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+* Objective: Develop an online coverage path planning algorithm for an autonomous vehicle in unknown environment

+ Challenges:

Online detection and avoidance of
unknown obstacles

Generate back-and-forth path with
minimized turns and overlappings

Must guarantee complete coverage
and prevent any local extremum

Low computational complexity for
real-world applications

Trajectory of the Autonomous System
on the Simulation Platform

Unexplored

Speed x5

I Explored

Real-time Discovery and Exploration of the Environment

Known Layout

Unknown Environment

Obstacle

Forbidden
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UCONN State-of-the-art and Novel Contributions
< Existipg Apprqachei: . < Features and Novel Contributions of the €* Algorithm:
= Learning Real-time A* (LRTA*) *— Strong path overlappings = Produces the desired back-and-forth path
- Spannmg-‘tree C‘overage _ Generate spiral path " Does not need critical point detection on obstacles
. Ba-cktrackmg Spiral A'SQ"'thm with too many turns = Guarantees complete coverage and prevents the local
" Brick-and-Mortar Algorithm extrema problem using hierarchical potential surfaces
= Cellular Decomposition (back-and-forth path) (called MAPS)
> Re!Y on detection of cri’FicaI pgints (detgc’Fion gnd = Capable of adapting sweep direction in known sub-regions
pairing of IN & OUT critical points are difficult in to further reduce the number of turns
complex environment) = Computationally efficient for real-time applications

» Require cycle algorithm which leads to overlappings
» Cannot work in rectilinear environment

Critical Point
>

%

Coverage Path in a Cell

(a) Cellular Decomposition based Method!! Start (b) €” Algorlthm (C) Spanning Tree Coverage (d) Backtracking Splral Algorlthm
Number of Turns: 291 Number of Turns: 348 Number of Turns: 407

[11 E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar and D. Hull, 2002. Morse decompositions for coverage tasks. The international journal of robotics research, 21(4), pp.331-344.
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UCONN Tiling of the Search Area

J

/ﬁ]ing: ThesetT = {t, c R%:a = 1...|T|}is called a tilir@
of R if its elements:
i) have mutually exclusive interiors, i.e., T3 N rg =

?,Va # [, wherea,p € {1...|T|}.

. . . T :
ii) form a minimal cover; i.e., R EU!F'l T,, While removal

of any tile destroys the covering property.

&Cell: Each element 7, Va € {1, ...|T|}, is called an e-cell/

/7

s The tiling T is partitioned into three subsets:

=  Obstacle cells (T°): they are detected online.

= Forbidden cells (T'): create buffer around obstacles
= Allowed cells (T%): these are the target cells to cover

% Let R c R? be the estimated area that includes the desired area to cover.

Obstacle
Db
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— Obstacle Cells

Allowed Cells

Forbid

L 2 /
AN / //
den Cells

Tiling of the Search Area
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** The autonomous vehicle is equipped with:
1. Localization System

» Provides vehicle location (e.g., GPS), and heading (e.g.,
Compass)

€* Algorithm

The Autonomous Vehicle and e-Coverage

2. Range Detector with Sensing Radius R

> Allows the vehicle to detect obstacles in the local

neighborhood (e.g., laser)

3. Tasking Sensor with Radius 1

» Allows the vehicle to carry out certain tasks (e.g., cleaning,

target detection, crops cutting) while it operates in the field

covers R(T%), i.e.,

-

R(T*) cur_, t(k)

C—Coverage Let R(T%) denote the total area of the allowed cells. LQ
(k) € T? be the e-cell visited by the autonomous vehicle at time k
and explored by its tasking sensor. Then, R is said to achieve e-
coverage, if IK € Z*, such that the sequence {t(k),k = 1, ..., K}

/
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Obstacle Ce

Scanning Area
//>: -
Tasking Area \'l:)s

lls

\

r

N

.l

Allowed Cells

N

Forbidden Cells

/

/

The autonomous vehicle and the tiling
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UCONN The Supervisory Controller: Exploratory Turing Machine (ETM)
&ulti—sca/e Adaptive Potential \/ Exploratory Turing Machine \ / Machine States:
Surfaces(MAPS) | | MAPs = z | ST = Start
= € :tlme-varylng potential _AE (k)= -l/zL : CP = Compute
Slj)rface at the finest level : ’ cpt| | = WT = Waiting
= £, 1< £ < L:time-varying gl(k)=> e (o = FN = Finished
potential surfaces at higher e L /
K levels / EV(k)=> == (=0 wT
\ M Vehicle Location ~ /—7 Neighborhood ST/
cd 0
Autonomous p ~—
Vehicle h ~
/Input Vector i, t 3 Output Vector oy, )

= A1€{1,..|T|}: index of current cell Environment = cd € {mv,tk,id,sp}: command to
the vehicle, where: mv = Move,
tk = Task, id = Idle, and sp = Stop.
= ts € {cm,ic}, tasking status, where _

tem, ic ne 1S, W =  wp c{1,..|T|}, candidate set of

\ cm = Complete, or ic = Incomplete. / \ new waypoints for the vehicle /

= ol c{],..|T|}, indices of obstacle cells

6
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The Supervisory Controller: Exploratory Turing Machine (ETM)

UCONN
&ulti—scale Adaptive Potential \/ Exploratory Turing Machine \
Surfaces(MAPS) MAPS — FN
= £0: time-varying potential /><5’L(A)—)/ s C{’L
surface at the finest level : o
= €Y1 < ¢ < L:time-varying | gl(k)_) S = ]
potential surfaces at higher e Uil
K levels / E0 (k)= —= (=0 WwT
Mw Vehicle Location [—7 Neighborhood STJ

cd 0
Autonomous p
Vehicle b

1 1

Environment
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¢ Level 0 of MAPS

* Symbolic Encoding: each e-cell at level O, T 0, is
assigned with a symbolic state s 0, from below:

O
O
O
O

O: Obstacle
F: Forbidden
E: Explored
U: Unexplored

} Allowed cells

= Ppotential Surface €°:

Eo(k) =

-1
0
B o

a

ifs,o=00rF
ifsgo=E
ifs,o=U

where B = {Bo € {1, ..., Bpax}, @° = 1, ... |T°|} is
a time-invariant exogenous potential field. It is
designed offline to have plateaus of equipotential
surfaces along each column of the tiling.

* .
€” Algorithm
Dynamically Constructed Multi-scale Potential Surfaces (MAPS)

Obstacle U[UJU[UJU[UJU[U[U[U
U/u|UuUju|u[u[u[u]u
U/ulu[uju|u|u]u|u]u
U[U[U[U[U[U[U[U[U[U
u[ujulu]u[u]ufulu]u
’uuuuuuuuuu
: U|U[U|U[U[U[U[U[U[U
Vehicle U[U[U[U[U[U[U[U[U[U
Exploration Started U/U[U|U[U[U[U[U[U[U
Vehicle(uuuuuuuuu

. Location
Trajectory (E[E[UTUUTUJUU[UJU
X [E[U[U[U[U[U[U[U]U
AJE [U[U[U[u|U|U|U|U
E\E|U[F[F[F[F|[U[U[U
E|X|U[F [o][o][FulU]u
®) [E[JU[F [F[O[F[U]U[U
EE*UUFFFUUU
. . |E[ETE]U[u[uulululu
Exploration and Dynamic [FEEUUIUIUIUIUIU
Obstacle Discovery E[EJ[E]UJU[UJUU]U]U

Symbolic Encoding
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21

Exogenous Potential Field B l
Obstacle and Forbidden

Explored

Unexplored
Dynamic Potential Surface £° (k)
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UCONN Dynamically Constructed Multi-scale Potential Surfaces (MAPS)

LNote: Higher levels of MAPS are used to prevent the local extrema problem. J

Local Extrema: no unexplored cells are available in the local neighborhood on Level 0.

< Levels ¥ =1, 2, ... L of MAPS

= Potential Surfaces £¢, ¢ = 1, ... L, are constructed by assigning T7,¢ the average potential generated by all the
unexplored e-cells within 7, such that

€¢(k) = pY, (k) - B

where Eaf’ is the mean exogenous potential of 7 ¢, and pgg (k) is the probability of unexplored e-cells in T 4.
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s An lllustrative Example

Vehicle trajectory and obstacle layout

R

start ~t

Potentials B at Level O

* .
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UCONN An lllustrative Example: Updates of MAPS at Level O

8176|543 (2|1
8|7 |16|5|4]|3 |2 |1
8 (716|543 |2 |1
87165413 ]2]1
8|7 (6|54 (3|2 |1
87|16 |54 (3|2 |1
817 |6 |54 1|3 (2|1
8 (7 |6 |54 |3 (2|1

Symbolic encodings at Level 0

E|U|U |u|u]|u]|u]u
Eluluulufu]|ulu
E|F|F|F|ululu]u
E|F|o]|F |u|ufu]|u
ElFlo|F|lulu|ulu
E{F[F]Flulululu
Elu|u|ufulufulu
E{UJululufululu

N\
Ve
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Visualization of B \

3
2
N v
MAPS update on Level 0
0|7 [6 |5 (4 |3 (2|1
of|7 |6 |5 1|4 |3 |2 |1
0 |-1]|-1]|-1({4 |32 |1
0|-1|-1|-1|4 |3 |2 |1
Ol-11-1]-1{4 |3 |2 |1
O |-1(-1|-1({4 |3 |2 |1
0 (7 514 |13 (2|1
0|7 5114 (312 ]1

10




¥

UCONN

Visualization of B

* :
€” Algorithm
An lllustrative Example: Updates of MAPS at Level 1

Potentials B at Level 0 Symbolic encodings at Level O

:0’ LINKS
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8|7|6[5[4]3]2]1 EIU|U|U|U|U|U|U

8|7|6[5[4]|13|2]|1 ElUJU|(U|U|U|U|U

8|17|16|5|4(3|2]|1 E|F| FIFJUJUJU]U

8|17|6(5]4|3]|2]1 E[FIO|F|U|[U|U|U

8!7|16[5]/4[3]2]1 E[FIO|[F|U|U|U|U

g|7]6|5|al3]2]1 ELr|F[Flululu]u

8(7|6|5[4]|3[2]1 E[UJU|U|U|U|U|U

8(7|6]|5/4|3|2(1 EIUjU|U|UlUlU|U

/ l l MAPS update on Level 1 \

Average potential B Update probabilities p_, MAPS update
| I T [ | I | | | I T I

7.5 15513571 15 1 0511141 375 | 5.5 + 3.5 | 1.5 ;
: : ! I : : : I i : : '

75 T 557351 15 1 -0 T 0 11 11 010 1351151
i i ! i i i i i i i i i

" 75 17T 5571357 157 —0 1T 07T 1711 O T 0 135715 1
; ; ; ; : : : : : : : :
75+ 55+ 35 1 1.5 - - 05+ 14141 375 + 55 + 35 ¢+ 15
] ] | \ ] ] ] ] ] ] ] ]

\J

11




@ €* Algorithm @L'NKS

and Knowledge-Perception Systems

UCONN An lllustrative Example: Updates of MAPS at Level 2
Visualization of B Potentials B at Level 0  Symbolic encodings at Level O

g8l7[/6]|5[4[3]2]1 E|luju|uju|u|u]|u

gl7[/6]|5[4[3]2]1 ElU{u|u|u|u|u|u

@) [8]7]6]/5/4]3]2]1 E|F[F|F|lU]uU|U|U

8|7(6[5/4(3[2]1 E|F|O|F|lU|u|U|U

8|7]6]5/4]3]|2]1 E|F|O|F|lu|ululu

8[7(6|5/4(3[2]1 EIF|F|FlululUulu

8(7]|6|5(4(3]|2]|1 Elulu|lululululu

gl7(6]|s5|a3]2]1 E{U|u|u/u|u|u|u

/ l l MAPS update on Level 2\

Average potential B Update probabilities pgg MAPS update
6.5 2.5 — 0.375 1 — 2.4375 2.5
6.5 2.5 — 0.375 1 — 2.4375 2.5

12
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UCONN An Example of using MAPS to Prevent the Local Extrema Situation

Level 0 Neighborhood .
(9 e-cells scanned, no
unexplored cell found) .

Level 1 Neighborhood
/ (9 coarse cells scanned,
unexplored cell found)

I An unexplored e-cell is
Autono .. randomly selected as goal
from the coarse cell of
n Local
L—PL+1 ........ the highest potential

Symbolic Encoding at Level 0 : Symbolic Encoding at Level 1

Autonomous
vehicle

Local Extrema: no unexplored cells are
available in the local neighborhood on
Level 0.

Coarse cell with the
highest positive potential

Kl.ow Complexity: even in the worst-case \ Autonomous
scenario, it only takes O(IN°| + L - |N?|) vehicle
to find waypoints, where N is the local
neighborhood on Level £ of MAPS, £ = Potential Surface at Level 0 Potential Surface at Level 1 -

01,..,L
\C /

13




€*: The Supervisory Control Structure

The Exploratory Turing Machine (ETM)

Exploratory Turing Machine

e

=

/L/ { =

~

FN
cpt

ert| I\

|

1
o
& /=0

AW Vehicle Location [—7 Neighborhood

wT
S T

Enwronment

cd
Autonomous
Vehicle

] \

Machine States \
= The Start State (ST): start the machine and initialize

the MAPS with all e-cells as unexplored.

= The Computing States (CP):

> CP°: compute waypoint wp using Level 0 of

MAPS, and send navigation command cd.
> CPY,CP? ...,CPL: sequentially used to
compute wp in case of a local extremum.

= The Waiting State (WT): wait for the vehicle to

complete specific task (e.g., cleaning) in the cu
cell, until the status ts turns to complete

* The Finished State (FN): terminate the operat
upon complete coverage.

rrent

ioy

:0’ LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems
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Conditions:
A:wp =0; —A: wp#0)
B: wp=\; —B: wp# A\
C: ts=cm; =C: ts = ic
Input Vectors:
iy, = (A, ol,—)1p, = (—, —,15)
Output Vectors:
p1 — (Zd ) - (tk: _)

0p; = (mv, wp); 0p4 = (sp,—)

Legend:

Ll Input Vector

~ L, Output Vector
w=) State Transition

System
initialization

€” Algorithm @L'NKS

The State Transition Graph

( ————————— —_—
I [ FN } : Stop the autonomous vehicle
| | (complete coverage is achieved)
| — -
_A L?.‘@
/ \
~of CcPL \
Read: & 41()) I
Update: wp '
n : Use higher levels of MAPS to
o, A F o, | Prevent the local extrema problem
3 |
|
CP! |
Read: & 41()) I
Update:
-_Rae_w_p__// _e Op2
A o
o~ ——————— o~ = == - _p_l - Om - \
/
|
: ST cpP® B WT , Default states for
: Initialize: é;e « U, W Update: BIE 0, W/ If C is true, 1 vehicle navigation
| Updgte &+ 0,V Read: & y0()) update: &4« B, V0 | and control
[ et: wp =\ Update: wp l
NS SRRt 1;}——% ————— S
ipl —w‘l A B ip2

15
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When is it reached?
xAS soon as the autonomous vehicle is turned on.
4 . N\
What does it do?
s Initialization of the system. )

Operation in the ST State:

u Initialization:

o MAPSELVE=0,1,..L
. Level O: initialized with U, i.e. Unexplored.
» Llevel1 < ¢ <L:allcoarsecellst €T are
assigned potentials by substituting pg{; (0) =1.
o Initialize wp as the current cell A.

" Input: the input vector i,, contains the current vehicle

Output: Set the vehicle to idle via output vector o,

location A and detected obstacle locations ol
\ 1° /

€* Algorithm
Operation of the ETM: The ST State

Legend:

L] Input Vector
~1, Output Vector
w=) State Transition

—A

4

ST

Initialize: &¢ « U, V¢
Update: &¢ + O, V¢
Set: wp = A

)

zPl

=—

:0’ LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems

FN Conditions:
A:wp=0; —A: wp#0)
A I_I'OP4 B: wp=\; —B:wp#A\
L C: ts=cm; =C: ts=1ic
65 o) Input Vectors:
Read: A . .
Update‘/:VtLuP i = (0, =)idp, = (=, = ts)
' M
o) P1
A '—‘—' Pr 1o, = (mv wp) 0p4 — (Sp,—)
cp?!
Read: & 41())
Update: wp e Op,
*
A I_l—‘ Op
1 Op2
cp’ B WT
Update: &¢ « O, W/ If C is true,
Réa(éi Exo(M) update: £ « E, W/
pdate: wp

sz

16
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UCONN Operation of the ETM: The CP? State

/ e o \ L d-

When is it reached? ?eg&

Input Vect
Either after system initialization, or when the current cell — (I)lpu coror
) -» Output Vector

\has just been tasked and needs a new wp. )| w state Transition | _, 4
(What does it do? W
kDefault state to compute for wp on Level 0 of MAPS. y

erration in the CP° State: \

" Input: the input vector i,, contains vehicle location 4,

obstacle locations ol; they are used to update potential
surfaces €7, V¥,

=  Compute wp: the directly reachable neighbor cell with the

highest positive potential in the neighborhood N°:

wp(k) = arcmax o o€ 40

=  Qutput: If wp is found, send vector 0,, to move vehicle to
\ wp; and upon reaching, send vector o,,, to start tasking.

«  If wp not found, switch to state CP

OI)B <+

ST

Initialize: &¢ « 1
pdate: &¢ « O, Y/

FN
A I > Op,

CP!
Read: & ()
Update: wp

'

A ' " Op,

cP?
Read: g/l(/\)
Update: wp

Update: &%« O, W/
Read: & 0())
Update: wp

<§>L|NKS

Laboratory of Intelligent Networks
and Knowledge-Perception Systems

Conditions:

A:wp=10; =A: wp#0D

B: wp=2\; —B: wp# A\

C: ts=cm; =C:ts=ic
Input Vectors:

i'Pl = (A, ol, _);ipz = (—,—ts)
Qutput Vectors:

op, = (id,=); Op, = (tk,—)
Op3 = (mv, wp); 0p, = (sp,—)

wT

If C is true,
update: & « E, ¥/

Op, '

sz

17
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UCONN Operation of the ETM: The WT State
e N Legend: FN Conditions:
When is it reached? A Input Vector I . A: wp = (J))\ —A: wp # ?\
When the autonomous vehicle reaches the computed wp. ~. Output Vector A g 1;_' ;"p__' 2 ﬂB‘_ wp 7
N wed State Transition | _ g4 CPL pis=com; G ts = ic
e ~ Read: & y2(3) Input Vectors:
i ? ead: L . .
wclicicloco s UpdateJ:V'wp ip, = (A ol, —)iip, = (—, —,1s)
Command the vehicle to perform tasking (e.g., cleaning) in n Output Vectors:
\_the current cell. ) 4 o, | = (id,—);  0p, = (tk,—)
Op; « ' Pr 1o, = (mv,wp);0p, = (sp,—)
cP1
/ . Read: & 41()\)
Operation in the WT State Update: wp . 0y,
* Input: the input vector i, contains task status ts; if it A P 0y, r_'\
. . o
is complete, update current cell A as E, i.e., Explored, bz
then update potential surfaces £¢, V¥. po ' WT
«  Output: Initialize: &° + U, W/ Update: &« O, V/ If C is true,

k *  Otherwise, keep on waiting.

« If task status ts is complete, go to state CP° to
compute for the next wp

Update: & « 0, V¢ Read: & yo()\)

—

Set: wp = A 1 Update: wp ;
1 O A W
. v
zpl Zpl OT):3 _|Cﬂ A —|B

update: &¢ « E, W/

i

ZPz

18
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UCONN Operation of the ETM: The CP1, CP?, ... CPL States

When are they reached?

Legend: FN Conditions:
When waypoint wp cannot be found in CP? state. R Input Vector A:wp =0; —A: wp #0)
“1, Output Vector A I—l_' Ops | B: wp=2X; —B: wp#A\
What does it do? w State Transition N |G ts=cm; =C:ts =ic

Sequentially switches to higher levels of MAPS, until

Read: éDJVL(/\) ,ip] — (/\,Ol, _);,ip2 — (_, —,tS)
wp can be found at some Level £ < L.

Update: wp
QOutput Vectors:

L ,
CP J Input Vectors:

o |on = (id. =) 0p = (th,-)
A F p1 Ops = (mv,wp); OP4 = (sp,—)
@eration inthe CP?, ¢ = 1,2, ... L States \ CP
Read: & 41())
=  Compute wp Update: wp . 0y,
° . . . . — o
First, read the potentials in the local neighborhood A F Op, o f\
on Level 1 (i.e., Ey1(4)). . P2
« If37,1 € N1(1) with positive potential, then wp is ST CP B WT
set n unexplored e-cell in Initialize: £° ¢ U, ¢ Update: £« O, V! If C is true,
as an unexplored e-cell In 7 1. Update: £ + O, ¥/ ? Read: & y0()) update: &¢ « E, V¢
¢ Otherwise, go to CP? state and repeat above. Set: wp = A Update: wp ‘?
o
=  Qutput: If wp is found, sends output 0,, to move vehicle to ' p1 " M Op, '
wp; otherwise, sends 0, to set vehicle idle. / p, Ty, Opsy A AN-B Lps

19
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4 .. )
When is it reached?
When wp cannot be found in CP" state. J
p
What does it do?
Terminate operation since no unexplored cells are left. y

€* Algorithm
Operation of the ETM: The FN State

Legend:
L] Input Vector

1, Output Vector /
=> Stam

1A

(Operation in the FN State

= Ifwp = @ at Level L, it implies the ETM cannot find
unexplored e-cells at the highest Level L, then it reaches

the FN state and the machinery is terminated.

.

—

J

Theorem: The ETM halts in finite time!ll.
Corollary 1: Each allowed e-cell is tasked only oncell,

Corollary 2: e-coverage is achieved upon halting!ll.

Initialize: & « U, W/

ST

Update: &° + O, ¥/
Set: wp = A

r

zpl

|

-Fb
ot NS

Op3 —A A B

FN J Conditions:
A wp=0; —A: wp#0D
A t 7 Opy | B: wp=); =B wp#)\
C: ts = cm: C: ts = ic
L ' =
dcg o) Input Vectors:
Read: & 41 _ o _
Update: wp ip, = (A ol, =)itp, = (=, —,1s)
Output Vectors:
. op, = (id,~); 0, = (tk,—)
A g om | o = o)

cP!
Read: & 41(A)
Update: wp

A I_l_‘ Op,

cpP®
Update: & « O, ¥f
Read: & 40(A)
Update: wp

?’Pl

[1]J. Song and S. Gupta, “€*: An Online Coverage Path Planning Algorithm”, IEEE Transactions on Robotics, Vol. 34, Issue 2, pp 526-533, 2018.
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e O
Op, f\{
B i
ﬂ wT

If C is true,

—c update. &t E, L/
=
Op,

20




¢ Simulation Setup

=  Autonomous Vehicle: a Pioneer AT2 of
dimensions 0.44mXx0.38mXx0.22m was used
with kinematic constraints of:

= Top speed: 0.5m/s
=  Maximum acceleration: 0.5m/s?

" Minimum turning radius: 0.04m
=  Sensing systems
» Laser: detection range of 4m

= Search Area: the search area is of size 50mX
50m, which is partitioned into a 5050 tiling
consisting of e-cells of size 1ImX1m. This results
in MAPS with L = 5 levels.

Simulation Validations

NN Validations on the Player/Stage Robotic Simulator

Trajectory of the Autonomous System
on the Simulation Platform

Unexplored

- Explored

Obstacle

QL NkKs
0 Laboratory of Intelligent Networks

and Knowledge-Perception Systems

Real-time Discovery and Exploration of the Environment

Forbidden
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UCONN Scenario 1: Coverage Trajectories and Symbolic Encodings of the Environment

" ¢* incrementally builds the environment map, and complete coverage is achieved.

Unexplored
/  Obstacle

I

L )
Hf m Wﬂﬂ

(1) Coverage started with dynamic obstacle discovery
mn?f::m lanm
Ul’g
/Mft )
WMJ}[. cal Extremum

Il
I
(3) Escaping from another local extremum (4) Complete coverage achieved

— Forbidden

I
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@ Simulation Validations o

and Knowledge-Perception Systems

UCONN Scenario 1: Comparison with Alternative Methods
(a) €* Algorithm (b) Spanning Tree Coverage (c) Backtracking Spiral Algorithm (d) Brick & Mortar
' @'W 'ﬂ@cﬁ‘ UUUULLUY)
A O
] N
[uw’ @—ﬂj l i@ TR

il

Start Start Start

Trajectory Iength Number of turns

1153 1229.5 1214.3 1215.2

Il

€ FS-STC BSA B&M € FS-STC BSA B&M 23
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UCONN

** User-controllable Sweep Direction

= |f provided (partial) environment knowledge in
sub-regions, €* can adapt the sweep direction to

further reduce the number of turns.

= |n Scenario 2 below, the layouts of all rooms are
assumed known, but the inside obstacles are
unknown.

= Then, the field B was designed in a manner such
that the AV sweeps the top left room horizontally
while the other two rooms vertically

known

N

r

—
T~

2

Fig. Scenario 2

unknown

Simulation Validations @:«:}xg’eﬂg&?ﬂﬁﬁé@g;

Scenario 2: Adaptive Sweep Direction in Known Sub-regions

Use a priori knowledge of the
shape of this room to adapt
external potential surface for
adaptive sweeping direction

Use a priori knowledge of
the layout to initialize
potential surface of walls

Fig. Exogeneous potential field B in Scenario 2 ”




@ Simulation Validations &’“NKS

UCONN Scenario 2: Adaptive Sweep Direction in Known Sub-regions

= User-controllable Sweep Direction: If provided (partial) environment knowledge in sub-regions, the sweep direction can be
adapted to further reduce the number of turns. This is done by altering the exogeneous potential field B.

Scenario 2: Coverage trajectory of €* in an apartment scenario Trajectories of alternative methods
— .__J t——“
Adaptive %—“ l
Sweep 4 i
) Direction

. L7
(1) Coverage started with dynamic obstacle discovery (2) Adaptive sweeping if layout is a priori known Spiral Endings

BSA
[ e—x=n { ) ———— - '{ | m nnn
"4 4 1796.5
A\ | \1 244 239 1524.9 1579.1
JUU ) 192
F P
. JUUL e J\ JJUUL/L““ € FS-STC BSA € FS-STC BSA
(3) Adapt to the shape of obstacle (4) Complete coverage achieved Number of turns Total trajectory length
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and Knowledge-Perception Systems

@ Performance Evaluation ¢§>“NKS

UCONN Coverage Performance under Uncertainties
% Coverage Ratio 1_.: % Monte Carlo Simulations: The sensor noise are simulated as
U 7(k) Additive White Gaussian Noise (AWGN), with:
e = —R(T“) » Localization System: 0 = 0.05m, 0.10m, ... 0.25m

* Compass: 0¢pmpass = 0.5°
» Laser Measurements: 0;,.. = 1.5cm
¢ Sources of Uncertainties:
= Localization System:

, . _ , Coverage ratio vs. noise for ten Monte Carlo runs
o Outdoor: Real-time Kinematic (RTK) GPS can achieve

an accuracy of 0.05m~0.5m!*. 14 g& 0-é98 0.991 | |
o Indoor: Hagisonic StarGazer indoor localization 0.999  0.997 -
system provides precision of 2cm. 00.98
= Compass: a modestly priced compass provides an é
accuracy of 1°01, © 0.96
= Laser Measurements: a laser sensor typically admits an g
error of 1% of its operation range. 2 0.94 ¢ 0.944
o
0.92 - ——Scenario 1| -
——S8cenario 2
0.9 ' ' ‘
0 0.05 0.1 0.15 0.2 0.25

Noise Level (o)

[1] L. Paull, S. Saeedi, M. Seto, and H. Li, “Auv navigation and localization: A review,” IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131-149, 2014.
[2] J. Palacin, J. A. Salse, I. Valganon, and X. Clua, “Building a mobile robot for a floor- cleaning operation in domestic environments,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 5, pp.
1418-1424, 2004. 26




Performance Evaluation @“NKS
UCONN Choosing a Proper Sized €

¢ Selection of the Size of €:
=  Should be big enough to contain the autonomous vehicle, and small enough for the tasking sensor to be able to cover it.
=  Within these two bounds, the choice of € depends on the following factors:
o Smaller €: provides a better approximation of the search area and its obstacles.

o Larger €: reduces the computational complexity by requiring less number of € -cells to cover the area and it also provides
improved robustness to uncertainties for localization within a cell.

Tiling: 50 cells by 50 cells  Tiling: 45 cells by 45 cells  Tiling: 40 cells by 40 cells Tiling: 35 cells by 35 cells ! Tiling: 50 cells by 50 cells Tiling: 45 cells by 45 cells  Tiling: 40 cells by 40 cells  Tiling: 35 cells by 35 cells
€=1m €=1111m € =1.25m € = 1.429m e=1m e=111m €=1.25m € =1.429m

Figure 1. Scenario 1: coverage trajectories for varying size of € Figure 2. Scenario 2: coverage trajectories for varying size of € .




% Real Experiments AL

UCONN The Autonomous Ground Vehicle (AGV)

¢ €* algorithm was validated in real laboratory-scale experiments to address An AGV integrated with multiple sensing devices
real-life uncertainties in sensing and vehicle control e

R/

ST
*»* iRobot Create was used as the AGV, which is programmable and controllable S ;
using feedbacks from popular sensing devices

Table. Specifics of the on-board sensing systems

Localization Laser Ultrasonic
Model StarGazer URG-04LX XL-MaxSonar-EZ
Range — 0.02m ~ 5.6m,240° 0.2m ~ 7.65m
Resolution lem, 17 1mm,0.36° lem
Accuracy 2cm, 1° +1% of Measurement -
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