topological features
o Causes: Changes (parametric/non-parametric) in system
o Effects: System anomalies, undesirable performance and failures
o Mitigation: Early detection of transitions and take proactive actions



Example 1: Duffing Oscillator

Duffing Oscillator
y(t) + 8y(t) + ay(t) + By>(t) =y cos(wt) (1)

Where y(t): displacement at time t
&: controls damping =035 =036 =037
a: controls linear stiffness T T T
f: controls non-linearity
y: amplitude of periodic driving force
w: angular frequency of the driving force ] . L 1 Onsetof
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Fig.1. Phase portrait plots for different y values



Example 2: Logistic Map

2. Logistic Map

f(x(n)) =x(n+1)=rx x(n)(l — x(n)) ,x(n) € [0,1]

Where x(n): ratio of population at time instance n to the maximum possible population

r: growth rate parameter
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Fig.2. Period-doubling cascade
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Fig.3. Phase-space reconstruction plots for different r values with

embedding delay = 1 and dimension = 2



Research Objective and Existing Methods

Goal: To develop a mathematical framework of topological data analysis for:
o Early detection of bifurcations and chaos

° Understanding their topological characteristics

Existing approaches:

l. Bendixson-Dulac criterion and Poincare-Bendixson? criterion
Features: Detects the presence of limit cycles

m Limitations: Not applicable for high-dimensional systems (D>2)

Il. Harmonic Balance and Describing Functions3
Features: Provide an approximate estimate of the size of limit cycles

Limitations: Linearization might fail for systems with higher harmonics of nonlinearity

Ill.  Data-driven methods such as recurrence plots?, correlation sum analysis®, Lyapunov exponents®,
permutation entropy’ and symbolic dynamics®

- Features: Detection of anomalies or changes in system behavior

Limitations: No topological understanding to distinguish between the system behaviors before and after transitions



Advantages of Persistent Homology

Research Gaps
Topological information such as the presence of sub-cycles, their positions and sizes not known
= No topological insights for early detection of bifurcation and chaos

Benefits of persistent homology
Extraction of topological features: number of relevant k-dimensional holes, their positions, sizes, and lifetimes
Early detection of bifurcations and chaos by tracking the evolution of the above features
Robustness to noise and uncertainties and applicability on high-dimensional data.



Persistent Homology?

Used for computing topological features (or Betti numbers) of a space at different spatial
resolutions.

Some mathematical preliminaries

k-Simplex: k-dimensional polytope which is a convex hull of its k + 1 vertices.

Simplicial complex'® (R): Set of simplices such that:
o Any face of a simplex from R is also in R,

> The intersection of any two simplices 1,0, € R is
either @ or a face of both ¢, and o,. * — A

Examples: Vietoris-Rips (VR) complex, Witness complex, etc. 0-simplex 1-simplex 2-simplex 3-simplex

Fig.4. Low-dimensional k-simplicesfor 0 < k < 3



Betti Numbers?
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Fig.5. Betti numbers for a 3-D torus



Betti Numbers: Example
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6 0-simplices 6 0-simplices, 1 1-simplex 6 0-simplices, 3 1-simplices
Bo=6p1=0 Bo=5pB1=0 Bo=3,1=0
e =0.7 € =038
6 0-simplices, 6 1-simplices 6 0-simplices, 7 1-simplices,
Bo=1p=1 2 2-simplices, Bo = 1,1 =0

Fig.6. Example of Vietoris-Rips complexes and corresponding Betti numbers for different scale parameters €.



Persistent Homology

Homology Groups!!: Computed from simplicial complexes and provide information of Betti
numbers.

How to get the optimal scale parameter €?
o Small €: VR complex containing discrete data points

o Large €: High-dimensional simplex
Persistent Homology: Computes simplicial complexes for a range of € values.
Key idea: To examine the homology of these iterated complexes (called as filtration).
Persistent homology groups provide lifetime information of each k-dimensional hole
A = {(u,v) € R>:u,v > 0,u < v} (3)

where u: birth scale of a hole,
v: death scale of a hole
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Persistent Intervals

Persistent Intervals: Represent the evolution of holes (increase and decrease in Betti numbers)
Most persistent/longest interval = True Betti numbers of a topological space

Visualization of persistent intervals: Barcode Plots'? and Persistence Diagrams
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Fig.7. lllustration of persistent homology features: (a) barcode
plot for 1-D holes and (b) persistence diagram.
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Proposed Topological Features

I.  No. of relevant k-D holes (nrel,)'2 for k > 0: Number of holes with lifetime greater than
0 x ML, where 8 € (0,1) and MLy, is the maximum lifetime of k-D holes

ML, = max L; (4)
1<i<Ag
Li =V — Ui (5)

Il.  Average lifetime of k-D holes!? (avg,):

avgy, = —Z L 6)

Ill. Expected orbit period (K,:.):
Korbit - {_ (6)

where S;= number of simplices for a stable system with period-1 orbits converging to 1 fixed point
S = number of simplices for a given system



Proposed Topological Features

IV. Diameter of a hole (D,): For a 1-D hole i in M-dimensional space containing N vertices

D; = 1;23’;,\,”"17 - xq”

where x,, x, € R belong to the hole.

pl
V. Maximum diameter of k-D holes (maxD,)

maxD, = max D;
1<i<|Agl

VI. Maximum Distance between k-D holes (maxDist,):
maxDist, = max dist,i]
1<i,j<|Ag|

dist)) = ||x1cvi — xcj|
1
xc]’-m = Nz x}" form=12,..M
=1

where xc; = (xcl, xc?, ..., xc!") is the center of it hole
Xj € RM is a vertex of the hole, dist,? is the distance between holes i and j.

(8)

(9)

(10)
(11)

(12)
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Results: Duffing Oscillator

Simulations:

J(t) + 6y(t) + ay(t) + By3(t) =y cos(wt)

=§=03,a=1,L=1y€][0350.38],w =12

=y(0)=0,y(0)=0
= Additive White Gaussian Noise (AWGN) of 30dB signal-to-noise ratio (SNR) is added and denoised
through Wavelet filtering

= Persistent homology computations: Javaplex!3 toolbox in MATLAB
= Witness complex is used for persistent homology with € € [0,0.001]
= Features used: nrel, with 8 = 0.7, avg, and D,

(13)
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Results: Duffing Oscillator

(a) y=0.35 y=0.36 y=0.37 v =0.38 ~ =0.40
11 | {45 | | 4
ke,
©
AL |
1 0 1 -1 0 1 -1 0 1 -1 0 1 -1
(b) y(t) v y(t) y(t)
T 40 . o 0.05 . . — 3
c | ® | —~_
S 30l & o004r N =}
© o N 3
< | < = 2
o 2 o 003f : 2
E 20 Chaotic | % 0.02 - Bor 1 Chaotic | o
s 15 Regime 7| g ' eriod 5 . || Regime % 1
% 10 i £ 501 | Period 3 Period 4| | | _E |
S 5 1 = | | &)
d 0 L L I | 1 g‘J 000 L 1 J I 1 'D
Z 035 036 037 038 039 040 < 035 036 037 038 039 040 035 036 037 038 039 0.40
Amplitude ~ Amplitude ~ Amplitude ~

Fig.8. Analysis of the Duffing oscillator: (a) phase portrait plots for different y values, (b) proposed topological
features



Results: Logistic Map

Simulations:

f(x(n)) =x(n+1)=r=x x(n)(l — x(n)) ,x(n) € [0,1] (14)

r € [2.5,3.75]
AWGN with 30dB SNR is added to the data

Phase-space reconstruction using Taken’s theorem?3 is applied to generate point cloud data with delay =
1 and embedding dimension = 2.

Persistent homology computations: Javaplex toolbox in MATLAB
VR complex filtration is used with € € [0,0.01]
Features used: K, with S;= number of simplices at r = 2.9, avg, and maxDist,
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Results: Logistic Map
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Fig.9. Analysis of the Logistic map: (a) period-doubling cascade, (b) phase space reconstruction plots for different r
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Conclusion and Future Work

= An approach for topological characterization of complex systems is presented
= Early detection of bifurcations and chaos is achieved

= Validation on Duffing Oscillator and Logistic Map

Future work:

= Application of the proposed features for
o anomaly detection in other real world time series data
o epileptic seizure detection, behavior prediction and fault detection
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