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POSE.3C: Prediction-based Opportunistic Sensing using
Distributed Classification, Clustering and Control in
Heterogeneous Sensor Networks

James Z. Hafe  Shalabh Guptd =~ Thomas A. Wettergrén

Abstract—This paper presents a distributed algorithm, activate their high power (e.g., active) sensing devicesattk
called Prediction-based_@portunistic Sesing using Distributed  the target, while distant nodes either switch to low powey.(e
Classification, Qustering and @ntrol (POSE.3C), for self adapta- passive) sensing to stay aware, or sleep to preserve energy.
tion of sensor networks for energy management. The underlyig . ’ ; T 7
3C network autonomy concept enables utilization of the targt The above supervisory control requires prgdlgtlve intelli
classification information to form dynamic clusters around the g€nce of target’s whereabouts to enable the distributeésiod
predicted target position via selection of sensor nodes witthe to pro-actively prepare for a target’s arrival and to form a
highest energies and maximum geometric diversity. Furtherthe  cluster with high power sensors activated around the target
nodes can probabilistically control their heterogeneous évices However, there could be a large number of nodes located
to track targets of interest and minimize energy consumptio ' - R
in a completely distributed manner. Theoretical properties of around the target, which (_:an lead to redundant _node activatl
the POSE.3C network are established and derived in terms and wasted energy. In this regard, the second issue addresse
of the network lifetime and missed detection characteristis. in this paper igistributed clusteringyia sensor node selection.
The algorithm is validated through extensive simulations vich  Current clustering approaches typically select nodesdase
demonstrate a significant increase in the networl_< I|fet|m_e 8 their distance to the target or detection capability [S]wiewer,
compared to other network control approaches, while providng . - .
high tracking accuracy and low missed detection rates. in appllcatlons where targets may frequently travel in tims

section (e.g., a lane) of the network, the current appraache

1. INTRODUCTION will select the same nodes again and again, thus depletaig th

Recent advancements in sensing, computing, and commu@fiergies and creating energy depleted lanes. Thus, itds als
cation technologies have enabBibtributed Sensor Networks Necessary to maintain uniform spatial distribution of reviney
(DSN) to evolve into intelligent systems that are capable §nergy in nodes around regions of frequent target visits. In
adaptive sensing and target tracking [1]. However, a majgHr approach, we pursue a multi-stage filtering process for
limitation that affects the long-term reliability of DSN the node selection that selects a group of nodes with the highest
limited availability of energy resources [2]. Once a grodp demaining energies and maximum geometrical diversitys Thi
nodes are depleted of energy, they fail to sense, causirggchisProcess improves target tracking accuracy as well asttateit
detections, and coverage gaps, which reduces networikidet uniform depletion of energy to minimize coverage gaps and
Thus, it is important to maximize the network lifetime viarmi further extend the network lifetime.
imizing the energy consumption per node, while maintaining In the distributed clustering framework, energy wastage
high tracking accuracy and low missed detection rates. ~ may still occur if clusters are formed arouffdrgets Not of

To address this issu€pportunistic Sensing2], [3], [4] Interest(TNOIs), while their primary goal is to trackargets
approaches have been proposed, where the objective is-to pfelnterest(TOls) [6]. For example, in a border surveillance
serve energy by activating nodes locally in the region adoudpplication, the TOls could be humans and vehicles, whie th
the target. The current approaches in this domain are maifl)YOls could be animals. Therefore, we incorpowitgributed
Cluster Head (CH) based [3] and only consider schedulidgssificationinto the clustering strategy to adapt the cluster
of binary operating states (On/Off). In contrast, curres-s Size€ based on the classification decisions. The objective is
sor nodes consist of multiple heterogeneous sensing devit@ activate Ns.; > 1 nodes around a TOI to improve the
consuming different amounts of power; thus, advanced h&stimation accuracy via distributed fusion, while acfivgt
erogeneous network control approaches are needed to enSiig 1 node around a TNOI to maintain awareness and pre-
energy-efficiency to maximize the network lifetime. In thigerve energy. This approach drastically improves the nétwo
regard, this paper presentsdéstributed supervisory control lifetime by opportunistic sensing only around TOls.
approach which probabilistically controls the heterogerse To address the above issues ofClassifica-

devices on each node, such that the nodes around the tafgét—Clustering—Control (3C network autonomy), this
paper presents a distributed algorithm, callBdediction-
" Department of Electrical and Computer Engineering, Ussitgrof hased Opportunistic Sensing using Distributed Classificat
Connecticut, Storrs, CT 06269, USA. . .
* Corresponding Author Email: shalabh.gupta@uconn.edu. C|USter'ng and ContrOI(POSE'?’C)' which manages the

 Naval Undersea Warfare Center, Newport, RI 02841, USA. heterogeneous devices on each node for energy-efficiency.
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Figure 1: lllustration of the POSE.3C algorithm with a P

As shown in Fig. 1, a distributed supervisor designed as a
Probabilistic Finite State AutomatofPFSA), is embedded on
each node to enable/disable its sensing and communication
devices. The PFSA states include: Sleep 2) Low Power
SensingLPS), and 3High Power SensingHPS). TheSleep
state disables all devices to minimize energy consumption.,
The LPS state enables the LPS devices for target detection,
while the HPS state enables the HPS devices for state
estimation and target classification. The transceiver lisetl

on in both LPS and HPS states for communication.

The state transition probabilities of the PFSA are dynam-
ically updated based on the target's predicted locations Th
information could be measured and computed locally by the
nodes and/or received from their neighbors. The nodesperfo

FBased distributed supervisor acting on each node.

ing optimal nodes that maximize remaining energy
and geometric diversity, and
— Distributed supervisory control: This PFSA-based
supervisor probabilistically enables/disables the het-
erogeneous devices on each node.
Theoretical derivation of the network’s performance char-
acteristics: (i) Expected energy consumption, (ii) Ex-
pected network lifetime, (iii) Probability of missed de-
tection for a target birth and for a mature target.
Comparative evaluation with other distributed methods
which show significant improvement in network lifetime,
high tracking accuracy, and low missed detection rates.

2. RELATED WORK

distributed fusion to identify the target's class (TOI or a The following subsections describe the existing classifica
TNOI) and predict its state during the next time intervalisThtjon and scheduling methods employed in sensor networks.

fused information is then used to form clusters of optimal

nodes. The selected nodes probabilistically transitioths A. Classification Methods in Sensor Networks

HPS state, while the nodes not selected cycle between th®iverse classification problems arise in sensor networks,
low power states (i.eSleepand LPS) to stay aware whileinclude classification of vehicles, soldiers, and pedassi7],
preserving energy. Fig. 1 illustrates this approach witteeh trespassers [8], [9], underwater mines [10], etc. Typycate

targets traveling through the network. As illustratdd,.; = 3

sensors detect acoustic signals, magnetic fields, or tafiec

nodes are activated in the HPS state around the TOIs, whalges, etc., that provide distinguishing features betwasget

only 1 node is activated around the TNOI.

The main contributions of this paper are as follows: on

classes. Some classification approaches were developed bas

kinematic features (e.g., range and azimuth of the tgrget

. Development of a distributed algorithm that improves th&hich compute the posteriori probability of the target ronti

lifetime of a heterogeneous sensor network, while pr&?0

del given the observed track, known as Joint Tracking and

viding high tracking accuracy with low missed detectio'assification [11], [12]. These methods are typically used

rates, via enabling 3C network autonomy as follows: radar/sonar applications (e.g., classifying commerdiakaft
s. fighter jets) and have a high computational complexity.

— Distributed classification: This governs the size of.. ; e .
. . ince centralized classification is impractical for larg8ND
dynamic clusters for tracking the target based on e )
. LS most networks perform CH-based classification by fusinglloc
target class inference to minimize energy wastage

. tecisions or features from each sensor node [7], [9]. Howeve

— Distributed clustering: This is done to form dynami hese approaches only deal with the classification problem a

clusters around the target’s predicted state via seleatlzj not address the 3C network autonomy problem



B. Network Control and Scheduling a communication device (transceiver), and a GPS device, as

Typical methods of network control deal with minimizingShown in the device layer of Fig. 1. The sensor suite includes
the number of active nodes around the target via sensor-sef@veral LPS devices (e.g. Passive Infrared sensors) fgettar
tion. This is achieved by Centralized or CH-based appraacHi€tection, and HPS devices (e.g. Laser rangefinder) fdiduart
[3], [11], [13], [14]. These methods select the optimal seas farget interrogation (e.g. bearing and range measurejnents
to track the target by maximizing/minimizing one of thdor clas_S|f|cat|on purposes addltllonall sensors could bd use
following cost functions: probability of detection [15tacking O identify target classes (e.g. vibrations sensors to ragpa
accuracy [16], energy [17], Kullback-Liebler distance,[6} Vehicles from humans). The transceiver allows the node to
other information theoretic measures [11], [18]. Howevelfansmit and receive information within its neighborhood.
the centralized approaches require frequent communicatfiote: This work does not consider communication issues
and heavy computational requirements of searching thesenihich will be studied in a future work.
network, thus making them impractical for large scale nefefinition 3.1 (Neighborhood). The neighborhood of a sen-
works. C_H-b_ased approaches [3], [11], [13], [14] improve thsoy nodes; € S is defined as
communication cost but are not robust to sensor failure. If a
CH were to fail, the entire cluster would stop receiving coht N & {s; € {8\ s} |[u¥ —u¥|| <R}, (1)
decisions, rendering a large coverage gap in the network.

To alleviate these pitfalls, DSN were proposed that allowhere R, is the communication radius of the node.
for robustness to node failure and energy-efficiency vianeve
triggered communication. Kaplan [19] proposed a local node
selection algorithm for DSN based on a cost function that E%i(k) = Zze;i_gji(k)AT’ )

kg

The energy consumed [22] by nodguntil time & is

minimizes the Mean Squared Error of the target state. This
approach was extended by utilizing the innovation of the

estimate [20] and using mutual information [21]. Whereeji denotes the rate of energy consumption per unit time
by a certain devicg € {DPU, LPS, HPS, transmitter (TX),
C. Literature Gaps receiver (RX), clock; (7' (k) € {0, 1} indicates whether the

device is ON or OFF at timé; and AT is the sample time

The following research gaps exist in the current ”teraturﬁ‘uterval. Thus, the total energy consumed by the network is
which are addressed in this paper: Ener (k) = Zn’ E% (k)
ne - i=1 .

1) Control of heterogeneous nodes has not been studied for
er_lergy-efficie_nt netwo_r_ks. The literature typically dealg Description of a Target
with 2 operating conditions e.g., ON and OFF. ) )
2) Control approaches are typically deterministic and not 1) Target Motion and Measurement ModelThe motion of
probabilistic; hence they lack robustness. a target;rs, is modeled as Biscrete White Noise Acceleration
3) Classification is not used for clustering and control;ahhi (PWNA) model [23]
extends the network lifetime by focusing only on TOls. _
The concept of 3C network autonomy is not proposed. x(k+1) = f(x(k), k) +v(k), (3)

4) DSN sensor selegtion methods do not optimize for bomwerex(k) 2 [x(k), @ (k), y(k), y(k), v (k)] is the target state
energy and tracking accuracy; hence they lead to NOgr time %, which includes the position and velocity inand
uniform depletion of energy. . _ y and the turning ratey(k); f(x(k), k) is the state transition

5) Technical literature does not provide theoretical guafiairix; andv(k) is the zero-mean white Gaussian noise with
antees_(_)f network _performan_ce (i.e., net_work I'fet'm%ovarianceE[v(k)v(k)’] — Q. The target is assumed to travel
probability of detection, and missed detection rates)s Thith a nearly coordinated turning model [23].
paper allows the network designer to predict network the Lps devices collect range and azimuth observations
performance based on their specifications. at each time stef, z(k) = (21 (k), ..., z,(k)), where each

3. PROBLEM FORMULATION observation is modeled as

2 i —
Let @ C R® be the ROl with areado. Let § = z;(k) = h(x(k),k)+w(k), (4)
{s1, s2,...s,} be the set ofn static sensor nodes randomly
deployed throughouf2, where nodes; € S is positioned at where h(x(k), k) is the nonlinear measurement model and
u® = (z%,y%) € Q. Let T = {m, 7o,...7,n} be the set oin  w(k) is the zero-mean white Gaussian measurement noise

targets traveling througfl. Let the position of a target, € 7 with covarianceE[w(k)w(k)’] = R(k). The observations
at time stepk be denoted aa™ (k) = (z™,y™)(k) € Q. z(k) also include false measurements which are generated
A. Description of a Sensor Node according to a Poisson distribution with mean [23].

Each static sensor node € S contains a sensor suite of Note: Detailed derivations of the above models are provided
heterogeneous sensing devices, a data processing unif(DPU[23] and are beyond the scope of this paper.
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Figure 2: Flowcharts for the algorithms within each statehef PFSA

2) Target Detection Model The detection model proposed The alphabet is defined as= {¢,0, 1}, wheree is the null

in [24] is adopted in this paper as follows:

symbol which is emitted when no information is availakie,
indicates no target detection, amdndicates target detection.

o d(7e,8:) < Rs.a The state se®® consists of three states: (1) Sleefy)(
Pri(u™)={ ae Pldles)—Raa) R <d(,s) < Rsp , (2) LPS @), and (3) HPS 43), as shown in Fig. 1, whose
Dfa else operations and transitions are described below.

whered(t,, s;) = |lu™—u®i||, « and$ are model parameters,
Rs., is the reliable sensing radius?,; is

sensing radius, ang;,

1 —

®)

A. Description of PFSA States and Transition Probabilities

Consider a sensor nodg € S. The operations within each
the maximum State of its distributed PFSA-based supervisor and update o
e—IAT s the false alarm its state transition probabilities are discussed below.

probability [25] with a rate off during aAT second scan. 1) Sleep State The Sleep staté, is designed to minimize

Note thatR. > 2R, ;. For an application specific node designthe energy consumption ef when the target is away or if the

a detailed sensor model can be substituted for Eq. (5).  node is not selected to track the target. It disables allisgns
and communication devices on the node except the clock.

C. Objective After every time intervalAT, the node can make a transition

The objective of the POSE.3C algorithm is to control tht the LPS state with a probability}, (k) = 1 — paieep OF it
heterogeneous sensing states of each node in a distribftdd Stay in the Sleep state with a probabilify (k) = psieep,
manner to achieve the following: (1) Improved network lifeWherepsice, is @ design parameter.

time (see Defn. 5.1), (2) Improved uniformity of energy 2) Lps state The LPS state, is designed to conserve

distribution in nodes around targets to prevent coveradesho energy while enabling target detection. In this state, tRSL

and (3) high tracking accuracy with low missed detectioasat geyices, the DPU, and the transceiver are powered on. Fig. 2a
shows the flowchart for the algorithm within the LPS state.

e Target Detection Here a target could be detected either
As shown in Fig. 1, each sensor node is controlled byhy: (i) using the LPS devices or (ii) fusing the information
distributed PF'S A-based supervisor as defined below. received from neighbors. If a target is present, then theaen

Definition 4.1 (PFSA). A PFSA is defined as atuple = = nOdeSf d.etects it with & pr_Obablht)Pf:’f as per Eq ).
(O, A, P), where e Distributed Collaboration Next, it checks if it has re-

. ©is a finite set of states ceived any information from its neighbors. L&t ., C N*
. - ' be the set of HPS sensors that have broadcasted the target
« Als afinite alphabet, - ~ state and class information tq. If information is received,
« »:©x©O —[0,1] are the state transition probabilities j ¢ xrs: . £ (), then the node; uses a collaboration algorithm
which form a stochastic matri®’ = [pi;], wherep;; = (see Section 4-B for details), which fuses the receivedrinfo
p(0:,6;), V05,05 € ©, 8.t.3 4o p(0,0") =1, V0 €. mation to obtain the fused state prediction and classifinati

4. POSE.3C-AGORITHM



decision. The fused information is used to form a cluster efhich leads to a class decisidn® (k) € {0, 1}, where0 and
optimal nodes,S*, to track the target. Ifs; € S*, then it 1 correspond to a TNOI and a TOI, respectively.
computes a probability’; (k) (see Eq. (16)) to transitionto 4 pjstributed Collaboration Next, if a target has been
the HPS state. On the other hand, if no information is reckivgjetected then node; broadcasts its target state estimates
Le. Nijpg = 0, then the node relies on its own detectios: (x|x) andS:* (k|k), the filter gain matrixW*: (k), and the

probability Py (k) to transition to the HPS state. classification decisionD*: (k). Sinces; is in the HPS state

e Updating the State Transition ProbabilitiesThe nodes; and has broadcasted information to it's neighbors, we define
updates it'sPFSA probabilities as follows: Hps = Nips U {s:}. However, if s; has not confirmed

o if (W5ps#0ands; € S¥), then a target track, thenV;/,o does not includes;. Then, if

S (k) = 0: pSi (k) = 1— PSio(k): pic(k) = PSio (k). ps # 0, it will run the collaboration algorithm (please
?;21( )S pq)”( 21 5 Hl:hs( Jres (k) = Prips (k) e Sedion 4-8 for details) in the same manner as in the LPS
o if Wips # 0 ands; ¢ 57), then state. This generates a fused state and class decisionh whic

?23(]“) - L= P (k); pos(k) = P (k); pas(k) =0, are then used to form the cluster of optimal sensor ndties
o if (Ngpg=10), then _ _ to track the target during the next time stepsife S*, then
p3i(k) =1 — Py (k); p3s(k) = 0; p3s(k) = PPy (k). it computesP;ip (k) in Eq. (16) to stay in the HPS state.

3) HPS state The HPS staté; is designed to (i) estimate _ * Updating -t.h_e State Transition Probabilities=inally, the
the target’s state and class using measurements from its I-PIJ:SSA proEabllltles are updated as follows:
devices and (ii) broadcast this information. Here, the HPSe if Wyips # 0 ands; € 57), then - .
devices, DPU, and transceiver are all enabled. Fig. 2c shows P3i(k) = 0; p35(k) = 1 = Pripg(k); pis(k) = Pripg(k),

the flowchart for the algorithm within the HPS state. o if (Wips # 0 ands; ¢ S*), then

e Data Association and State Estimatioin the HPS state, pai(k) =1 — Py (k); p3h(k) = Py (k); p3s(k) =0,
s; first receives a set of measurement§;), from its HPS o if (Njpg = 0), then
devices. Subsequently, the previous state estisaté —1|k— pyi(k) =0; p3y(k) = 1— Py (k); pa(k) = Ppi(k).

1), 3% (k — 1|k — 1) are updated using th#int Probabilistic
Data Association(JPDA) method [23] to generate® (k|k),
S5 (k|k). If the received measurements do not associate
the previous state estimate (e.g., when the target statetis
initialized), thens; must firs_t perform state_initialization [23]. B. Distributed Sensor Node Collaboration

The measurements received may contain false alarms, due to
clutter, which can generate false tracks at each node. Toens The distributed sensor node collaboration consists of the
that false tracks do not propagate throughout the netwoflistributed fusion, sensor node selection, and computatfo
nodes; utilizes theM-of-N Track Confirmation Logi26] to the HPS transition probability, as described below:
allow the network to be robust to false alarms. This approach1) Distributed Fusion This algorithm, shown in Fig. 2b,
ensures thad/ out of N consecutive measurements are assfuses the received target state estimates and classificd¢io
ciated to a target state estimate before the node confirmis tigions to produce the fused state estimate and class alecisi
it is not a false track. Furthermore, once the target track ha Consider a node; which could be in the LPS or HPS state.
been confirmed, the node can drop the trackl/iftonsecutive The information ensemble it receives consists of
measurements do not associate to it.

e Target Classification Next, s; performs target classi-
fication to determine the target class. To keep our conti@herexsi (k|k), 3% (k|k), W*i (k), and D% (k) correspond
algorithm general, it is assumed that the network designerthe state estimate, covariance, filter gain, and classidag
has developed a classifier (similar to those reported in Ses-the nodes; at time k.
tion 2) for the particular application and its performanse i However, due to noise and other factors, the information
represented by &onfusion MatrixB, as shown in Table I. received must first be validated to ensure that it is accurate

Table I: Confusion Matrix and reliable before processing. This is done by forming a set
of trustworthy neighbors/;' C N/, by evaluating the sum
of the position error as follows

Remark 4.1. The proposed approach is modular, i.e., the
%ocks in the flowcharts of LPS and HPS states could be
er]JI‘niShed by appropriate methods as suited for the appboat

I (k) = { (3,2, W™, D%),¥s; € Nijps}, ()

Estimated Class

TOI TNOI
True Class {8 (il 12 2 = {s; € Nifpg : Trace(H(k)S™ (k[k)H(k)) < £}, (8)

Then, nodes; classifies the target as a TOI with probability WhereH (k) is the Jacobian of the measurement model defined
in Section 3-B1 and¢ is the maximum tolerance of the

. 2 2 2
P (k)= T Li—  Given TOI ©) estimate. In this papeg, = ~227*7% \whereo, andoy, are
TOI

2
e Given TNOI ’ the standard deviations in the azimuth and range measutgmen




Z5 (ke + 11Kk

of the HPS sensor. Finally, node receives the following sl

trustworthy information:

Bi(k) = { (%%, 3%, W™, D%),Vs; € Nt }, ©)

Remark 4.2. The threshold¢ is the trace of the initialized , _ N _ )
covariance matrix, which is used to eliminate tracks assieci around the target's predicted position during the next titep
to mismatched models or clutter. to form a candidate sef.;, such that

Figure 3: Computation oP;; ¢ (k)

Next, the trustworthy information is associated to ensut®.: = {s; € (N* Us;) : [|[u¥ — 2°°(k + 1]k)|| < Rsp}, (12)

that it is related to the same target. In this work, frack- s, s,
- . o wherez®“(k + 1|k) = h(Xx*°(k + 1|k), k).
to-Track A tion Metho(l2TA) [23 d for th - i

o-Track Association Metho(T 2TA) [23] is used for this pur Step 2:Then,N!_, > N, nodes are filtered fron§,.; that

pose. This method associates the trustworthy informatitm i h the highest S ies. At this state. if node

C distinct groups which correspond to thedifferent targets Save chn 'ﬁ v(\a/ﬁl Lig‘:érégg ?':’]seregrllzsréy co:fsiri;’i(l)‘ﬁr?k)
i H . dets !

that could be present within the nodgs neighborhood; thus o it's neighbors. Then, the node computes the predicted

forming the information ensemblek “(k) C I3 (k), where - ¢ h node i follows.
¢ =1,...,C. Note thatC may be different than the true numbef€MaINING €Nergy for €ach Node dige; as Tollows.

i . s Esi(k)+ E
of targets pre_sent_ Ips:t]e RQI Subsequently, fo_r eacthe By =1- (k) HPS , Vs, € Saet, (13)
state information inl;*“(k) is fused to form a single state Ey

(%*¢(k|k)) and co_varianceicsivc(lﬂk)) estimate, using the where E%i (k) is given in Eq. (2):Enps = (emps + erx +
Track-to-Track Fusior(T2TF) algorithm [23]. erx + eppy)AT is the predicted energy cost of the HPS

Remark 4.3. T2TA associates targets based on their statgtate during timet 4 1; AT is the time duration for which
including position, velocity, and turning rate estimat@us, the nodes; will be in the HPS state if selected; aitg is the

two targets are separated if their state differs from eadheot N0de’s initial energy. Next, each nodg c Sq; is ranked in
even if they are spatially co-located. descending order of remaining energy. Then theSsetC S.:

_ . o is selected to consist of the top rankad,, nodes.
Once all the received state information is fused, negde Step 3: Finally, N,.; nodes are selected from the s,

computes a one-step predic.tion of the target's state usi@g {ynich are geometrically distributed around the targets-pr

Extended Kalman Filter [23]: dicted position to minimize the estimation error. This isido
(k411 = F&5C(kE). using the reciprocal of th&eometric Dilution Of Precision
otk + 1) (e (k|k), k), (GDOP) measure [19] defined as

Sk +1k) = F(k)E*(klk)F(k) +Q, (10) -
i i e . § = M (14)
where F(k) is the Jacobian of the state transition matrix tmce(J(g))’
evaluated atx®“(k|k). This predicted state is used in the - ,
distributed sensor node selection to identify the sensdeso J(g) — Z 212 { S s, —Sm¢52j008¢8j ’
to track the target during next time step. s —5iNQs,;COsPs; oS~ ¢s;

Furthermore, the associated target class decisiolis fifk)

are also fused together using the majority vote rule asviallo Wherers, is the range of sensor; to the target's predicted

position; ¢, is the azimuth angle between and the target’s
) 1 ~ ag. ) Sj i iti - £ S| = 1
Dee(hy { 1 zfm b etsieny D (k) > 0.5 redicted position; and C Sg, s.t.|S| = min(|Sg|, Nser)-

0 else - (1% he optimal setS* C Sg C Sy is generated as

- _ S* = argmaz(i(S)). (15)
Therefore, ifD*¢(k) = 1, N4 > 1 nodes will be selected to SCSk

track the target during the next time step, whilef “(k) = ote thatS* is computed for each target track c.

(r)]'oévesgl a?oinr:joge_?ovlvlll:. g;: je>le<1: te;\g aTdh;zSirg;mpl;er;r?]fets:rllected 3) Computation of the HPS Transition Probabilitylf s;
S§* for any target track, then it should transition to the HPS

2) Distributed Sensor Node SelectionThe Distributed state to track the target during the next time step. As shown i
Sensor Node SelectioXS S) algorithm employs a multi-step Fig. 3, it first computes its expected probability of detegti
filtering process performed at each node to identify thenogiti the target based on target's predicted position. Let
nodes to track the target using their HPS devices at fimé. .
The selected nodes are the ones with the highest remainthg“(k + 1) = // 1553 (%y)N(is“c(k + 1|k), 25(k + 1|/€))df€dy,
energy that also minimize the estimation error. The steps of ¢

the sensor node selection are described below. where G = {(z,y) : [[(z,y) — u™[| < Ry} Then the
. ... .._maximum probability of target detection over all tracks is
Step 1: The nodes; first locates the nodes within its

neighborhood that can detect a targét the detection region Piipg(k) = max{A**“(k+1)}, (16)




Target information about these characteristics enables the nledig
Location network with appropriate sensor density gng., to achieve
/ the desired lifetime and missed detection requirements.

A. Energy Consumption and Lifetime Characteristics

Theorem 5.1. The expected energy consumption of the
POSE.3C network during AT time interval is given as

’

- -8 -8
Figure 4: lllustration of regions around a single target. Ear = NsamBE~ +(pAg, — Nsam) £~ +
—=S2 —=Ss3
Table II: Partition Regions and Related Parameters. pAe B + pAa B,
- - . =5 =5 —s
h The detection region around each of heTOIs.  \yhere is the sensor network densit§;” , E~ , E -, and
Qo The region in which a sensor cannot detect a target_s, . . .
but receives state information from all broadcastingZZ ~ are defined in Table Il and given as
sensors withirf; . =5 Q1 St Q _S*
Q3 The region outsidé,. E ) = Eppspy + Eppsps
A,y Aq,yy A, Areas of region€2;, Q2, andQ3, respectively. —=S* s+ Q s*
S1, S2, S3 Sets of nodes if2;, Q2, andQ3, respectively. E = ESleeppl + ELPSp2 )
S* Set of nodes selected iy =52 S. 02,03 8
, , E = E 2 4 Eilatls 0o
S* Set of nodes not selected i, s.t. S* = S1 \ S*. s SteepP1” + épi P2 oo
—s* —s* — s S3 2,823, S3 2,823 53
E° , B , ESQ, Expected energy consumption per node in the E - E5l66pp1 + ELPS py” + EHPS P37,
—=S3 * *! . P
and & setsS”, §* , Sz, andSs, respectively. and [p1, p2, ps] are the steady state probabilities for the Sleep,

LPS and HPS states, respectively, which for each set of nodes

which it uses to transition to the HPS state as describedein %e given as follows:

computation of state transition probabilities in SecticA.4

s* s 1—o
p1 0 D1 PR —
5. NETWORK CHARACTERISTICS p2 | = 1—a |,| p = % ,
This section presents the characteristics of the POSE.3C P3 o b3 0
network in terms of the expected energy consumption, nétwor
lifetime, and the missed detection probabilities. Ss 1—pra Ss (1-2psa)
Consider thatn TOIs (or TNOISs) are present ift duringa | P! 2peicer—Pra p1 R T A
time intervalAT'. We partitionQ into three regions as follows: | P2 | = ﬁ | P2 | T e —2pra
D3 0 D3 Pra(1=psicep)
Ql _ U{(x7y) : ||(I,U) _ unz” < Rs,b}, 2—Psicep—2Pfa
T Definition 5.1 (Network Lifetime). Consider a pathy of
Q = U{(w,y) (w,y) —u™|] < Rc} \ Q1 length L in the region(2 that is taken by the maximum number
T of targets. Now consider a cylindrical tulse, C Q of radius
Q3 = Q\ (1 UQ), (17) R, around this path, which contains the set of nodesC S

that will die first in the network. The expected networkiife,
T'Life, is defined as the time when the energy of the nodes
within ., reduces to a certain fraction € [0, 1), s.t.
EY — Es(T ife
ESleep = eclockATa ZSjGS’Y( 0 s~( i )) ="
J
ZS]‘ ES—Y EO

which are defined in Table Il and shown in Fig. 4.
The energy consumed per node inAd" time interval is
computed based on its state and region as follows:

Efbs = (erps+erx +erx +eppy)AT,
Q _
E;H’;S = (emps+erx +enx +eppu)AT, Theorem 5.2. The expected lifetime of a POSE.3C network is
E3S = (eLps + erx + eppy)AT,and _ 2pRa s LEAT(1 — 1)
Efrﬁszg = (emps +erx +eppu)AT. Trife = - Trr .

These were derived from Eq. (2) whefg, (k) = 0 in regions

0, and Q3 since the nodes do not detect the target and thBs Missed Detection Characteristics

don’t broadcast any information; however they can stilefée  pefinition 5.2 (Target Birth). A target birth is the time

the information from broadcasting neighbors. _.instance when a target appears in the deployment regjion
Now, we present the POSE.3C network characteristics,

i.e. the expected energy consumption per unit time, netwdaefinition 5.3 (Mature Target). A mature target is a target

lifetime, and the probability of missed detection. These athat has travelled inside the regidn for sufficient time such

presented via Theorems 5.1, 5.2, and 5.3, respectively. That node collaborations are taking place to track it.
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0 0 POSE.3C POSE.3C ANS POSE LPS-HPS RAND RAND RAND
0 1 2 3 4 5 0 1 2 3 TNOI TOI Prand = O.5Prand =0.25 Prand =0
m. # of TOls in € N Expected £ oI TOISIn 2, Figure 6: Network Lifetime Comparison
(@) Ear (b) Trige
0.6 06 design parametepg..,. The network density was chosen
05l _E£05 to bep = 4e* %‘155. For Theorem 5.1yn targets were
,3_504 T o4 deployed throughouf2 according to a uniform distribution.
£ S Subsequently, the average network energy consumption was
% 03 Z 03 acquired over the different simulation runs. Fig. 5a shows
2 02 Z 02 the comparison of the simulated vs theoretical results ef th
. o1 = average energy consumption for different number of targets
and for variougg;e., values. For Theorem 5.2, a tube C Q2

> 3 2 was considered of length = 600m and width2R, ;, = 180m.
Network Density, p_, .4 The targets were simulated with an arrival rate such that an
average of)\ targets are traveling through the tube during
each time interval. The simulations were run until the nekwo

2 3 4
Network Density, p x10™

(€) Puu piren for target births (d) P, mat for mature targets

Simulated e e . .
b 0P —0 'ngu 2 ; 05 @ P =075 reached its lifetime according to Defn. 5.1. In this manter t
$Fotcep = 0 M Prteey = Tlh i s:“” = 0.5 @ Psieep = 0. network lifetimeT 1; r. (\, psicep) Was computed for different
eoretica ’ . f f
values of A and . The lifetime is normalized by the
= ~Fsleep = 0- _Psleep =0.25 Psleep =05- _Psleep =0.75 Psleep y

expected lifetime for\ = 0 and pgeep = 0.75. Fig. 5b shows
Figure 5: Validation of: (a) Theorem 5.1, (b) Theorem 5.3, (¢he comparison of the simulation and theoretical results fo
Theorem 5.3 Part a, and (d) Theorem 5.3 Part b. the expected lifetime. As seen in both Figs. 5a and 5b, the
simulation results match the theoretical results. It iseobsd
?nat as we increasgy..p, the expected energy consumption
decreases while the expected lifetime increases.

Theorem 5.3. The missed detection probability characteristic
of a POSE.3C network are given as follows:

a) For a target birth: i )
To validate Theorem 5.3 Part a, a random target birth

WR?,aaxp(l _psleep)> was generated in the regidn at each time instance, while

2 — Psicep = 2Pfa to validate Part b, a moving target was generated travelling
through the region according to thBW N A model. The

b) For a mature target: probabilities of missed detection for target births anduret

targets were computed over the Monte-carlo runs by counting

the number of detections and misses. The simulations were

repeated for various network densities ang., values. The

Pm,bir Z exrp <_

ﬂ-Rg,aaXp [(1 - psle@p) + pivj%%lb (1 - CY)}

Pm,mat Z erp | —

2 — Poleep — probabilities are plotted in Figs. 5¢c and 5d, which show that
the simulation results match the theory. It is also seen that

wherey — 1+ 2(14BR...) (1 B (1+3Rs,b)eﬂms,b) Py mat 1S signifi_cantly lower thanP,,, piy¢n- Thi; is beca\_use
B2RZ , (14+BRs,a)e P node collaborations allow the network to activate their LPS

C. Theorem Validations and HPS devices in advance to detect and track the target.

In order to validate the theorems, the POSE.3C algorithm

was simulated in alkm x 1km deployment region. For a Table 1ll: Simulation Parameters
thorough analysis00 Monte-Carlo simulation runs were con-
ducted wh the distributi f d @erat €clock = 0.01W Rs .o = 60m b11 = b2 = 0.9

ucted where the distribution of sensor nodes was regetera erps =25mW  Rop=90m by =by =01
during each run according to a uniform distribution. Table | emps =22W  Rc=180m N, =5
lists the different simulation parameters. erx = é-gg% L= 6003? 0y = 11°

. erx = 0. a=0. or = 1m

~ To validate Theorems 5.1 and 5.2, the network character- eppy =W B=00017T1 ope=0uy =1m
istics in terms of expected energy consumption and lifetime Eo = 1.08MJ n = 0.05 Opp = 1°

were evaluated against the number of targets present and the AT =0.5s Pra =0.01 Her = 0.025
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6. RESULTS AND DISCUSSION 2 Position RMSE 2 Speed RMSE
To verify that the proposed network meets the performan

requirements presented in Section 3-C, this section ptgese 15
the results of the POSE.3C algorithm compared with exisg
ing methods. Specifically, POSE.3C is compared with tt
following distributed scheduling methods: (Butonomous
Node SelectiofANS), (2) POSE (3)LPS-HPS Scheduling
and (4) Random SchedulingrThe ANS algorithm [19] is a

1

Error (

0.5

distributed sensor selection method that utilizes a costtian 0 50 100 150 200 0 50 100 150 200
that minimizes the Mean Square Error (MSE) based on tic Time (s) Time (s)
GDOP. Here, the nodes collaborate in a distributed manner to () (b)

make the scheduling decision; however the sensor states Legend

only binary, i.e. passive (LPS) and active (HPS). The POY -O POSE.3CTOI -7:-POSE.3CTNOI POSE —)-ANS -[I-LPS-HPS
algorithm [4] is a primitive version of the POSE.3C algonith | =+ RAND, P,4ng =0  RAND, Prgng = 0.25-¢-RAND, Prgpg = 0.5

which does not include classification and sensor selecfiba. ] - ]
nodes in the POSE algorithm are selfish and transition to thd-igure 8: RMSE of (a) Position and (b) Speed Estimates
HPS state if a target is predicted to travel within their cage design parametef.., = 0.5, are chosen to ensure that the
area. Due to no sensor selection, it leads to a large numpesbability of missed detection for a mature target is lésst
of active nodes around a target resulting in significant@ner0.01. The number of sensor nodes selected to track a TOI is
wastage. Additionally, the PFSA in POSE algorithm consisthosen to beV,.,;, = 3, while for a TNOI N, = 1.
of 4 states instead o8 with an additionalListening state. First, the expected network lifetime of the POSE.3C and the
The LPS-HPS Scheduling method is a distributed triggeethasother methods is computed by varying the expected number
activation method where the sensor nodes remain in theveassif targets,\, that travel within a tub&l, € Q. The results
(LPS) state until a target is detected. Once a node deteathieved are presented in Fig. 6 where each bar is normalized
a target, it switches to the active (HPS) state. The Randdiy the expected lifetime of the POSE.3C network for=
Scheduling method is a distributed method where the sensorAs seen, the expected lifetime of the POSE.3C network
nodes probabilistically cycle between actively sensin@$j is higher than all of the other scheduling methods. Also, as
and sleeping. Thus, during each time step the nodes slesgpected, the lifetime achieved by the POSE.3C networkavhil
with a probability P,..,q and sense the environment in théracking TNOIs is higher than that of TOIls. Additionally, it
HPS state with a probability — P.,,,4. Thus, forP,,,, = 0, can be concluded that if there is a mix of TOIs and TNOIs
the sensor nodes are always sensing and whepn, = 1, within the network, then the expected lifetime of the POSE.3
they are always sleeping. Note that in both the LPS-HPS anetwork will lie between the POSE.3C TNOI and TOI values.
Random Scheduling methods, the nodes do not collaborate. Next, the distribution of energy remaining around the tegge
The sensor nodes are assumed to have a hydrophonewdthin a tube(2, € Q of the POSE.3C network is compared
ray [27] as the LPS device and an active sonar [28] agth that of the ANS algorithm. For this comparison, the
the HPS device. Table Il lists the different simulation paexpected number of targets within the tube is chosen as
rameters including energy costs, sensing parameterseggoc\ = 1. Fig. 7 shows several snapshots of the remaining energy
noise parameterss, ., o y,0w,y), and measurement noisedistribution within{2, until 7'z, . of the POSE.3C is reached.
parameters «,, or). The network densityp = 4e~%, and As seen, the distribution of energy within the tube is much



Table 1V: Computation Times of the POSE.3C Component%]

JPDA Distributed Fusion Distributed Sensor Selection
TOI 1l4ms 2.6 ms 0.37 ms
TNOI 13ms 237 ms 0.36 ms [6]

more uniform for the POSE.3C network as compared to the
ANS network. This is because the ANS network depletes thil
energy rapidly near the track by always selecting the ctoses
sensors to minimize the tracking error, while the POSE.3@)
network allows for energy based ranking while maintaining
tracking accuracy. A slight increase in energy on the sid
of the tube is seen due to boundary effects. Also, the AN
network dies much more rapidly as compared to POSE.3C.
Additionally, the tracking accuracy is evaluated for eac
network according to the Root Mean Squared Error (RMS
and is presented in Fig. 8. As seen in the figure, the POSE.3C
and ANS networks have very low tracking errors as compar@d]
to the Random and LPS-HPS methods due to distributed fusion
and collaboration between neighbors. Additionally, thisgs [12]
that merging theListeningstate of the POSE algorithm with
the LPS and HPS states allows the POSE.3C network to lower
the RMSE error via node selection and fusion. [13]
The complexity of the POSE.3C algorithm arises from the
JPDA, Distributed Fusion, and Distributed Sensor Selactio
algorithms within the HPS and LPS states. The computation#sd]
complexity was analyzed by measuring the average times
taken for each of these processes and the results are shovv[QSi]n
Table IV. These average times were generated in a Matlab
environment on a i5 3.1 GHz CPU computer.

]

0]

[16]
7. CONCLUSIONS

This paper developed the POSE.3C algorithm where @)
distributed PFSA-based supervisor is embedded on each node
to enable/disable the heterogeneous devices on the node[f&r
energy-efficient target tracking. The algorithm relies on a
3C network autonomy approach where targets of interest are
tracked by dynamic clusters of the most reliable and optim[éP]
nodes. Theoretical characteristics of the POSE.3C network
have been established and validated in comparison witt-ex{go]
ing methods to show that the POSE.3C network significantly
increases the network lifetime while providing high trawuki [21]
accuracy and a low probability of missed detection.
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APPENDIX: THEOREM PROOFS Solving the above and assumip@a << 1, we get

Proof of Theorem 5.1 Sa 1—2pyq
. - . P = )
The state transition probability matrices for nodesSh, ! 2 — Psteep — 2Pfa
S*, S, andSs are given as oS = (I =pta)(1 = Dsicep)
r 1 0 0 2 2 - Psleep — 2pfa
P 2 10 1l-a a |, o Prall = Putecn) (22)
0 1—-a « 2_psleep _2pfa ]
- Next, we compute the expected number of sensor nodes in
s A Psteep 1 —Psteep 0 each state per region. Sing&*| = N,.,m nodes are selected
P = } —a « 8 ’ aroundm targets in regiorf); we get:
L (6% « —, S*/ — Qs Sa
DPsleep 1- DPsleep 0 NSleep = (pAﬂl - NSElm)pl ) NSleep = pAszl 3
P82 £ 1- Pfa Pfa 0 )
1—pra Dfa 0 VAL Ss. N S* s
L Ngieep = PA0sPT*s Npps = Nsamps + (pAq, — Nsam)ps ;
s A Psleep 1- Psleep 0
P = 1 —py 0 Pra |- (18) 9 Ss. 72 s
0 . 1—pra pfz Nips = pAa,ps*: Npps = pAa,py®;

Note thata is chosen as the best case conservative estimate, St = =0 Ss
of Pjips and P} in PS" and PS™ respectively. Similarly, ~ 775 — Neamps s Nygps =05 Nigps = pAaaps®. (23)

P} =py, in PS2, while PSs is constructed fo g =0 Now, the average energy consumed by the network is

Based on the above operators, the steady-state prokesbili
of each state within each region are computed as follows

Eo 2 Q; = Q =
%AT = EsieepNsteep + ErpsNips + EgpsNups +

—Q —Q —Q
EstcepN sieep + Ep35*Nips + Egvs' Nups +

[ P1,P2,P3 ] = [ P1,P2,P3 ]P7 B NQS n EQ27Q3NQ$ n EQ2793N93 (24)
st. p1+ps+ps=1. (19) SleeptV Sleep LpS *VLPS HPS *YHPS-

Thus, putting the number of nodes derived above into

S*.
For P= Eq. (24), we obtain the result of the theorem.
S* _ . .
p; = 0, since a sleeping node cant be selegcted Proof of Theorem 5.2
p5 = (1-a)p5 +p5) i
2 AL N ) Let the number of TOIs or (TNOIs) traveling througdh,
ps = alp; +p5 ), p5 =1-p5, per AT time interval be represented by a Poisson process
= pg* =1-aq, p‘g* =a. (20) given by
+ AAT)™
For PS" : P(N, =m,) = e—mT%. (25)
’ ’ ’ ’ m’y-
s s* S* S* —
PL = PsieepPi (1/_ a)(p3 s /)’ Then, the average number of targets(lp is N, = \. Let
5 = (1= psteep)rs +al@s +p5 ), the average velocity of a target b& Also, let L be the tube
R length which the target travels. Then the expected number of
s = 5% A= - Py time intervals that a target spends(¥y is T = L/(VAT).
= pf* — ;0‘7 and LetT 1. be the expected life of the network. Now, consider
~ Psleep — multiple s (or s) travelling in the tub@.,. These tar-
2 = Psteep — @ ltiple TOIs (or TNOIs) travell the tub@,. These t
s — Psleep ets lead to a partition of the tube into three regi , Qo
S (21) gets lead to a partition of the tube into th 9 Qo
2 — Psieep — @ and(2s., as shown in Fig. 9. Note that these regions are similar

in characteristics to the regioif;, 25, and(23, respectively,
except that these are defined within the tébe To be conser-
vative, we assume that the targets have disjoint detectidn a

For P52: By replacinga with pg, in Eq. (21), we find

_ HHS _ 1*pfa Sy
the steady-state probabilities pgz i E —— py? =

L=pstee - .
m, andp‘g82 =U. communication regions. Therefore, the expected energy con
For PSs- sumption of the sensor nodesA{’ time interval is as given in

Theorem 5.1, where the areas therein are replaced by the corr
PP = Psteeppi’ + (1= pra)p”, sponding aread 1, A%27, and A Here, A% = A\tR? ;;
P = (1= Dateep)p? + (1= pra)ps®, A% = X (=(R2 = R2,) = R2(3 — sind)), is the sector area

S3
P = pra(p5® +p3%), PPt =1-p5 — PjaPa as shown in Fig. 9, wheré = <7‘r — 2tan~! (L)>

L=pra’ VR,
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a) For a target birth: Since a target has just taken birth, the
entire deployment region follows the state transition piuib
ities corresponding to the matriRs, as given in Eq. (18).
Also, n = pAgq. Substituting fory, n, and pfS + p}f‘”’ in
2R, EO. (30), the lower bound oR,, for a target birth is given as

FR?,aaXp(l - psleep)
2 - DPsleep — 2pfa .

b) For a mature target: Since the target is mature, node
collaborations are taking place to select the optimal nddes
target tracking. Thus, the chosen node could be a selected
and A% = 2LR,, — (A" + A%). Now, for the overall node or a not selected node. Therefore, it follows the state
lifetime, the total energy consumed is given B2 £4=. transition probabilities corresponding to the mati®’ or

Pm,bir > exrp <_

Figure 9: lllustration of the tub&l, with 2 targets.

Using Defn. 5.1, we can then solve f@l;.: PS” | respectively. Thus the probabilipg + ps to find a node
s .. /7R in the LPS or HPS state is given as
Yo,es, (B = B (Tige)) g
Sj - 777
ZsjeSLEO B B Nger S pr Nger s s
| _BarTuy. p2+p3_pr2b(p2 +p5 )+ oI . vy +p3 ),
= R ———— S, S,
ATp2R,,LE, "
— 20Rs , LEQAT(1 — Neot  PTRZy = Neet [ 1= paee
= Trie = Plisb Lo ( 77)_ = po+ps = 21 .,b2 Psleep 7
Ear pTIE PR, 2 = Psteep — @
Proof of Theorem 5.3 Nser(1 = a) + prR3 (1 = psieep)
N o = pa+ps = e b L (31
The probabilityg that an individual sensor node sampled pTRZ (2 = Psieep — @)
from the deployment regiof? detects the target, is representegubstituting forp, n, andp, + ps in Eq. (30), the lower bound
by a spatial Poisson process [25], such that on P, for a mature target is given as
¢ =Pr{Deti=1}= 1—e 70, (26) TR2 jxp (1= pateey) + 2= (1 - )]
. . Pm ma > - =
where Det; = 1 denotes a detection, angd is the coverage mat = €ZP 2 — Psleep — @

factor for the sensor which is computed as:

1 Rsa Rqb A. Comparison with POSE
=1 / 2wradr +/ onrae P Rea) gr | (27)
Q 0

Rya -
. . . . o §100 &50‘15 150'8 ~-POSE
Using integration by parts and simplifying we get: - B o1 £ 06 = POSESC
Sk oo E ' B o4
R2 —BR., S e ® S
o= ™ s,aa |:1 + 2(1 + ﬁRs,a) (1 (1 + ﬁRs,b)e ' ):| = :3:0.05 E 0.2
= — — - 3
A PR, (14 BBy q)emPHee =89 4 = o 2 3 4 T 3 4
(28) Number of targets N; Network Density, p 104 Network Density, g, 104

Since the term within the square brackets in Eq. (28) is equal @ (®) ©

tox, p = RS «?X Herep, + p3 is the probability that the Figure 10: Comparison of POSE.3C vs. POSE, (a) Avg. %
node is in the IPS or HPS state, and thus capable of detectifigrgy savings, (b) Maturg,,, and (c) Birth P,,.

the target. Since each sensor is statistically indepenaieht _ ) _ _ o
identical, the probability of exactly sensor detections [25]is ~While Figs. 6 and Fig. 8 show the comparison of lifetime

given by Bernoulli trials as follows and estimation errors with POSE, Figs. 10a,_10b, and 10c
show a comparison of energy savings and missed detection
Pr {Z Det; = H} — <”> ¢"(1—q)"*. (29) Characteristics. As seen in Fig. 10a, the average percergyen
K savings of the POSE.3C network over POSEi90%. This is

Then the probability of missed detections is given as because the POSE.3C network is minimizing redundant HPS
nodes via sensor selection. Additionally, the missed dietec
B L (Y 0 vn = p(patpa)n characteristics in Figures 10b and 10c show that merging the
Pm = Pr {ZDetZ = O} = (o)q (1—-q)" = em7iparpart, Listening state from the POSE algorithm into the LPS and
(30) HPS states improves the network’s detection capabilities.
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