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POSE.3C: Prediction-based Opportunistic Sensing using
Distributed Classification, Clustering and Control in

Heterogeneous Sensor Networks

James Z. Hare† Shalabh Gupta†⋆ Thomas A. Wettergren‡

Abstract—This paper presents a distributed algorithm,
called Prediction-based Opportunistic Sensing using Distributed
Classification, Clustering and Control (POSE.3C), for self adapta-
tion of sensor networks for energy management. The underlying
3C network autonomy concept enables utilization of the target
classification information to form dynamic clusters around the
predicted target position via selection of sensor nodes with the
highest energies and maximum geometric diversity. Further, the
nodes can probabilistically control their heterogeneous devices
to track targets of interest and minimize energy consumption
in a completely distributed manner. Theoretical properties of
the POSE.3C network are established and derived in terms
of the network lifetime and missed detection characteristics.
The algorithm is validated through extensive simulations which
demonstrate a significant increase in the network lifetime as
compared to other network control approaches, while providing
high tracking accuracy and low missed detection rates.

1. INTRODUCTION

Recent advancements in sensing, computing, and communi-
cation technologies have enabledDistributed Sensor Networks
(DSN) to evolve into intelligent systems that are capable of
adaptive sensing and target tracking [1]. However, a major
limitation that affects the long-term reliability of DSN isthe
limited availability of energy resources [2]. Once a group of
nodes are depleted of energy, they fail to sense, causing missed
detections, and coverage gaps, which reduces network lifetime.
Thus, it is important to maximize the network lifetime via min-
imizing the energy consumption per node, while maintaining
high tracking accuracy and low missed detection rates.

To address this issue,Opportunistic Sensing[2], [3], [4]
approaches have been proposed, where the objective is to pre-
serve energy by activating nodes locally in the region around
the target. The current approaches in this domain are mainly
Cluster Head (CH) based [3] and only consider scheduling
of binary operating states (On/Off). In contrast, current sen-
sor nodes consist of multiple heterogeneous sensing devices
consuming different amounts of power; thus, advanced het-
erogeneous network control approaches are needed to ensure
energy-efficiency to maximize the network lifetime. In this
regard, this paper presents adistributed supervisory control
approach which probabilistically controls the heterogeneous
devices on each node, such that the nodes around the target
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activate their high power (e.g., active) sensing devices totrack
the target, while distant nodes either switch to low power (e.g.,
passive) sensing to stay aware, or sleep to preserve energy.

The above supervisory control requires predictive intelli-
gence of target’s whereabouts to enable the distributed nodes
to pro-actively prepare for a target’s arrival and to form a
cluster with high power sensors activated around the target.
However, there could be a large number of nodes located
around the target, which can lead to redundant node activation
and wasted energy. In this regard, the second issue addressed
in this paper isdistributed clusteringvia sensor node selection.
Current clustering approaches typically select nodes based on
their distance to the target or detection capability [5]. However,
in applications where targets may frequently travel in the same
section (e.g., a lane) of the network, the current approaches
will select the same nodes again and again, thus depleting their
energies and creating energy depleted lanes. Thus, it is also
necessary to maintain uniform spatial distribution of remaining
energy in nodes around regions of frequent target visits. In
our approach, we pursue a multi-stage filtering process for
node selection that selects a group of nodes with the highest
remaining energies and maximum geometrical diversity. This
process improves target tracking accuracy as well as facilitates
uniform depletion of energy to minimize coverage gaps and
further extend the network lifetime.

In the distributed clustering framework, energy wastage
may still occur if clusters are formed aroundTargets Not of
Interest(TNOIs), while their primary goal is to trackTargets
of Interest(TOIs) [6]. For example, in a border surveillance
application, the TOIs could be humans and vehicles, while the
TNOIs could be animals. Therefore, we incorporatedistributed
classificationinto the clustering strategy to adapt the cluster
size based on the classification decisions. The objective is
to activateNsel > 1 nodes around a TOI to improve the
estimation accuracy via distributed fusion, while activating
only 1 node around a TNOI to maintain awareness and pre-
serve energy. This approach drastically improves the network
lifetime by opportunistic sensing only around TOIs.

To address the above issues ofClassifica-
tion→Clustering→Control (3C network autonomy), this
paper presents a distributed algorithm, calledPrediction-
based Opportunistic Sensing using Distributed Classification,
Clustering and Control (POSE.3C), which manages the
heterogeneous devices on each node for energy-efficiency.
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Figure 1: Illustration of the POSE.3C algorithm with a PFSA-based distributed supervisor acting on each node.

As shown in Fig. 1, a distributed supervisor designed as a
Probabilistic Finite State Automaton(PFSA), is embedded on
each node to enable/disable its sensing and communication
devices. The PFSA states include: 1)Sleep, 2) Low Power
Sensing(LPS), and 3)High Power Sensing(HPS). TheSleep
state disables all devices to minimize energy consumption.
The LPS state enables the LPS devices for target detection,
while the HPS state enables the HPS devices for state
estimation and target classification. The transceiver is turned
on in both LPS and HPS states for communication.

The state transition probabilities of the PFSA are dynam-
ically updated based on the target’s predicted location. This
information could be measured and computed locally by the
nodes and/or received from their neighbors. The nodes perform
distributed fusion to identify the target’s class (TOI or a
TNOI) and predict its state during the next time interval. This
fused information is then used to form clusters of optimal
nodes. The selected nodes probabilistically transition tothe
HPS state, while the nodes not selected cycle between the
low power states (i.e,Sleepand LPS) to stay aware while
preserving energy. Fig. 1 illustrates this approach with three
targets traveling through the network. As illustrated,Nsel = 3
nodes are activated in the HPS state around the TOIs, while
only 1 node is activated around the TNOI.

The main contributions of this paper are as follows:

• Development of a distributed algorithm that improves the
lifetime of a heterogeneous sensor network, while pro-
viding high tracking accuracy with low missed detection
rates, via enabling 3C network autonomy as follows:

– Distributed classification: This governs the size of
dynamic clusters for tracking the target based on
target class inference to minimize energy wastage,

– Distributed clustering: This is done to form dynamic
clusters around the target’s predicted state via select-

ing optimal nodes that maximize remaining energy
and geometric diversity, and

– Distributed supervisory control: This PFSA-based
supervisor probabilistically enables/disables the het-
erogeneous devices on each node.

• Theoretical derivation of the network’s performance char-
acteristics: (i) Expected energy consumption, (ii) Ex-
pected network lifetime, (iii) Probability of missed de-
tection for a target birth and for a mature target.

• Comparative evaluation with other distributed methods
which show significant improvement in network lifetime,
high tracking accuracy, and low missed detection rates.

2. RELATED WORK

The following subsections describe the existing classifica-
tion and scheduling methods employed in sensor networks.

A. Classification Methods in Sensor Networks

Diverse classification problems arise in sensor networks,
include classification of vehicles, soldiers, and pedestrians [7],
trespassers [8], [9], underwater mines [10], etc. Typically, the
sensors detect acoustic signals, magnetic fields, or collect im-
ages, etc., that provide distinguishing features between target
classes. Some classification approaches were developed based
on kinematic features (e.g., range and azimuth of the target),
which compute the posteriori probability of the target motion
model given the observed track, known as Joint Tracking and
Classification [11], [12]. These methods are typically usedin
radar/sonar applications (e.g., classifying commercial aircraft
vs. fighter jets) and have a high computational complexity.
Since centralized classification is impractical for large DSN,
most networks perform CH-based classification by fusing local
decisions or features from each sensor node [7], [9]. However,
these approaches only deal with the classification problem and
did not address the 3C network autonomy problem.
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B. Network Control and Scheduling

Typical methods of network control deal with minimizing
the number of active nodes around the target via sensor selec-
tion. This is achieved by Centralized or CH-based approaches
[3], [11], [13], [14]. These methods select the optimal sensors
to track the target by maximizing/minimizing one of the
following cost functions: probability of detection [15], tracking
accuracy [16], energy [17], Kullback-Liebler distance [5], or
other information theoretic measures [11], [18]. However,
the centralized approaches require frequent communication
and heavy computational requirements of searching the entire
network, thus making them impractical for large scale net-
works. CH-based approaches [3], [11], [13], [14] improve the
communication cost but are not robust to sensor failure. If a
CH were to fail, the entire cluster would stop receiving control
decisions, rendering a large coverage gap in the network.

To alleviate these pitfalls, DSN were proposed that allow
for robustness to node failure and energy-efficiency via event
triggered communication. Kaplan [19] proposed a local node
selection algorithm for DSN based on a cost function that
minimizes the Mean Squared Error of the target state. This
approach was extended by utilizing the innovation of the
estimate [20] and using mutual information [21].

C. Literature Gaps

The following research gaps exist in the current literature,
which are addressed in this paper:

1) Control of heterogeneous nodes has not been studied for
energy-efficient networks. The literature typically deals
with 2 operating conditions e.g., ON and OFF.

2) Control approaches are typically deterministic and not
probabilistic; hence they lack robustness.

3) Classification is not used for clustering and control; which
extends the network lifetime by focusing only on TOIs.
The concept of 3C network autonomy is not proposed.

4) DSN sensor selection methods do not optimize for both
energy and tracking accuracy; hence they lead to non-
uniform depletion of energy.

5) Technical literature does not provide theoretical guar-
antees of network performance (i.e., network lifetime,
probability of detection, and missed detection rates). This
paper allows the network designer to predict network
performance based on their specifications.

3. PROBLEM FORMULATION

Let Ω ⊂ R
2 be the ROI with areaAΩ. Let S =

{s1, s2, ...sn} be the set ofn static sensor nodes randomly
deployed throughoutΩ, where nodesi ∈ S is positioned at
usi = (xsi , ysi) ∈ Ω. Let T = {τ1, τ2, ...τm} be the set ofm
targets traveling throughΩ. Let the position of a targetτℓ ∈ T
at time stepk be denoted asuτℓ(k) = (xτℓ , yτℓ)(k) ∈ Ω.

A. Description of a Sensor Node

Each static sensor nodesi ∈ S contains a sensor suite of
heterogeneous sensing devices, a data processing unit (DPU),

a communication device (transceiver), and a GPS device, as
shown in the device layer of Fig. 1. The sensor suite includes
several LPS devices (e.g. Passive Infrared sensors) for target
detection, and HPS devices (e.g. Laser rangefinder) for further
target interrogation (e.g. bearing and range measurements).
For classification purposes additional sensors could be used
to identify target classes (e.g. vibrations sensors to separate
vehicles from humans). The transceiver allows the node to
transmit and receive information within its neighborhood.
Note: This work does not consider communication issues
which will be studied in a future work.

Definition 3.1 (Neighborhood). The neighborhood of a sen-
sor nodesi ∈ S is defined as

N si , {sj ∈ {S \ si} : ||usj − usi || ≤ Rc}, (1)

whereRc is the communication radius of the node.

The energy consumed [22] by nodesi until time k is

Esi(k) =
∑

k

∑

j

esij .ζ
si
j (k)∆T, (2)

whereesij denotes the rate of energy consumption per unit time
by a certain devicej ∈ {DPU, LPS, HPS, transmitter (TX),
receiver (RX), clock}; ζsij (k) ∈ {0, 1} indicates whether the
device is ON or OFF at timek; and∆T is the sample time
interval. Thus, the total energy consumed by the network is
Enet(k) =

∑n
i=1E

si(k).

B. Description of a Target

1) Target Motion and Measurement Model: The motion of
a target,τℓ, is modeled as aDiscrete White Noise Acceleration
(DWNA) model [23]

x(k + 1) = f(x(k), k) + υ(k), (3)

wherex(k) , [x(k), ẋ(k), y(k), ẏ(k), ψ(k)]′ is the target state
at timek, which includes the position and velocity inx and
y and the turning rateψ(k); f(x(k), k) is the state transition
matrix; andυ(k) is the zero-mean white Gaussian noise with
covarianceE[υ(k)υ(k)′] = Q. The target is assumed to travel
with a nearly coordinated turning model [23].

The HPS devices collecto range and azimuth observations
at each time stepk, z(k) = (z1(k), ..., zo(k)), where each
observation is modeled as

zj(k) = h(x(k), k) +w(k), (4)

where h(x(k), k) is the nonlinear measurement model and
w(k) is the zero-mean white Gaussian measurement noise
with covarianceE[w(k)w(k)′] = R(k). The observations
z(k) also include false measurements which are generated
according to a Poisson distribution with meanµcl [23].

Note: Detailed derivations of the above models are provided
in [23] and are beyond the scope of this paper.
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(a) Low Power Sensing State Algorithm (b) Distributed Sensor Node Collaboration Algorithm

(c) High Power Sensing State Algorithm

Figure 2: Flowcharts for the algorithms within each state ofthe PFSA

2) Target Detection Model: The detection model proposed
in [24] is adopted in this paper as follows:

P siD (uτℓ) =





α d(τℓ, si) ≤ Rs,a
αe−β(d(τℓ,si)−Rs,a) Rs,a < d(τℓ, si) ≤ Rs,b
pfa else

,

(5)

whered(τℓ, si) = ||uτℓ−usi ||, α andβ are model parameters,
Rs,a is the reliable sensing radius,Rs,b is the maximum
sensing radius, andpfa = 1 − e−f∆T is the false alarm
probability [25] with a rate off during a∆T second scan.
Note thatRc ≥ 2Rs,b. For an application specific node design,
a detailed sensor model can be substituted for Eq. (5).

C. Objective

The objective of the POSE.3C algorithm is to control the
heterogeneous sensing states of each node in a distributed
manner to achieve the following: (1) Improved network life-
time (see Defn. 5.1), (2) Improved uniformity of energy
distribution in nodes around targets to prevent coverage holes,
and (3) high tracking accuracy with low missed detection rates.

4. POSE.3C-ALGORITHM

As shown in Fig. 1, each sensor node is controlled by a
distributedPFSA-based supervisor as defined below.

Definition 4.1 (PFSA). A PFSA is defined as a3-tupleΞ =
〈Θ, A, P 〉, where

• Θ is a finite set of states,
• A is a finite alphabet,
• p : Θ × Θ → [0, 1] are the state transition probabilities

which form a stochastic matrixP ≡ [pij ], wherepij ≡
p(θi, θj), ∀θi, θj ∈ Θ, s.t.

∑
θ′∈Θ p(θ, θ

′) = 1, ∀θ ∈ Θ.

The alphabet is defined asA = {ǫ, 0, 1}, whereǫ is the null
symbol which is emitted when no information is available,0
indicates no target detection, and1 indicates target detection.

The state setΘ consists of three states: (1) Sleep (θ1),
(2) LPS (θ2), and (3) HPS (θ3), as shown in Fig. 1, whose
operations and transitions are described below.

A. Description of PFSA States and Transition Probabilities

Consider a sensor nodesi ∈ S. The operations within each
state of its distributed PFSA-based supervisor and update of
its state transition probabilities are discussed below.

1) Sleep State: The Sleep stateθ1 is designed to minimize
the energy consumption ofsi when the target is away or if the
node is not selected to track the target. It disables all sensing
and communication devices on the node except the clock.
After every time interval∆T , the node can make a transition
to the LPS state with a probabilitypsi12(k) = 1 − psleep or it
can stay in the Sleep state with a probabilitypsi11(k) = psleep,
wherepsleep is a design parameter.

2) LPS state: The LPS stateθ2 is designed to conserve
energy while enabling target detection. In this state, the LPS
devices, the DPU, and the transceiver are powered on. Fig. 2a
shows the flowchart for the algorithm within the LPS state.

• Target Detection: Here a target could be detected either
by: (i) using the LPS devices or (ii) fusing the information
received from neighbors. If a target is present, then the sensor
nodesi detects it with a probabilityP siD as per Eq. (5).

• Distributed Collaboration: Next, it checks if it has re-
ceived any information from its neighbors. LetN si

HPS ⊆ N si

be the set of HPS sensors that have broadcasted the target
state and class information tosi. If information is received,
i.e.N si

HPS 6= ∅, then the nodesi uses a collaboration algorithm
(see Section 4-B for details), which fuses the received infor-
mation to obtain the fused state prediction and classification
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decision. The fused information is used to form a cluster of
optimal nodes,S∗, to track the target. Ifsi ∈ S∗, then it
computes a probabilityP siHPS(k) (see Eq. (16)) to transition to
the HPS state. On the other hand, if no information is received,
i.e. N si

HPS = ∅, then the node relies on its own detection
probabilityP siD (k) to transition to the HPS state.

• Updating the State Transition Probabilities: The nodesi
updates it’sPFSA probabilities as follows:

• if (N si
HPS 6= ∅ andsi ∈ S∗), then:

psi21(k) = 0; psi22(k) = 1−P siHPS(k); p
si
23(k) = P siHPS(k),

• if (N si
HPS 6= ∅ andsi /∈ S∗), then:

psi21(k) = 1− P siD (k); psi22(k) = P siD (k); psi23(k) = 0,

• if (N si
HPS = ∅), then:

psi21(k) = 1− P siD (k); psi22(k) = 0; psi23(k) = P siD (k).

3) HPS state: The HPS stateθ3 is designed to (i) estimate
the target’s state and class using measurements from its HPS
devices and (ii) broadcast this information. Here, the HPS
devices, DPU, and transceiver are all enabled. Fig. 2c shows
the flowchart for the algorithm within the HPS state.

• Data Association and State Estimation: In the HPS state,
si first receives a set of measurements,z(k), from its HPS
devices. Subsequently, the previous state estimatex̂si(k−1|k−
1), Σ̂si(k− 1|k− 1) are updated using theJoint Probabilistic
Data Association(JPDA) method [23] to generatêxsi(k|k),
Σ̂si(k|k). If the received measurements do not associate to
the previous state estimate (e.g., when the target state is not
initialized), thensi must first perform state initialization [23].

The measurements received may contain false alarms, due to
clutter, which can generate false tracks at each node. To ensure
that false tracks do not propagate throughout the network,
nodesi utilizes theM -of -N Track Confirmation Logic[26] to
allow the network to be robust to false alarms. This approach
ensures thatM out ofN consecutive measurements are asso-
ciated to a target state estimate before the node confirms that
it is not a false track. Furthermore, once the target track has
been confirmed, the node can drop the track ifM consecutive
measurements do not associate to it.

• Target Classification: Next, si performs target classi-
fication to determine the target class. To keep our control
algorithm general, it is assumed that the network designer
has developed a classifier (similar to those reported in Sec-
tion 2) for the particular application and its performance is
represented by aConfusion MatrixB, as shown in Table I.

Table I: Confusion Matrix

Estimated Class
TOI TNOI

True Class TOI b11 b12
TNOI b21 b22

Then, nodesi classifies the target as a TOI with probability

P̂ siTOI(k) =

{
b11

b11+b12
Given TOI

b21
b21+b22

Given TNOI
, (6)

which leads to a class decision̂Dsi(k) ∈ {0, 1}, where0 and
1 correspond to a TNOI and a TOI, respectively.

• Distributed Collaboration: Next, if a target has been
detected then nodesi broadcasts its target state estimates
x̂si(k|k) andΣ̂si(k|k), the filter gain matrixŴsi(k), and the
classification decision̂Dsi(k). Sincesi is in the HPS state
and has broadcasted information to it’s neighbors, we define
N si
HPS = N si

HPS ∪ {si}. However, if si has not confirmed
a target track, thenN si

HPS does not includesi. Then, if
N si
HPS 6= ∅, it will run the collaboration algorithm (please

see Section 4-B for details) in the same manner as in the LPS
state. This generates a fused state and class decision, which
are then used to form the cluster of optimal sensor nodesS∗

to track the target during the next time step. Ifsi ∈ S∗, then
it computesP siHPS(k) in Eq. (16) to stay in the HPS state.

• Updating the State Transition Probabilities: Finally, the
PFSA probabilities are updated as follows:

• if (N si
HPS 6= ∅ andsi ∈ S∗), then:

psi31(k) = 0; psi32(k) = 1−P siHPS(k); p
si
33(k) = P siHPS(k),

• if (N si
HPS 6= ∅ andsi /∈ S∗), then:

psi31(k) = 1− P siD (k); psi32(k) = P siD (k); psi33(k) = 0,

• if (N si
HPS = ∅), then:

psi31(k) = 0; psi32(k) = 1− P siD (k); psi33(k) = P siD (k).

Remark 4.1. The proposed approach is modular, i.e., the
blocks in the flowcharts of LPS and HPS states could be
furnished by appropriate methods as suited for the application.

B. Distributed Sensor Node Collaboration

The distributed sensor node collaboration consists of the
distributed fusion, sensor node selection, and computation of
the HPS transition probability, as described below:

1) Distributed Fusion: This algorithm, shown in Fig. 2b,
fuses the received target state estimates and classification de-
cisions to produce the fused state estimate and class decision.

Consider a nodesi which could be in the LPS or HPS state.
The information ensemble it receives consists of

Îsi(k) =
{(

x̂sj , Σ̂sj ,Ŵsj , D̂sj
)
, ∀sj ∈ N si

HPS

}
, (7)

where x̂sj (k|k), Σ̂sj (k|k), Ŵsj (k), and D̂sj (k) correspond
to the state estimate, covariance, filter gain, and class decision,
of the nodesj at timek.

However, due to noise and other factors, the information
received must first be validated to ensure that it is accurate
and reliable before processing. This is done by forming a set
of trustworthy neighborsN si

T ⊆ N si
HPS by evaluating the sum

of the position error as follows

N si
T = {sj ∈ N si

HPS : Trace(H(k)Σ̂sj (k|k)H(k)′) ≤ ξ}, (8)

whereH(k) is the Jacobian of the measurement model defined
in Section 3-B1 andξ is the maximum tolerance of the

estimate. In this paper,ξ =
R2

s,bσ
2

φ+σ
2

R

2 , whereσφ andσR are
the standard deviations in the azimuth and range measurements
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of the HPS sensor. Finally, nodesi receives the following
trustworthy information:

ÎsiT (k) =
{(

x̂sj , Σ̂sj ,Ŵsj , D̂sj
)
, ∀sj ∈ N si

T

}
, (9)

Remark 4.2. The thresholdξ is the trace of the initialized
covariance matrix, which is used to eliminate tracks associated
to mismatched models or clutter.

Next, the trustworthy information is associated to ensure
that it is related to the same target. In this work, theTrack-
to-Track Association Method(T2TA) [23] is used for this pur-
pose. This method associates the trustworthy information into
C distinct groups which correspond to theC different targets
that could be present within the nodesi’s neighborhood; thus
forming the information ensembles:Îsi,cT (k) ⊆ ÎsiT (k), where
c = 1, ..., C. Note thatC may be different than the true number
of targets present in the ROI. Subsequently, for eachc, the
state information in̂Isi,cT (k) is fused to form a single state
(x̂si,c(k|k)) and covariance (̂Σsi,c(k|k)) estimate, using the
Track-to-Track Fusion(T2TF) algorithm [23].

Remark 4.3. T2TA associates targets based on their state,
including position, velocity, and turning rate estimates.Thus,
two targets are separated if their state differs from each other
even if they are spatially co-located.

Once all the received state information is fused, nodesi
computes a one-step prediction of the target’s state using the
Extended Kalman Filter [23]:

x̂si,c(k + 1|k) = f(x̂si,c(k|k), k),
Σ̂si,c(k + 1|k) = F(k)Σ̂si,c(k|k)F(k)′ +Q, (10)

where F(k) is the Jacobian of the state transition matrix
evaluated at̂xsi,c(k|k). This predicted state is used in the
distributed sensor node selection to identify the sensor nodes
to track the target during next time step.

Furthermore, the associated target class decisions inÎ
si,c
T (k)

are also fused together using the majority vote rule as follows.

D̂si,c(k) =

{
1 if 1

|̂I
si,c

T
(k)|

∑
D̂

sj∈Î
si,c

T
(k) D̂

sj (k) ≥ 0.5

0 else
. (11)

Therefore, ifD̂si,c(k) = 1, Nsel > 1 nodes will be selected to
track the target during the next time step, while ifD̂si,c(k) =
0, Nsel = 1 nodes will be selected. The number of selected
nodes around a TOI, i.e.Nsel > 1, is a design parameter.

2) Distributed Sensor Node Selection: The Distributed
Sensor Node Selection (DSS) algorithm employs a multi-step
filtering process performed at each node to identify the optimal
nodes to track the target using their HPS devices at timek+1.
The selected nodes are the ones with the highest remaining
energy that also minimize the estimation error. The steps of
the sensor node selection are described below.

Step 1: The nodesi first locates the nodes within its
neighborhood that can detect a targetc in the detection region

Figure 3: Computation ofP siHPS(k)

around the target’s predicted position during the next timestep
to form a candidate setSdet, such that

Sdet = {sj ∈ (N si ∪ si) : ||usj − ẑsi,c(k + 1|k)|| ≤ Rs,b}, (12)

whereẑsi,c(k + 1|k) = h(x̂si,c(k + 1|k), k).
Step 2:Then,N ′

sel ≥ Nsel nodes are filtered fromSdet that
have the highest remaining energies. At this state, if nodesi ∈
Sdet, then it will broadcast it’s energy consumptionEsi(k)
to it’s neighbors. Then, the nodesi computes the predicted
remaining energy for each node inSdet as follows:

E
sj
R = 1−

(
Esj (k) + EHPS

E0

)
, ∀sj ∈ Sdet, (13)

whereEsj (k) is given in Eq. (2);EHPS = (eHPS + eRX +
eTX + eDPU )∆T is the predicted energy cost of the HPS
state during timek + 1; ∆T is the time duration for which
the nodesj will be in the HPS state if selected; andE0 is the
node’s initial energy. Next, each nodesj ∈ Sdet is ranked in
descending order of remaining energy. Then the setSE ⊆ Sdet
is selected to consist of the top rankedN ′

sel nodes.
Step 3: Finally, Nsel nodes are selected from the setSE ,

which are geometrically distributed around the target’s pre-
dicted position to minimize the estimation error. This is done
using the reciprocal of theGeometric Dilution Of Precision
(GDOP) measure [19] defined as

µ(S̃) = det(J(S̃))
trace(J(S̃))

, (14)

J(S̃) =
∑

sj∈S̃

1

σ2
φr

2
sj

[
sin2φsj −sinφsjcosφsj

−sinφsjcosφsj cos2φsj

]
,

wherersj is the range of sensorsj to the target’s predicted
position;φsj is the azimuth angle betweensj and the target’s
predicted position; and̃S ⊆ SE , s.t. |S̃| = min(|SE |, Nsel).
The optimal setS∗ ⊆ SE ⊆ Sdet is generated as

S∗ = argmax
S̃⊆SE

(µ(S̃)). (15)

Note thatS∗ is computed for each target track c.

3) Computation of the HPS Transition Probability: If si ∈
S∗ for any target track, then it should transition to the HPS
state to track the target during the next time step. As shown in
Fig. 3, it first computes its expected probability of detecting
the target based on target’s predicted position. Let

Λsi,c(k + 1) =

∫∫

G

P siD (x, y)N
(
ẑsi,c(k + 1|k), Σ̂si,c

z
(k + 1|k)

)
dxdy,

where G = {(x, y) : ||(x, y) − usi || ≤ Rs,b}. Then the
maximum probability of target detection over all tracks is

P siHPS(k) = max
c

{Λsi,c(k + 1)} , (16)
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Figure 4: Illustration of regions around a single target.

Table II: Partition Regions and Related Parameters.

Ω1 The detection region around each of them TOIs.
Ω2 The region in which a sensor cannot detect a target

but receives state information from all broadcasting
sensors withinΩ1.

Ω3 The region outsideΩ2.
AΩ1

, AΩ2
, AΩ3

Areas of regionsΩ1, Ω2, andΩ3, respectively.
S1, S2, S3 Sets of nodes inΩ1, Ω2, andΩ3, respectively.
S∗ Set of nodes selected inΩ1

S∗′ Set of nodes not selected inΩ1, s.t.S∗′ = S1 \ S∗.

E
S∗

, E
S∗

′

, E
S2 , Expected energy consumption per node in the

andE
S3 setsS∗, S∗′ , S2, andS3, respectively.

which it uses to transition to the HPS state as described in the
computation of state transition probabilities in Section 4-A.

5. NETWORK CHARACTERISTICS

This section presents the characteristics of the POSE.3C
network in terms of the expected energy consumption, network
lifetime, and the missed detection probabilities.

Consider thatm TOIs (or TNOIs) are present inΩ during a
time interval∆T . We partitionΩ into three regions as follows:

Ω1 =
⋃

τℓ

{
(x, y) : ||(x, y) − uτℓ || ≤ Rs,b

}
,

Ω2 =
⋃

τℓ

{
(x, y) : ||(x, y) − uτℓ || ≤ Rc

}
\ Ω1,

Ω3 = Ω \ (Ω1 ∪ Ω2) , (17)

which are defined in Table II and shown in Fig. 4.
The energy consumed per node in a∆T time interval is

computed based on its state and region as follows:

ESleep = eclock∆T,

EΩ1

LPS = (eLPS + eTX + eRX + eDPU )∆T,

EΩ1

HPS = (eHPS + eTX + eRX + eDPU )∆T,

EΩ2,Ω3

LPS = (eLPS + eRX + eDPU )∆T, and

EΩ2,Ω3

HPS = (eHPS + eRX + eDPU )∆T.

These were derived from Eq. (2) whereζsiTX(k) = 0 in regions
Ω2 andΩ3 since the nodes do not detect the target and thus
don’t broadcast any information; however they can still receive
the information from broadcasting neighbors.

Now, we present the POSE.3C network characteristics,
i.e. the expected energy consumption per unit time, network
lifetime, and the probability of missed detection. These are
presented via Theorems 5.1, 5.2, and 5.3, respectively. The

information about these characteristics enables the design of a
network with appropriate sensor density andpsleep to achieve
the desired lifetime and missed detection requirements.

A. Energy Consumption and Lifetime Characteristics

Theorem 5.1. The expected energy consumption of the
POSE.3C network during a∆T time interval is given as

E∆T = NselmE
S∗

+ (ρAΩ1
−Nselm)E

S∗
′

+

ρAΩ2
E

S2

+ ρAΩ3
E

S3

,

whereρ is the sensor network density;E
S∗

, E
S∗

′

, E
S2 , and

E
S3 are defined in Table II and given as

E
S∗

= EΩ1

LPSp
S∗

2 + EΩ1

HPSp
S∗

3 ,

E
S∗

′

= ESleepp
S∗

′

1 + EΩ1

LPSp
S∗

′

2 ,

E
S2

= ESleepp
S2

1 + EΩ2,Ω3

LPS pS2

2 ,

E
S3

= ESleepp
S3

1 + EΩ2,Ω3

LPS pS3

2 + EΩ2,Ω3

HPS pS3

3 ,

and [p1, p2, p3] are the steady state probabilities for the Sleep,
LPS and HPS states, respectively, which for each set of nodes
are given as follows:




p1
p2
p3




S∗

=




0

1− α
α



 ,




p1
p2
p3




S∗

′

=




1−α
2−psleep−α
1−psleep

2−psleep−α

0


 ,



p1
p2
p3



S2

=




1−pfa

2−psleep−pfa
1−psleep

2−psleep−pfa

0


 ,



p1
p2
p3



S3

=




(1−2pfa)
2−psleep−2pfa

(1−pfa)(1−psleep)
2−psleep−2pfa

pfa(1−psleep)
2−psleep−2pfa


 .

Definition 5.1 (Network Lifetime ). Consider a pathγ of
lengthL in the regionΩ that is taken by the maximum number
of targets. Now consider a cylindrical tubeΩγ ⊂ Ω of radius
Rs,b around this path, which contains the set of nodesSγ ⊂ S
that will die first in the network. The expected network lifetime,
TLife, is defined as the time when the energy of the nodes
within Ωγ reduces to a certain fractionη ∈ [0, 1), s.t.

∑
sj∈Sγ

(E
sj
0 − Esj (TLife))

∑
sj∈Sγ

E
sj
0

= η.

Theorem 5.2. The expected lifetime of a POSE.3C network is

TLife =
2ρRs,bLE0∆T (1− η)

E∆T

.

B. Missed Detection Characteristics

Definition 5.2 (Target Birth ). A target birth is the time
instance when a target appears in the deployment regionΩ.

Definition 5.3 (Mature Target ). A mature target is a target
that has travelled inside the regionΩ for sufficient time such
that node collaborations are taking place to track it.
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Figure 5: Validation of: (a) Theorem 5.1, (b) Theorem 5.2, (c)
Theorem 5.3 Part a, and (d) Theorem 5.3 Part b.

Theorem 5.3.The missed detection probability characteristics
of a POSE.3C network are given as follows:

a) For a target birth:

Pm,bir ≥ exp

(
−
πR2

s,aαχρ(1− psleep)

2− psleep − 2pfa

)
,

b) For a mature target:

Pm,mat ≥ exp


−

πR2
s,aαχρ

[
(1− psleep) +

Nsel

ρπR2

s,b

(1− α)
]

2− psleep − α


 ,

whereχ = 1+
2(1+βRs,a)
β2R2

s,a

(
1− (1+βRs,b)e

−βRs,b

(1+βRs,a)e
−βRs,a

)
.

C. Theorem Validations

In order to validate the theorems, the POSE.3C algorithm
was simulated in a1km x 1km deployment region. For a
thorough analysis,500 Monte-Carlo simulation runs were con-
ducted where the distribution of sensor nodes was regenerated
during each run according to a uniform distribution. Table III
lists the different simulation parameters.

To validate Theorems 5.1 and 5.2, the network character-
istics in terms of expected energy consumption and lifetime,
were evaluated against the number of targets present and the

POSE.3C
   TNOI 

POSE.3C
    TOI 

ANS POSE LPS-HPS    RAND
P

rand
 = 0.5

    RAND
P

rand
 = 0.25

    RAND
P

rand
 = 0

0

0.05

0.1

0.15

0.2

0.25

0.3
 = 1
 = 2
 = 3

Figure 6: Network Lifetime Comparison

design parameterpsleep. The network density was chosen
to be ρ = 4e−4 nodes

m2 . For Theorem 5.1,m targets were
deployed throughoutΩ according to a uniform distribution.
Subsequently, the average network energy consumption was
acquired over the different simulation runs. Fig. 5a shows
the comparison of the simulated vs theoretical results of the
average energy consumption for different number of targets
and for variouspsleep values. For Theorem 5.2, a tubeΩγ ⊂ Ω
was considered of lengthL = 600m and width2Rs,b = 180m.
The targets were simulated with an arrival rate such that an
average ofλ targets are traveling through the tube during
each time interval. The simulations were run until the network
reached its lifetime according to Defn. 5.1. In this manner the
network lifetimeTLife(λ, psleep) was computed for different
values ofλ and psleep. The lifetime is normalized by the
expected lifetime forλ = 0 andpsleep = 0.75. Fig. 5b shows
the comparison of the simulation and theoretical results for
the expected lifetime. As seen in both Figs. 5a and 5b, the
simulation results match the theoretical results. It is observed
that as we increasepsleep, the expected energy consumption
decreases while the expected lifetime increases.

To validate Theorem 5.3 Part a, a random target birth
was generated in the regionΩ at each time instance, while
to validate Part b, a moving target was generated travelling
through the region according to theDWNA model. The
probabilities of missed detection for target births and mature
targets were computed over the Monte-carlo runs by counting
the number of detections and misses. The simulations were
repeated for various network densities andpsleep values. The
probabilities are plotted in Figs. 5c and 5d, which show that
the simulation results match the theory. It is also seen that
Pm,mat is significantly lower thanPm,birth. This is because
node collaborations allow the network to activate their LPS
and HPS devices in advance to detect and track the target.

Table III: Simulation Parameters

eclock = 0.01W Rs,a = 60m b11 = b22 = 0.9
eLPS = 2.5mW Rs,b = 90m b12 = b21 = 0.1
eHPS = 22W Rc = 180m N ′

sel
= 5

eTX = 1.26W L = 600m σφ = 1◦

eRX = 0.63W α = 0.95 σR = 1m
eDPU = 1W β = 0.00171 συ,x = συ,y = 1m
E0 = 1.08MJ η = 0.05 σ

υ,ψ = 1◦

∆T = 0.5s pfa = 0.01 µcl = 0.025
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Figure 7: Distribution of Energy Remaining around a TOI

6. RESULTS AND DISCUSSION
To verify that the proposed network meets the performance

requirements presented in Section 3-C, this section presents
the results of the POSE.3C algorithm compared with exist-
ing methods. Specifically, POSE.3C is compared with the
following distributed scheduling methods: (1)Autonomous
Node Selection(ANS), (2) POSE (3)LPS-HPS Scheduling,
and (4) Random Scheduling. The ANS algorithm [19] is a
distributed sensor selection method that utilizes a cost function
that minimizes the Mean Square Error (MSE) based on the
GDOP. Here, the nodes collaborate in a distributed manner to
make the scheduling decision; however the sensor states are
only binary, i.e. passive (LPS) and active (HPS). The POSE
algorithm [4] is a primitive version of the POSE.3C algorithm
which does not include classification and sensor selection.The
nodes in the POSE algorithm are selfish and transition to the
HPS state if a target is predicted to travel within their coverage
area. Due to no sensor selection, it leads to a large number
of active nodes around a target resulting in significant energy
wastage. Additionally, the PFSA in POSE algorithm consists
of 4 states instead of3 with an additionalListening state.
The LPS-HPS Scheduling method is a distributed trigger-based
activation method where the sensor nodes remain in the passive
(LPS) state until a target is detected. Once a node detects
a target, it switches to the active (HPS) state. The Random
Scheduling method is a distributed method where the sensor
nodes probabilistically cycle between actively sensing (HPS)
and sleeping. Thus, during each time step the nodes sleep
with a probabilityPrand and sense the environment in the
HPS state with a probability1− Prand. Thus, forPrand = 0,
the sensor nodes are always sensing and whenPrand = 1,
they are always sleeping. Note that in both the LPS-HPS and
Random Scheduling methods, the nodes do not collaborate.

The sensor nodes are assumed to have a hydrophone ar-
ray [27] as the LPS device and an active sonar [28] as
the HPS device. Table III lists the different simulation pa-
rameters including energy costs, sensing parameters, process
noise parameters (συ,x, συ,y, συ,ψ), and measurement noise
parameters (σφ, σR). The network density,ρ = 4e−4, and
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Figure 8: RMSE of (a) Position and (b) Speed Estimates

design parameter,psleep = 0.5, are chosen to ensure that the
probability of missed detection for a mature target is less than
0.01. The number of sensor nodes selected to track a TOI is
chosen to beNsel = 3, while for a TNOINsel = 1.

First, the expected network lifetime of the POSE.3C and the
other methods is computed by varying the expected number
of targets,λ, that travel within a tubeΩγ ∈ Ω. The results
achieved are presented in Fig. 6 where each bar is normalized
by the expected lifetime of the POSE.3C network forλ =
0. As seen, the expected lifetime of the POSE.3C network
is higher than all of the other scheduling methods. Also, as
expected, the lifetime achieved by the POSE.3C network while
tracking TNOIs is higher than that of TOIs. Additionally, it
can be concluded that if there is a mix of TOIs and TNOIs
within the network, then the expected lifetime of the POSE.3C
network will lie between the POSE.3C TNOI and TOI values.

Next, the distribution of energy remaining around the targets
within a tubeΩγ ∈ Ω of the POSE.3C network is compared
with that of the ANS algorithm. For this comparison, the
expected number of targets within the tube is chosen as
λ = 1. Fig. 7 shows several snapshots of the remaining energy
distribution withinΩγ until TLife of the POSE.3C is reached.
As seen, the distribution of energy within the tube is much
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Table IV: Computation Times of the POSE.3C Components

JPDA Distributed Fusion Distributed Sensor Selection
TOI 1.4 ms 2.6 ms 0.37 ms
TNOI 1.3 ms 2.37 ms 0.36 ms

more uniform for the POSE.3C network as compared to the
ANS network. This is because the ANS network depletes the
energy rapidly near the track by always selecting the closest
sensors to minimize the tracking error, while the POSE.3C
network allows for energy based ranking while maintaining
tracking accuracy. A slight increase in energy on the sides
of the tube is seen due to boundary effects. Also, the ANS
network dies much more rapidly as compared to POSE.3C.

Additionally, the tracking accuracy is evaluated for each
network according to the Root Mean Squared Error (RMSE)
and is presented in Fig. 8. As seen in the figure, the POSE.3C
and ANS networks have very low tracking errors as compared
to the Random and LPS-HPS methods due to distributed fusion
and collaboration between neighbors. Additionally, this shows
that merging theListeningstate of the POSE algorithm with
the LPS and HPS states allows the POSE.3C network to lower
the RMSE error via node selection and fusion.

The complexity of the POSE.3C algorithm arises from the
JPDA, Distributed Fusion, and Distributed Sensor Selection
algorithms within the HPS and LPS states. The computational
complexity was analyzed by measuring the average times
taken for each of these processes and the results are shown in
Table IV. These average times were generated in a Matlab
environment on a i5 3.1 GHz CPU computer.

7. CONCLUSIONS

This paper developed the POSE.3C algorithm where a
distributed PFSA-based supervisor is embedded on each node
to enable/disable the heterogeneous devices on the node for
energy-efficient target tracking. The algorithm relies on a
3C network autonomy approach where targets of interest are
tracked by dynamic clusters of the most reliable and optimal
nodes. Theoretical characteristics of the POSE.3C network
have been established and validated in comparison with exist-
ing methods to show that the POSE.3C network significantly
increases the network lifetime while providing high tracking
accuracy and a low probability of missed detection.
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APPENDIX: THEOREM PROOFS

Proof of Theorem 5.1

The state transition probability matrices for nodes inS∗,
S∗′

, S2, andS3 are given as

PS∗

,




1 0 0
0 1− α α
0 1− α α



 ,

PS∗
′

,



psleep 1− psleep 0
1− α α 0
1− α α 0


 ,

PS2 ,




psleep 1− psleep 0
1− pfa pfa 0
1− pfa pfa 0


 ,

PS3 ,




psleep 1− psleep 0
1− pfa 0 pfa

0 1− pfa pfa


 . (18)

Note thatα is chosen as the best case conservative estimate
of P siHPS and P siD in PS∗

and PS∗
′

respectively. Similarly,
P siD = pfa in PS2 , while PS3 is constructed forN si

HPS = ∅.
Based on the above operators, the steady-state probabilities

of each state within each region are computed as follows
[
p1, p2, p3

]
=
[
p1, p2, p3

]
P,

s.t. p1 + p2 + p3 = 1. (19)

For PS∗

:

pS
∗

1 = 0, since a sleeping node cant be selected,

pS
∗

2 = (1− α)(pS
∗

2 + pS
∗

3 ),

pS
∗

3 = α(pS
∗

2 + pS
∗

3 ), pS
∗

3 = 1− pS
∗

2 ,

⇒ pS
∗

2 = 1− α, pS
∗

3 = α. (20)

For PS∗
′

:

pS
∗
′

1 = psleepp
S∗

′

1 + (1− α)(pS
∗
′

2 + pS
∗
′

3 ),

pS
∗
′

2 = (1− psleep)p
S∗

′

1 + α(pS
∗
′

2 + pS
∗
′

3 ),

pS
∗
′

3 = 0, pS
∗
′

1 = 1− pS
∗
′

2 ,

⇒ pS
∗
′

1 =
1− α

2− psleep − α
, and

pS
∗
′

2 =
1− psleep

2− psleep − α
. (21)

For PS2 : By replacingα with pfa in Eq. (21), we find
the steady-state probabilities aspS2

1 =
1−pfa

2−psleep−pfa
, pS2

2 =
1−psleep

2−psleep−pfa
, andpS2

3 = 0.

For PS3 :

pS3

1 = psleepp
S3

1 + (1− pfa)p
S3

2 ,

pS3

2 = (1− psleep)p
S3

1 + (1− pfa)p
S3

3 ,

pS3

3 = pfa(p
S3

2 + pS3

3 ), pS3

1 = 1− pS3

2 − pfap
S3

2

1− pfa
,

Solving the above and assumingp2fa << 1, we get

pS3

1 =
1− 2pfa

2− psleep − 2pfa
,

pS3

2 =
(1 − pfa)(1 − psleep)

2− psleep − 2pfa
,

pS3

3 =
pfa(1 − psleep)

2− psleep − 2pfa
. (22)

Next, we compute the expected number of sensor nodes in
each state per region. Since|S∗| = Nselm nodes are selected
aroundm targets in regionΩ1 we get:

N
Ω1

Sleep = (ρAΩ1
−Nselm)pS

∗
′

1 ; N
Ω2

Sleep = ρAΩ2
pS2

1 ;

N
Ω3

Sleep = ρAΩ3
pS3

1 ; N
Ω1

LPS = Nselmp
S∗

2 + (ρAΩ1
−Nselm)pS

∗
′

2 ;

N
Ω2

LPS = ρAΩ2
pS2

2 ; N
Ω3

LPS = ρAΩ3
pS3

2 ;

N
Ω1

HPS = Nselmp
S∗

3 ; N
Ω2

HPS = 0; N
Ω3

HPS = ρAΩ3
pS3

3 . (23)

Now, the average energy consumed by the network is

E∆T = ESleepN
Ω1

Sleep + EΩ1

LPSN
Ω1

LPS + EΩ1

HPSN
Ω1

HPS +

ESleepN
Ω2

Sleep + EΩ2,Ω3

LPS N
Ω2

LPS + EΩ2,Ω3

HPS N
Ω2

HPS +

ESleepN
Ω3

Sleep + EΩ2,Ω3

LPS N
Ω3

LPS + EΩ2,Ω3

HPS N
Ω3

HPS . (24)

Thus, putting the number of nodes derived above into
Eq. (24), we obtain the result of the theorem.

Proof of Theorem 5.2

Let the number of TOIs or (TNOIs) traveling throughΩγ
per ∆T time interval be represented by a Poisson process
given by

P (Nγ = mγ) = e−λ∆T
(λ∆T )

mγ

mγ !
. (25)

Then, the average number of targets inΩγ is Nγ = λ. Let
the average velocity of a target beV . Also, letL be the tube
length which the target travels. Then the expected number of
time intervals that a target spends inΩγ is T = L/(V∆T ).

LetTLife be the expected life of the network. Now, consider
multiple TOIs (or TNOIs) travelling in the tubeΩγ . These tar-
gets lead to a partition of the tube into three regions,Ω1γ , Ω2γ ,
andΩ3γ , as shown in Fig. 9. Note that these regions are similar
in characteristics to the regionsΩ1, Ω2, andΩ3, respectively,
except that these are defined within the tubeΩγ . To be conser-
vative, we assume that the targets have disjoint detection and
communication regions. Therefore, the expected energy con-
sumption of the sensor nodes in∆T time interval is as given in
Theorem 5.1, where the areas therein are replaced by the corre-
sponding areasAΩ1γ , AΩ2γ , andAΩ3γ . Here,AΩ1γ = λπR2

s,b;

AΩ2γ = λ
(
π(R2

c −R2
s,b)−R2

c(δ − sinδ)
)

, is the sector area

as shown in Fig. 9, whereδ =

(
π − 2tan−1

(
Rs,b√
R2

c−R
2

s,b

))
;
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Figure 9: Illustration of the tubeΩγ with 2 targets.

andAΩ3γ = 2LRs,b − (AΩ1γ + AΩ2γ ). Now, for the overall

lifetime, the total energy consumed is given asE∆T
TLife

∆T .
Using Defn. 5.1, we can then solve forTLife:

∑
sj∈Sγ

(E
sj
0 − Esj (TLife))

∑
sj∈Sγ

E
sj
0

= η,

⇒ 1− E∆TTLife
∆Tρ2Rs,bLE0

= η,

⇒ TLife =
2ρRs,bLE0∆T (1− η)

E∆T

.

Proof of Theorem 5.3

The probabilityq that an individual sensor nodesi sampled
from the deployment regionΩ detects the target, is represented
by a spatial Poisson process [25], such that

q = Pr {Deti = 1} = 1− e−ϕ(p2+p3), (26)

whereDeti = 1 denotes a detection, andϕ is the coverage
factor for the sensor which is computed as:

ϕ =
1

AΩ

(∫ Rs,a

0

2πrαdr +

∫ Rs,b

Rs,a

2πrαe−β(r−Rs,a)dr

)
. (27)

Using integration by parts and simplifying we get:

ϕ =
πR2

s,aα

AΩ

[
1 +

2(1 + βRs,a)

β2R2
s,a

(
1− (1 + βRs,b)e

−βRs,b

(1 + βRs,a)e−βRs,a

)]
.

(28)

Since the term within the square brackets in Eq. (28) is equal

to χ, ϕ =
πR2

s,aαχ

AΩ
. Herep2 + p3 is the probability that the

node is in the LPS or HPS state, and thus capable of detecting
the target. Since each sensor is statistically independentand
identical, the probability of exactlyκ sensor detections [25] is
given by Bernoulli trials as follows

Pr
{∑

Deti = κ
}

=

(
n

κ

)
qκ(1− q)n−κ. (29)

Then the probability of missed detections is given as

Pm = Pr
{∑

Deti = 0
}
=

(
n

0

)
q0(1−q)n = e−ϕ(p2+p3)n.

(30)

a) For a target birth: Since a target has just taken birth, the
entire deployment region follows the state transition probabil-
ities corresponding to the matrixPS3 , as given in Eq. (18).
Also, n = ρAΩ. Substituting forϕ, n, and pS3

2 + pS3

3 in
Eq. (30), the lower bound onPm for a target birth is given as

Pm,bir ≥ exp

(
−πR

2
s,aαχρ(1 − psleep)

2− psleep − 2pfa

)
.

b) For a mature target: Since the target is mature, node
collaborations are taking place to select the optimal nodesfor
target tracking. Thus, the chosen node could be a selected
node or a not selected node. Therefore, it follows the state
transition probabilities corresponding to the matrixPS⋆

or
PS∗

′

, respectively. Thus the probabilityp2+p3 to find a node
in the LPS or HPS state is given as

p2 + p3 =
Nsel
ρπR2

s,b

(pS
⋆

2 + pS
⋆

3 ) +
ρπR2

s,b −Nsel

ρπR2
s,b

(pS
∗
′

2 + pS
∗
′

3 ),

⇒ p2 + p3 =
Nsel
ρπR2

s,b

+
ρπR2

s,b −Nsel

ρπR2
s,b

(
1− psleep

2− psleep − α

)
,

⇒ p2 + p3 =
Nsel(1− α) + ρπR2

s,b (1− psleep)

ρπR2
s,b(2− psleep − α)

. (31)

Substituting forϕ, n, andp2+p3 in Eq. (30), the lower bound
on Pm for a mature target is given as

Pm,mat ≥ exp


−

πR2
s,aαχρ

[
(1− psleep) +

Nsel

ρπR2

s,b

(1− α)
]

2− psleep − α


 .

A. Comparison with POSE
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Figure 10: Comparison of POSE.3C vs. POSE, (a) Avg. %
energy savings, (b) MaturePm, and (c) BirthPm.

While Figs. 6 and Fig. 8 show the comparison of lifetime
and estimation errors with POSE, Figs. 10a, 10b, and 10c
show a comparison of energy savings and missed detection
characteristics. As seen in Fig. 10a, the average percent energy
savings of the POSE.3C network over POSE is∼ 90%. This is
because the POSE.3C network is minimizing redundant HPS
nodes via sensor selection. Additionally, the missed detection
characteristics in Figures 10b and 10c show that merging the
Listening state from the POSE algorithm into the LPS and
HPS states improves the network’s detection capabilities.
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