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Bifurcation and Chaos in Complex Systems

Complexity in dynamical systems:
◦ Nonlinearity

◦ High-dimensionality

◦ Time-varying operating conditions

◦ Environmental uncertainties, etc.

Bifurcations and Chaos: Critical transitions characterized by changes in topological features
◦ Causes: Changes (parametric/non-parametric) in system

◦ Effects: System anomalies, undesirable performance and failures

◦ Mitigation: Early detection of transitions and take proactive actions

2



Example 1: Duffing Oscillator
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Duffing Oscillator
ሷ𝑦 𝑡 + 𝛿 ሶ𝑦 𝑡 + 𝛼𝑦 𝑡 + 𝛽𝑦3 𝑡 = 𝛾 cos 𝜔𝑡 (1)

Where 𝑦(𝑡): displacement at time t
𝛿: controls damping
𝛼: controls linear stiffness
𝛽: controls non-linearity
𝛾: amplitude of periodic driving force
𝜔: angular frequency of the driving force

Fig.1. Phase portrait plots for different 𝛾 values  
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Example 2: Logistic Map
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2. Logistic Map

𝑓 𝑥 𝑛 = 𝑥 𝑛 + 1 = 𝑟 ∗ 𝑥 𝑛 1 − 𝑥 𝑛 , 𝑥(𝑛) ∈ [0, 1] (2)

Where 𝑥(𝑛): ratio of population at time instance 𝑛 to the maximum possible population
𝑟: growth rate parameter

Fig.2. Period-doubling cascade Fig.3. Phase-space reconstruction plots for different 𝑟 values with 
embedding delay = 1 and dimension = 2

Onset of 
chaos

Period-Doubling 
cascade



Research Objective and Existing Methods

Goal: To develop a mathematical framework of topological data analysis for:
◦ Early detection of bifurcations and chaos

◦ Understanding their topological characteristics

Existing approaches:

I. Bendixson-Dulac criterion and Poincare-Bendixson2 criterion
▪ Features: Detects the presence of limit cycles

▪ Limitations: Not applicable for high-dimensional systems (D>2)

II. Harmonic Balance and Describing Functions3

▪ Features: Provide an approximate estimate of the size of limit cycles

▪ Limitations: Linearization might fail for systems with higher harmonics of nonlinearity

III. Data-driven methods such as recurrence plots4, correlation sum analysis5, Lyapunov exponents6, 
permutation entropy7 and symbolic dynamics8

▪ Features: Detection of anomalies or changes in system behavior

▪ Limitations: No topological understanding to distinguish between the system behaviors before and after transitions
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Advantages of Persistent Homology

Benefits of persistent homology
▪ Extraction of topological features: number of relevant 𝑘-dimensional holes, their positions, sizes, and lifetimes

▪ Early detection of bifurcations and chaos by tracking the evolution of the above features

▪ Robustness to noise and uncertainties and applicability on high-dimensional data.
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Research Gaps
Topological information such as the presence of sub-cycles, their positions and sizes not known
⇒ No topological insights for early detection of bifurcation and chaos



Persistent Homology9

Used for computing topological features (or Betti numbers) of a space at different spatial 
resolutions.

Some mathematical preliminaries

𝒌-Simplex: 𝑘-dimensional polytope which is a convex hull of its 𝑘 + 1 vertices.

Simplicial complex10 (ℛ): Set of simplices such that: 
◦ Any face of a simplex from ℛ is also in ℛ,

◦ The intersection of any two simplices 𝜎1, 𝜎2 ∈ ℛ is 

either ∅ or a face of both 𝜎1 and 𝜎2.

Examples: Vietoris-Rips (VR) complex, Witness complex, etc.
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Fig.4. Low-dimensional 𝑘-simplices for 0 ≤ 𝑘 ≤ 3

0-simplex 1-simplex 2-simplex 3-simplex



Betti Numbers9
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𝜷𝒌(k-D Holes) 1-D 2-D 3-D

𝜷𝟎(0-D Holes) No. of connected components No. of connected components No. of connected components

𝜷𝟏(1-D Holes) 0 No. of circular holes No. of circular holes

𝜷𝟐(2-D Holes) 0 0 No. of voids

𝜷𝟑(3-D Holes) 0 0 0

𝛽0 = 1
𝛽1 = 2
𝛽2 = 1

Fig.5. Betti numbers for a 3-D torus



Betti Numbers: Example
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6 0-simplices
𝛽0 = 6, 𝛽1 = 0

6 0-simplices, 1 1-simplex
𝛽0 = 5, 𝛽1 = 0

6 0-simplices, 3 1-simplices
𝛽0 = 3, 𝛽1 = 0

6 0-simplices, 6 1-simplices
𝛽0 = 1, 𝛽1 = 1

6 0-simplices, 7 1-simplices,
2 2-simplices, 𝛽0 = 1, 𝛽1 = 0

𝜖 = 0.4 𝜖 = 0.5 𝜖 = 0.6

𝜖 = 0.7 𝜖 = 0.8

Fig.6. Example of Vietoris-Rips complexes and corresponding Betti numbers for different scale parameters 𝜖.



Persistent Homology

Homology Groups11: Computed from simplicial complexes and provide information of Betti
numbers.

How to get the optimal scale parameter 𝝐?
◦ Small 𝜖: VR complex containing discrete data points

◦ Large 𝜖: High-dimensional simplex

Persistent Homology: Computes simplicial complexes for a range of 𝜖 values. 

Key idea: To examine the homology of these iterated complexes (called as filtration).

Persistent homology groups provide lifetime information of each 𝑘-dimensional hole

Δ𝑘 = 𝑢, 𝑣 ∈ ℝ2: 𝑢, 𝑣 ≥ 0, 𝑢 ≤ 𝑣 (3)

where 𝑢: birth scale of a hole,

𝑣: death scale of a hole
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Persistent Intervals

Persistent Intervals: Represent the evolution of holes (increase and decrease in Betti numbers)

Most persistent/longest interval ⇒ True Betti numbers of a topological space

Visualization of persistent intervals: Barcode Plots12 and Persistence Diagrams
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Fig.7. Illustration of persistent homology features: (a) barcode 
plot for 1-D holes and (b) persistence diagram.



Proposed Topological Features

I. No. of relevant 𝒌-D holes (nrelk)
12 for 𝒌 ≥ 𝟎: Number of holes with lifetime greater than       

𝜃 ∗ 𝑀𝐿𝑘 where 𝜃 ∈ (0, 1) and 𝑀𝐿𝑘 is the maximum lifetime of 𝑘-D holes

𝑀𝐿𝑘 = max
1≤𝑖≤Δ𝑘

𝐿𝑖 4

𝐿𝑖 = 𝑣𝑖 − 𝑢𝑖 5

II. Average lifetime of 𝒌-D holes12 (avgk): 

avgk =
1

|Δ𝑘|
෍

𝑖=1

|Δ𝑘|

𝐿𝑖 6

III. Expected orbit period (Korbit):

Korbit =
𝑆1
𝑆
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where 𝑆1= number of simplices for a stable system with period-1 orbits converging to 1 fixed point

𝑆 = number of simplices for a given system
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Proposed Topological Features

IV. Diameter of a hole (Di): For a 1-D hole 𝑖 in M-dimensional space containing 𝑁 vertices
𝐷𝑖 = max

1≤𝑝,𝑞≤𝑁
𝒙𝒑 − 𝒙𝒒 8

where 𝒙𝒑, 𝒙𝒒 ∈ ℝ𝑀 belong to the hole.

V. Maximum diameter of 𝒌-D holes (maxDk)

maxDk = max
1≤𝑖≤ Δ𝑘

𝐷𝑖 9

VI. Maximum Distance between 𝒌-D holes (maxDistk):

maxDistk = max
1≤𝑖,𝑗≤ Δ𝑘

𝑑𝑖𝑠𝑡𝑘
𝑖𝑗
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𝑑𝑖𝑠𝑡𝑘
𝑖𝑗
= 𝒙𝒄𝒊 − 𝒙𝒄𝒋 11

𝑥𝑐𝑗
𝑚 =

1

𝑁
෍

𝑗=1

𝑁

𝑥𝑗
𝑚 𝑓𝑜𝑟 𝑚 = 1,2,…𝑀 12

where 𝒙𝒄𝒊 = 𝑥𝑐𝑖
1, 𝑥𝑐𝑖

2, … , 𝑥𝑐𝑖
𝑀 is the center of 𝑖th hole

𝒙𝒋 ∈ ℝ𝑀 is a vertex of the hole, 𝑑𝑖𝑠𝑡𝑘
𝑖𝑗

is the distance between holes 𝑖 and 𝑗.

13



Results: Duffing Oscillator

Simulations:

ሷ𝑦 𝑡 + 𝛿 ሶ𝑦 𝑡 + 𝛼𝑦 𝑡 + 𝛽𝑦3 𝑡 = 𝛾 cos 𝜔𝑡 13

▪ 𝛿 = 0.3, 𝛼 = 1, 𝛽 = 1, 𝛾 ∈ 0.35,0.38 , 𝜔 = 1.2

▪ 𝑦 0 = 0, ሶ𝑦 0 = 0

▪ Additive White Gaussian Noise (AWGN) of 30dB signal-to-noise ratio (SNR) is added and denoised
through Wavelet filtering

▪ Persistent homology computations: Javaplex13 toolbox in MATLAB

▪ Witness complex is used for persistent homology with 𝜖 ∈ 0,0.001

▪ Features used: nrel1 with 𝜃 = 0.7, avg1 and Di
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Fig.8. Analysis of the Duffing oscillator: (a) phase portrait plots for different 𝛾 values, (b) proposed topological 
features

Results: Duffing Oscillator



Results: Logistic Map

Simulations:

𝑓 𝑥 𝑛 = 𝑥 𝑛 + 1 = 𝑟 ∗ 𝑥 𝑛 1 − 𝑥 𝑛 , 𝑥 𝑛 ∈ 0, 1 14

▪ 𝑟 ∈ 2.5,3.75

▪ AWGN with 30dB SNR is added to the data

▪ Phase-space reconstruction using Taken’s theorem13 is applied to generate point cloud data with delay = 
1 and embedding dimension = 2.

▪ Persistent homology computations: Javaplex toolbox in MATLAB

▪ VR complex filtration is used with 𝜖 ∈ [0,0.01]

▪ Features used: Korbit with 𝑆1= number of simplices at 𝑟 = 2.9, avg0 and maxDist0
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Fig.9. Analysis of the Logistic map: (a) period-doubling cascade, (b) phase space reconstruction plots for different 𝑟
values and (c) proposed topological features

Results: Logistic Map



Conclusion and Future Work

▪ An approach for topological characterization of complex systems is presented

▪ Early detection of bifurcations and chaos is achieved

▪ Validation on Duffing Oscillator and Logistic Map

Future work:

▪ Application of the proposed features for 
o anomaly detection in other real world time series data

o epileptic seizure detection, behavior prediction and fault detection
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