



# $\epsilon^*$ : An Online Coverage Path Planning Algorithm

This work has been published in:

**J.** Song and S. Gupta, " $\epsilon^*$ : An Online Coverage Path Planning Algorithm", *IEEE Transactions on Robotics*, Vol. 34, Issue 2, pp 526-533, 2018.

Videos Available: These slides contain videos that are accessible online at: https://linkslab.uconn.edu/videos/

The copyright of this presentation is held by the authors and the LINKS lab.



### $\boldsymbol{\epsilon}^{\star}$ : Online Coverage Path Planning in Unknown Environment

• Objective: Develop an online coverage path planning algorithm for an autonomous vehicle in unknown environment

### Challenges:

- Online detection and avoidance of unknown obstacles
- Generate back-and-forth path with minimized turns and overlappings
- Must guarantee complete coverage and prevent any local extremum
- Low computational complexity for real-world applications





### **Coverage Path Planning Algorithms**

State-of-the-art and Novel Contributions



### Existing Approaches:

Learning Real-time A\* (LRTA\*) Strong path overlappings

Generate spiral path

with too many turns

- Spanning-tree Coverage
- Backtracking Spiral Algorithm
- Brick-and-Mortar Algorithm
- Cellular Decomposition (*back-and-forth* path)
  - Rely on detection of critical points (detection and pairing of IN & OUT critical points are difficult in complex environment)
  - Require cycle algorithm which leads to overlappings
  - Cannot work in rectilinear environment





#### **\*** Features and Novel Contributions of the $\epsilon^*$ Algorithm:

- Produces the desired back-and-forth path
- Does not need critical point detection on obstacles
- Guarantees complete coverage and prevents the local extrema problem using hierarchical potential surfaces (called MAPS)
- Capable of adapting sweep direction in known sub-regions to further reduce the number of turns
- Computationally efficient for real-time applications



Number of Turns: 348



(d) Backtracking Spiral Algorithm Number of Turns: 407







- ♦ Let  $\mathcal{R} \subset \mathbb{R}^2$  be the estimated area that includes the desired area to cover.
- *Tiling*: The set  $T = \{\tau_{\alpha} \subset \mathbb{R}^2 : \alpha = 1 \dots |T|\}$  is called a tiling of  $\mathcal{R}$  if its elements:
- i) have mutually exclusive interiors, i.e.,  $\tau_{\alpha}^{o} \cap \tau_{\beta}^{o} = \emptyset, \forall \alpha \neq \beta$ , where  $\alpha, \beta \in \{1 ... |T|\}$ .
- ii) form a minimal cover, i.e.,  $\mathcal{R} \subseteq \bigcup_{\alpha=1}^{|T|} \tau_{\alpha}$ , while removal of any tile destroys the covering property.

*ϵ Cell*: Each element  $\tau_{\alpha}$ ,  $\forall \alpha \in \{1, ..., |T|\}$ , is called an *ϵ*-cell.

- The tiling T is partitioned into three subsets:
  - **Obstacle cells** (*T*<sup>o</sup>): they are detected online.
  - *Forbidden cells* (*T<sup>f</sup>*): create buffer around obstacles
  - Allowed cells (T<sup>a</sup>): these are the target cells to cover



Tiling of the Search Area



### $\epsilon^*$ Algorithm The Autonomous Vehicle and $\epsilon$ -Coverage



#### The autonomous vehicle is equipped with:

- 1. Localization System
  - Provides vehicle location (e.g., GPS), and heading (e.g., Compass)
- 2. Range Detector with Sensing Radius  $R_s$ 
  - Allows the vehicle to detect obstacles in the local neighborhood (e.g., laser)
- 3. Tasking Sensor with Radius  $r_t$ 
  - Allows the vehicle to carry out certain tasks (e.g., cleaning, target detection, crops cutting) while it operates in the field

**ϵ**-Coverage Let  $\mathcal{R}(T^a)$  denote the total area of the allowed cells. Let  $\tau(k) \in T^a$  be the  $\epsilon$ -cell visited by the autonomous vehicle at time k and explored by its tasking sensor. Then,  $\mathcal{R}$  is said to achieve  $\epsilon$ -coverage, if  $\exists K \in \mathbb{Z}^+$ , such that the sequence { $\tau(k), k = 1, ..., K$ } covers  $\mathcal{R}(T^a)$ , i.e.,

 $\mathcal{R}(T^a) \subseteq \cup_{k=1}^K \tau(k)$ 



The autonomous vehicle and the tiling



### $\epsilon^*$ Algorithm The Supervisory Controller: Exploratory Turing Machine (ETM)







### $\epsilon^*$ Algorithm The Supervisory Controller: Exploratory Turing Machine (ETM)



**Exploratory Turing Machine** MAPS FN  $\mathscr{E}^L(k)$  $CP^{L}$  $CP^1$  $\mathscr{E}^1$ (k= $CP^0$ q = $\mathscr{E}^0(k)$ = WT = 0ST Vehicle Location Neighborhood cd  $\boldsymbol{i}_p$  $\boldsymbol{o}_p$ Autonomous wpVehicle

Multi-scale Adaptive Potential Surfaces(MAPS)

- E<sup>0</sup>: time-varying potential surface at the finest level
- $\mathcal{E}^{\ell}$ ,  $1 \leq \ell \leq L$ : time-varying potential surfaces at higher levels







### Dynamically Constructed Multi-scale Potential Surfaces (MAPS)

 $\boldsymbol{\epsilon}^{\star}$  Algorithm

### Level 0 of MAPS

- **Symbolic Encoding**: each  $\epsilon$ -cell at level 0,  $\tau_{\alpha^0}$ , is assigned with a symbolic state  $s_{\alpha^0}$ , from below:
  - 0: Obstacle
  - o F: Forbidden
  - *E*: *Explored U*: *Unexplored*
- Allowed cells
- Potential Surface ε<sup>0</sup>:

$$\mathcal{E}_{\alpha^0}(k) = \begin{cases} -1 & \text{if } s_{\alpha^0} = 0 \text{ or } F \\ 0 & \text{if } s_{\alpha^0} = E \\ B_{\alpha^0} & \text{if } s_{\alpha^0} = U \end{cases}$$

where  $B = \{B_{\alpha^0} \in \{1, ..., B_{\max}\}, \alpha^0 = 1, ..., |T^0|\}$  is a time-invariant exogenous potential field. It is designed *offline* to have plateaus of equipotential surfaces along each column of the tiling.









*Note:* Higher levels of MAPS are used to prevent the local extrema problem.

*Local Extrema:* no unexplored cells are available in the local neighborhood on Level 0.

### **\*** Levels $\ell = 1, 2, \dots L$ of MAPS

• **Potential Surfaces**  $\mathcal{E}^{\ell}$ ,  $\ell = 1, ... L$ , are constructed by assigning  $\tau_{\alpha^{\ell}}$  the *average* potential generated by all the *unexplored*  $\epsilon$ -cells within  $\tau_{\alpha^{\ell}}$ , such that

$$\mathcal{E}_{\alpha^{\ell}}(k) = p^{U}_{\alpha^{\ell}}(k) \cdot \overline{B}_{\alpha^{\ell}}$$

where  $\bar{B}_{\alpha^{\ell}}$  is the mean exogenous potential of  $\tau_{\alpha^{\ell}}$ , and  $p_{\alpha^{\ell}}^{U}(k)$  is the probability of *unexplored*  $\epsilon$ -cells in  $\tau_{\alpha^{\ell}}$ .







An Illustrative Example: Updates of MAPS at Level 0





# $\boldsymbol{\epsilon}^{\star}$ Algorithm



### An Illustrative Example: Updates of MAPS at Level 1



| Potential | ls <i>B</i> | at | Level | 0 |  |
|-----------|-------------|----|-------|---|--|
|           |             |    |       |   |  |

Symbolic encodings at Level 0



| Ε | U | U | U | U | U | U | υ |
|---|---|---|---|---|---|---|---|
| Ε | U | U | U | U | U | U | U |
| Ε | F | F | F | U | U | U | U |
| Ε | F | 0 | F | U | U | υ | U |
| Ε | F | 0 | F | U | U | U | U |
| Ε | F | F | F | U | U | U | υ |
| Ε | U | U | U | U | U | U | U |
| F | U | U | U | U | U | U | U |





### $\epsilon^*$ Algorithm An Illustrative Example: Updates of MAPS at Level 2











An Example of using MAPS to Prevent the Local Extrema Situation



Local Extrema: no unexplored cells are available in the local neighborhood on Level 0.

**Low Complexity:** even in the worst-case scenario, it only takes  $O(|N^0| + L \cdot |N^\ell|)$  to find waypoints, where  $N^\ell$  is the local neighborhood on Level  $\ell$  of MAPS,  $\ell = 0, 1, ..., L$ .





# $\boldsymbol{\epsilon}^{\star}$ : The Supervisory Control Structure

The Exploratory Turing Machine (ETM)



### **Machine States**

- The Start State (ST): start the machine and initialize the MAPS with all ε-cells as unexplored.
  - The Computing States (CP):
    - CP<sup>0</sup>: compute waypoint wp using Level 0 of MAPS, and send navigation command cd.
    - CP<sup>1</sup>, CP<sup>2</sup> ..., CP<sup>L</sup>: sequentially used to compute wp in case of a *local extremum*.
- The Waiting State (WT): wait for the vehicle to complete specific task (e.g., cleaning) in the current cell, until the status ts turns to complete
- The Finished State (FN): terminate the operation upon complete coverage.



**Conditions:** Stop the autonomous vehicle FN  $\mathcal{A}: \boldsymbol{w} \boldsymbol{p} = \emptyset; \quad \neg \mathcal{A}: \, \boldsymbol{w} \boldsymbol{p} \neq \emptyset$ (complete coverage is achieved)  $\mathcal{B}: wp = \lambda; \neg \mathcal{B}: wp \neq \lambda$  $\bullet o_{p_4}$  $\mathcal{C}$ :  $ts = cm; \neg \mathcal{C}$ : ts = ic $\mathcal{A}$ **Input Vectors:**  $CP^{L}$  $i_{p_1} = (\lambda, ol, -); i_{p_2} = (-, -, ts)$ Read:  $\mathscr{E}_{\mathcal{N}^L}(\lambda)$ **Output Vectors:** Update: **wp** Use higher levels of MAPS to prevent the local extrema problem  $ightarrow oldsymbol{o}_{p_1}$  ${\mathcal A}$  $o_{p_3}$  , Legend:  $CP^1$  $\neg \mathcal{A}$ Input Vector Read:  $\mathscr{E}_{\mathcal{N}^1}(\lambda)$ Output Vector Update: wp  $o_{p_3}$  $o_{p_2}$ State Transition  $\square \rightarrow o_{p_1}$  $\mathcal{A}$  $\boldsymbol{o}_{p_2}$  $CP^0$ **ST**  $\mathcal{B}$ WT **Default states for** System Initialize:  $\mathscr{E}^{\ell} \leftarrow \mathbf{U}, \, \forall \ell$ Update:  $\mathscr{E}^{\ell} \leftarrow \mathbf{O}, \forall \ell$ If  $\mathcal{C}$  is true, vehicle navigation С initialization Update:  $\mathscr{E}^{\ell} \leftarrow \mathbf{O}, \forall \ell$ Read:  $\mathscr{E}_{\mathcal{N}^0}(\lambda)$ update:  $\mathscr{E}^{\ell} \leftarrow \mathbf{E}, \forall \ell$ and control Set:  $wp = \lambda$ Update: **wp**  $oldsymbol{o}_{p_1}$  $o_{\overline{p}_1}$  $i_{p_1} \check{o}_{p_3}$  ¬ $\mathcal{A}$  ∧ ¬ $\mathcal{B}$  $\imath_{p_2}$  $\imath_{p_1}$ 

 $\boldsymbol{\epsilon}^{\star}$  Algorithm

The State Transition Graph





### $\epsilon^*$ Algorithm Operation of the ETM: The *ST* State



#### FN **Conditions:** Legend: When is it reached? $\mathcal{A}$ : $wp = \emptyset$ ; ー $\mathcal{A}$ : $wp eq \emptyset$ Input Vector As soon as the autonomous vehicle is turned on. $\bullet \boldsymbol{o}_{p_4}$ $\mathcal{B}: \boldsymbol{w}\boldsymbol{p} = \lambda; \quad \neg \mathcal{B}: \boldsymbol{w}\boldsymbol{p} \neq \lambda$ Output Vector $\mathcal{C}$ : $ts = cm; \neg \mathcal{C}$ : ts = icState Transition $CP^L$ $\neg \mathcal{A}$ **Input Vectors:** What does it do? Read: $\mathscr{E}_{\mathcal{N}^L}(\lambda)$ $i_{p_1} = (\lambda, ol, -); i_{p_2} = (-, -, ts)$ Update: wpInitialization of the system. **Output Vectors:** $\overline{\boldsymbol{o}_{p_1} = (id, -);} \quad \boldsymbol{o}_{p_2} = (tk, -) \\ \boldsymbol{o}_{p_3} = (mv, \boldsymbol{wp}); \quad \boldsymbol{o}_{p_4} = (sp, -)$ $\bullet \boldsymbol{o}_{p_1}$ $o_{p_3}$ , **Operation in the** *ST* **State:** $CP^1$ Initialization: Read: $\mathscr{E}_{\mathcal{N}^1}(\lambda)$ MAPS $\mathcal{E}^{\ell}, \forall \ell = 0, 1, \dots L$ : Ο Update: wp $o_{p_3}$ Level 0: initialized with **U**, i.e. Unexplored. $\boldsymbol{o}_{p_2}$ Level $1 \leq \ell \leq L$ : all coarse cells $\tau_{\alpha^{\ell}} \in T^{\ell}$ are $CP^0$ $\mathcal{B}$ **ST** WT assigned potentials by substituting $p_{\alpha^{\ell}}^{U}(0) = 1$ . Initialize: $\mathscr{E}^{\ell} \leftarrow \mathbf{U}, \forall \ell$ Update: $\mathscr{E}^{\ell} \leftarrow \mathbf{O}, \forall \ell$ If $\mathcal{C}$ is true, Update: $\mathscr{E}^{\ell} \leftarrow \mathbf{O}, \forall \ell$ Read: $\mathscr{E}_{\mathcal{N}^0}(\lambda)$ update: $\mathscr{E}^{\ell} \leftarrow \mathbf{E}, \forall \ell$ Initialize wp as the current cell $\lambda$ . Ο Set: $wp = \lambda$ Update: wp**Input:** the input vector $i_{p_1}$ contains the current vehicle $o_{p_1}$ $o_{p_1}$ $i_{p_1} \, o_{p_3} \, \lnot \mathcal{A} \wedge \lnot \mathcal{B}$ location $\lambda$ and detected obstacle locations **ol** $\imath_{p_1}$

• **Output:** Set the vehicle to idle via output vector  $o_{p_1}$ .



### $\epsilon^*$ Algorithm Operation of the ETM: The $CP^0$ State



#### **Conditions:** FN Legend: When is it reached? $\mathcal{A}$ : $wp = \emptyset$ ; $\neg \mathcal{A}: wp \neq \emptyset$ Input Vector Either after system initialization, or when the current cell $\mathcal{B}: wp = \lambda; \neg \mathcal{B}: wp \neq \lambda$ Output Vector $\mathcal{C}$ : $ts = cm; \neg \mathcal{C}$ : ts = ichas just been tasked and needs a new **wp**. State Transition $CP^{L}$ $\neg \mathcal{A}$ **Input Vectors:** Read: $\mathscr{E}_{\mathcal{N}^L}(\lambda)$ What does it do? $i_{p_1} = (\lambda, ol, -); i_{p_2} = (-, -, ts)$ Update: wp**Output Vectors:** Default state to compute for *wp* on Level 0 of MAPS. $\overline{\mathbf{o}_{p_1}} = (id, -); \quad \mathbf{o}_{p_2} = (tk, -) \\ \mathbf{o}_{p_3} = (mv, \mathbf{wp}); \quad \mathbf{o}_{p_4} = (sp, -)$ $ightarrow \boldsymbol{o}_{p_1}$ $o_{p_3}$ **Operation in the** $CP^0$ **State:** $CP^1$ Read: $\mathscr{E}_{\mathcal{N}^1}(\lambda)$ **Input:** the input vector $i_{p_1}$ contains vehicle location $\lambda$ , Update: wp $o_{p_3}$ obstacle locations **o***l*; they are used to update potential surfaces $\mathcal{E}^{\ell}$ , $\forall \ell$ . $\boldsymbol{o}_n$ $CP^0$ *Compute wp*: the directly reachable neighbor cell with the $\mathcal{B}$ ST highest positive potential in the neighborhood $N^0$ : Initialize: $\mathscr{E}^{\ell} \leftarrow \mathbf{U} \; \forall \ell$ Update: $\mathscr{E}^{\ell} \leftarrow \mathbf{O}, \forall \ell$ If $\mathcal{C}$ is true, С Update: $\mathscr{E}^{\ell} \leftarrow \mathbf{O}, \forall \ell$ Read: $\mathscr{E}_{\mathcal{N}^0}(\lambda)$ update: $\mathscr{E}^{\ell} \leftarrow \mathbf{E}, \forall \ell$ $wp(k) = \operatorname{arcmax}_{\alpha^0 \in N^0} \mathcal{E}_{\alpha^0}$ Set: $wp = \lambda$ Update: **wp** $o_{p_1}$ $o_{p_1}$ **Output:** If wp is found, send vector $o_{p_3}$ to move vehicle to $i_{p_1} \, \check{o}_{p_2} \, \neg \mathcal{A} \wedge \neg \mathcal{B}$ wp; and upon reaching, send vector $o_{p_2}$ to start tasking. $\imath_{p_1}$ $\imath_{p_2}$

• If wp not found, switch to state  $CP^1$ 



### $\epsilon^*$ Algorithm Operation of the ETM: The *WT* State







 $\epsilon^{\star}$  Algorithm Operation of the ETM: The  $CP^1$ ,  $CP^2$ , ...  $CP^L$  States



#### When are they reached?

When waypoint wp cannot be found in  $CP^0$  state.

#### What does it do?

Sequentially switches to higher levels of MAPS, until wp can be found at some Level  $\ell \leq L$ .

Operation in the  $CP^{\ell}$ ,  $\ell = 1, 2, ... L$  States

#### • Compute wp

- First, read the potentials in the local neighborhood on Level 1 (i.e.,  $\mathcal{E}_{N^1}(\lambda)$ ).
- If  $\exists \tau_{\alpha^1} \in N^1(\lambda)$  with positive potential, then wp is set as an unexplored  $\epsilon$ -cell in  $\tau_{\alpha^1}$ .
- Otherwise, go to  $CP^2$  state and repeat above.
- **Output:** If **wp** is found, sends output  $o_{p_3}$  to move vehicle to **wp**; otherwise, sends  $o_{p_1}$  to set vehicle idle.





### $\epsilon^*$ Algorithm Operation of the ETM: The *FN* State







### Validations on the Player/Stage Robotic Simulator



### Simulation Setup

- Autonomous Vehicle: a Pioneer AT2 of dimensions 0.44m×0.38m×0.22m was used with kinematic constraints of:
  - Top speed: 0.5m/s
  - Maximum acceleration: 0.5m/s<sup>2</sup>
  - Minimum turning radius: 0.04m
- Sensing systems
  - ➤ Laser: detection range of 4m
- Search Area: the search area is of size 50m× 50m, which is partitioned into a 50×50 tiling consisting of ε-cells of size 1m×1m. This results in MAPS with L = 5 levels.







Scenario 1: Coverage Trajectories and Symbolic Encodings of the Environment

•  $\epsilon^*$  incrementally builds the environment map, and complete coverage is achieved.



(1) Coverage started with dynamic obstacle discovery



(2) Escaping from a local extremum using MAPS



(3) Escaping from another local extremum



(4) Complete coverage achieved



### Scenario 1: Comparison with Alternative Methods





### (b) Spanning Tree Coverage



#### Start



#### (c) Backtracking Spiral Algorithm





Start





### Scenario 2: Adaptive Sweep Direction in Known Sub-regions



### User-controllable Sweep Direction

- If provided (partial) environment knowledge in sub-regions, e<sup>\*</sup> can adapt the sweep direction to further reduce the number of turns.
- In Scenario 2 below, the layouts of all rooms are assumed *known*, but the inside obstacles are *unknown*.
- Then, the field B was designed in a manner such that the AV sweeps the top left room horizontally while the other two rooms vertically





### Fig. Exogeneous potential field *B* in Scenario 2





### Scenario 2: Adaptive Sweep Direction in Known Sub-regions

 User-controllable Sweep Direction: If provided (partial) environment knowledge in sub-regions, the sweep direction can be adapted to further reduce the number of turns. This is done by altering the exogeneous potential field B.

Scenario 2: Coverage trajectory of  $\epsilon^*$  in an apartment scenario





Trajectories of alternative methods





(1) Coverage started with dynamic obstacle discovery (2) Adaptive sweeping if layout is a priori known

(3) Adapt to the shape of obstacle

(4) Complete coverage achieved





## **Performance Evaluation**

**Coverage Performance under Uncertainties** 



### **\*** Coverage Ratio $r_c$ :

$$c_c = \frac{\bigcup_k \tau(k)}{\mathcal{R}(T^a)}$$

1

### Sources of Uncertainties:

- Localization System:
  - $\circ~$  Outdoor: Real-time Kinematic (RTK) GPS can achieve an accuracy of  $0.05m{\sim}0.5m^{[1]}.$
  - Indoor: Hagisonic StarGazer indoor localization system provides precision of 2cm.
- Compass: a modestly priced compass provides an accuracy of 1<sup>o</sup>[1].
- Laser Measurements: a laser sensor typically admits an error of 1% of its operation range.

- Monte Carlo Simulations: The sensor noise are simulated as Additive White Gaussian Noise (AWGN), with:
  - Localization System:  $\sigma = 0.05$ m, 0.10m, ... 0.25m
  - **Compass**:  $\sigma_{compass} = 0.5^{\circ}$
  - Laser Measurements:  $\sigma_{laser} = 1.5$  cm





[1] L. Paull, S. Saeedi, M. Seto, and H. Li, "Auv navigation and localization: A review," IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–149, 2014.

[2] J. Palacin, J. A. Salse, I. Valganon, and X. Clua, "Building a mobile robot for a floor- cleaning operation in domestic environments," IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 5, pp. 1418–1424, 2004.



### Performance Evaluation Choosing a Proper Sized $\epsilon$



#### **\*** Selection of the Size of $\epsilon$ :

- Should be big enough to contain the autonomous vehicle, and small enough for the tasking sensor to be able to cover it.
- Within these two bounds, the choice of  $\epsilon$  depends on the following factors:
  - Smaller  $\epsilon$ : provides a better approximation of the search area and its obstacles.
  - Larger  $\epsilon$ : reduces the computational complexity by requiring less number of  $\epsilon$  -cells to cover the area and it also provides improved robustness to uncertainties for localization within a cell.





### Real Experiments The Autonomous Ground Vehicle (AGV)



- \*  $\epsilon^*$  algorithm was validated in real laboratory-scale experiments to address real-life uncertainties in sensing and vehicle control
- iRobot Create was used as the AGV, which is *programmable* and *controllable* using feedbacks from popular sensing devices



An AGV integrated with multiple sensing devices



#### Table. Specifics of the on-board sensing systems

|            | Localization | Laser                          | Ultrasonic        |
|------------|--------------|--------------------------------|-------------------|
| Model      | StarGazer    | URG-04LX                       | XL-MaxSonar-EZ    |
| Range      | _            | $0.02m \sim 5.6m, 240^{\circ}$ | $0.2m \sim 7.65m$ |
| Resolution | $1cm, 1^o$   | 1mm, 0.36°                     | 1 <i>cm</i>       |
| Accuracy   | $2cm, 1^{o}$ | $\pm 1\%$ of Measurement       | _                 |