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v Objective: Develop an online coverage path planning algorithm for an autonomous vehicle in unknown environment 

v Challenges:
§ Online detection and avoidance of 

unknown obstacles
§ Generate back-and-forth path with 

minimized turns and overlappings
§ Must guarantee complete coverage 

and prevent any local extremum
§ Low computational complexity for 

real-world applications

Unexplored Explored Obstacle Forbidden



Coverage Path Planning Algorithms
State-of-the-art and Novel Contributions
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(b) !⋆ Algorithm (c) Spanning Tree Coverage (d) Backtracking Spiral AlgorithmStart
Number of Turns: 291 Number of Turns: 348 Number of Turns: 407

v Existing Approaches:
§ Learning Real-time A⋆ (LRTA⋆)
§ Spanning-tree Coverage
§ Backtracking Spiral Algorithm 
§ Brick-and-Mortar Algorithm 
§ Cellular Decomposition (back-and-forth path)

Ø Rely on detection of critical points (detection and 
pairing of IN & OUT critical points are difficult in 
complex environment)

Ø Require cycle algorithm which leads to overlappings
Ø Cannot work in rectilinear environment

v Features and Novel Contributions of the $⋆ Algorithm: 
§ Produces the desired back-and-forth path
§ Does not need critical point detection on obstacles 
§ Guarantees complete coverage and prevents the local 

extrema problem using hierarchical potential surfaces 
(called MAPS)

§ Capable of adapting sweep direction in known sub-regions 
to further reduce the number of turns

§ Computationally efficient for real-time applications

Critical Point

(a) Cellular Decomposition based Method[1]

[1] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar and D. Hull, 2002. Morse decompositions for coverage tasks. The international journal of robotics research, 21(4), pp.331-344.

Generate spiral path 
with too many turns

Strong path overlappings
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Tiling of the Search Area
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v Let ℛ ⊂ ℝ& be the estimated area that includes the desired area to cover. 

Tiling of the Search Area

Tiling:	The set . = {12 ⊂ ℝ&: 3 = 1… |.|} is	called	a	tiling	

of	ℛ if	its	elements:

i) have	mutually	exclusive	interiors,	i.e.,	12
J ∩ 1L

J =

∅, ∀3 ≠ P,	where	3, P ∈ {1… |.|}.

ii) form	a	minimal	cover,	i.e.,	ℛ ⊆∪2UV
|W|

12,	while	removal	

of	any	tile	destroys	the	covering	property.	

! Cell: Each element 12, ∀3 ∈ 1,… . , is called an Y-cell. 

v The tiling . is partitioned into three subsets:
§ Obstacle cells (.J): they are detected online.
§ Forbidden cells (.Z): create buffer around obstacles
§ Allowed cells (.[): these are the target cells to cover 



v The autonomous vehicle is equipped with:
1. Localization System

Ø Provides vehicle location (e.g., GPS), and heading (e.g., 
Compass)

2. Range Detector with Sensing Radius !"
Ø Allows the vehicle to detect obstacles in the local 

neighborhood (e.g., laser)
3. Tasking Sensor with Radius #$

Ø Allows the vehicle to carry out certain tasks (e.g., cleaning, 
target detection, crops cutting) while it operates in the field

%⋆ Algorithm
The Autonomous Vehicle and %-Coverage
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The autonomous vehicle and the tiling

%-Coverage Let	ℛ(-.) denote	the	total	area	of	the	allowed	cells.	Let	
< = ∈ -. be	the	@-cell	visited	by	the	autonomous	vehicle	at	time	=
and	explored	by	its	tasking	sensor.	Then,	ℛ is	said	to	achieve	@-
coverage,	if	∃N ∈ ℤP,	such	that	the	sequence	 < = , = = 1,… , N
covers	ℛ -. ,	i.e.,	

ℛ -. ⊆∪WXYZ < =



!⋆ Algorithm
The Supervisory Controller: Exploratory Turing Machine (ETM)
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Machine States: 
§ #$ ≡ Start
§ &' ≡ Compute 
§ ($ ≡ Waiting
§ )* ≡ Finished

Input Vector +,
§ - ∈ 1,… $ : index of current cell
§ 23 ⊂ 1,… $ , indices of obstacle cells
§ 56 ∈ 78, 97 , tasking status, where 

78 ≡ Complete, or 97 ≡ Incomplete.

Output Vector 2,
§ 7: ∈ 8;, 5<, 9:, 6= : command to 

the vehicle, where: 8; ≡ Move, 
5< ≡ Task, 9: ≡ Idle, and 6= ≡ Stop.

§ >, ⊂ 1,… $ , candidate set of 
new waypoints for the vehicle

Multi-scale Adaptive Potential 
Surfaces(MAPS)
§ ℇ@: time-varying potential 

surface at the finest level
§ ℇℓ, 1 ≤ ℓ ≤ C: time-varying 

potential surfaces at higher 
levels 
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Multi-scale Adaptive Potential 
Surfaces(MAPS)
§ ℇ": time-varying potential 

surface at the finest level
§ ℇℓ, 1 ≤ ℓ ≤ ': time-varying 

potential surfaces at higher 
levels 

(⋆ Algorithm
The Supervisory Controller: Exploratory Turing Machine (ETM)



!⋆ Algorithm
Dynamically Constructed Multi-scale Potential Surfaces (MAPS)
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v Level 0 of MAPS
§ Symbolic Encoding: each #-cell at level 0, $%&, is 

assigned with a symbolic state '%&, from below:
o (:  Obstacle
o ):  Forbidden
o *:  Explored
o +:  Unexplored

§ Potential Surface ℇ-: 

ℇ%& . = 0
−1 if '%& = ( or )
0 if '%& = *
8%& if '%& = +

where 8 = 8%& ∈ 1, … , 8<=> , ?@ = 1,… |B@| is 
a time-invariant exogenous potential field. It is 
designed offline to have plateaus of equipotential 
surfaces along each column of the tiling.

Allowed cells

12345678910
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v Levels ℓ = #, %, …' of MAPS
§ Potential Surfaces ℇℓ, ℓ = 1,…*, are constructed by assigning +,ℓ the average potential generated by all the 

unexplored --cells within +,ℓ, such that 

ℇ,ℓ . = /,ℓ0 . ⋅ 23,ℓ
where 23,ℓ is the mean exogenous potential of +,ℓ, and /,ℓ0 . is the probability of unexplored --cells in +,ℓ.

4⋆ Algorithm
Dynamically Constructed Multi-scale Potential Surfaces (MAPS)

Note: Higher levels of MAPS are used to prevent the local extrema problem. 

Local Extrema: no unexplored cells are available in the local neighborhood on Level 0.
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v An Illustrative Example
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!⋆ Algorithm
An Illustrative Example: Updates of MAPS at Level 0 
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Symbolic encodings at Level 0
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!⋆ Algorithm
An Illustrative Example: Updates of MAPS at Level 1
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!⋆ Algorithm
An Illustrative Example: Updates of MAPS at Level 2
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!⋆ Algorithm
An Example of using MAPS to Prevent the Local Extrema Situation

Local Extrema: no unexplored cells are 
available in the local neighborhood on 
Level 0.

Low Complexity: even in the worst-case 
scenario, it only takes #( %& + ( · %ℓ )
to find waypoints, where %ℓ is the local 
neighborhood on Level ℓ of MAPS, ℓ =
0,1, … , (.



!⋆: The Supervisory Control Structure
The Exploratory Turing Machine (ETM)

Machine States
§ The Start State (#$): start the machine and initialize 

the MAPS with all %-cells as unexplored.

§ The Computing States (&'): 
Ø &'(: compute waypoint )* using Level 0 of 

MAPS, and send navigation command +,.
Ø &'-, &'/ … , &'1: sequentially used to 

compute )* in case of a local extremum.

§ The Waiting State (2$): wait for the vehicle to 
complete specific task (e.g., cleaning) in the current 
cell, until the status 34 turns to complete

§ The Finished State (56): terminate the operation 
upon complete coverage. 

14
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!⋆ Algorithm
The State Transition Graph

Default states for 
vehicle navigation 
and control  

System 
initialization

Use higher levels of MAPS to 
prevent the local extrema problem

Stop the autonomous vehicle 
(complete coverage is achieved)



When is it reached?
As soon as the autonomous vehicle is turned on.

What does it do?
Initialization of the system.
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!⋆ Algorithm
Operation of the ETM: The #$ State

Operation in the #$ State: 
§ Initialization:

o MAPS ℇℓ, ∀ℓ = 0,1, … -:
• Level 0: initialized with ., i.e. Unexplored. 
• Level 1 ≤ ℓ ≤ -: all coarse cells 01ℓ ∈ 3ℓ are 

assigned potentials by substituting 41ℓ5 (0) = 1.

o Initialize 89 as the current cell :.
§ Input: the input vector ;<= contains the current vehicle 

location : and detected obstacle locations >?
§ Output: Set the vehicle to idle via output vector @<= .
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!⋆ Algorithm
Operation of the ETM: The #$% State

Operation in the #$% State: 
§ Input: the input vector &'( contains vehicle location ), 

obstacle locations *+; they are used to update potential 
surfaces ℇℓ, ∀ℓ.

§ Compute01: the directly reachable neighbor cell with the 
highest positive potential in the neighborhood 23:

01 5 = arcmax<=∈?=ℇ<=
§ Output: If 01 is found, send vector @'A to move vehicle to 

01; and upon reaching, send vector @'B to start tasking.
• If 01 not found, switch to state CDE

When is it reached?
Either after system initialization, or when the current cell 
has just been tasked and needs a new 01.

What does it do?
Default state to compute for 01 on Level 0 of MAPS.
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!⋆ Algorithm
Operation of the ETM: The #$ State

Operation in the #$ State
§ Input: the input vector %&' contains task status (); if it 

is complete, update current cell * as +, i.e., Explored; 
then update potential surfaces ℇℓ, ∀ℓ.

§ Output: 
• If task status () is complete, go to state 012 to 

compute for the next 34
• Otherwise, keep on waiting.

When is it reached?
When the autonomous vehicle reaches the computed 34.

What does it do?
Command the vehicle to perform tasking (e.g., cleaning) in 
the current cell.
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!⋆ Algorithm
Operation of the ETM: The #$%, #$', …#$) States

Operation in the #$ℓ, ℓ = %, ',…) States
§ Compute ,-

• First, read the potentials in the local neighborhood 
on Level 1 (i.e., ℇ/0(2)).

• If ∃560 ∈ 89(2) with positive potential, then ,- is 
set as an unexplored :-cell in 560 .

• Otherwise, go to ;<= state and repeat above.
§ Output: If ,- is found, sends output >?@ to move vehicle to 

,-; otherwise, sends >?0 to set vehicle idle.

When are they reached?
When waypoint ,- cannot be found in ;<A state.

What does it do?
Sequentially switches to higher levels of MAPS, until 
,- can be found at some Level ℓ ≤ C. 
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!⋆ Algorithm
Operation of the ETM: The #$ State

Theorem: The ETM halts in finite time[1].

Corollary 1: Each allowed %-cell is tasked only once[1].
Corollary 2: %-coverage is achieved upon halting[1].

[1] J. Song and S. Gupta, “%⋆: An Online Coverage Path Planning Algorithm”, IEEE Transactions on Robotics, Vol. 34, Issue 2, pp 526-533, 2018.

Operation in the #$ State
§ If &' = ∅ at Level *, it implies the ETM cannot find 

unexplored %-cells at the highest Level *, then it reaches 
the +, state and the machinery is terminated.

When is it reached?
When &' cannot be found in -./ state.

What does it do?
Terminate operation since no unexplored cells are left.



21

Simulation Validations
Validations on the Player/Stage Robotic Simulator

Unexplored Explored Obstacle Forbidden

v Simulation Setup
§ Autonomous Vehicle: a Pioneer AT2 of 

dimensions 0.44m×0.38m×0.22m was used 
with kinematic constraints of: 

§ Top speed: 0.5m/s
§ Maximum acceleration: 0.5m/s,
§ Minimum turning radius: 0.04m

§ Sensing systems

Ø Laser: detection range of 4m

§ Search Area: the search area is of size 50m×
50m, which is partitioned into a 50×50 tiling 
consisting of --cells of size 1m×1m. This results 
in MAPS with / = 5 levels.
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Simulation Validations
Scenario 1: Coverage Trajectories and Symbolic Encodings of the Environment

§ !⋆ incrementally builds the environment map, and complete coverage is achieved.
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Simulation Validations
Scenario 1: Comparison with Alternative Methods

(a) !⋆ Algorithm (b) Spanning Tree Coverage (c) Backtracking Spiral Algorithm (d) Brick & Mortar

Start Start Start Start

Trajectory length Number of turns
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Simulation Validations
Scenario 2: Adaptive Sweep Direction in Known Sub-regions

v User-controllable Sweep Direction
§ If provided (partial) environment knowledge in 

sub-regions, !⋆ can adapt the sweep direction to 
further reduce the number of turns. 

§ In Scenario 2 below, the layouts of all rooms are 
assumed known, but the inside obstacles are 
unknown. 

§ Then, the field B was designed in a manner such 
that the AV sweeps the top left room horizontally 
while the other two rooms vertically 

Fig. Scenario 2 Fig. Exogeneous potential field # in Scenario 2

known

unknown



25

Simulation Validations
Scenario 2: Adaptive Sweep Direction in Known Sub-regions

§ User-controllable Sweep Direction: If provided (partial) environment knowledge in sub-regions, the sweep direction can be 
adapted to further reduce the number of turns. This is done by altering the exogeneous potential field !.

Scenario 2: Coverage trajectory of "⋆ in an apartment scenario Trajectories of alternative methods
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v Coverage Ratio !":

#$ =
∪' ((*)
ℛ -.

v Sources of Uncertainties:
§ Localization System:

o Outdoor: Real-time Kinematic (RTK) GPS can achieve 
an accuracy of 0.05m~0.5m[1].

o Indoor: Hagisonic StarGazer indoor localization 
system provides precision of 2cm.

§ Compass: a modestly priced compass provides an 
accuracy of 16 [1].

§ Laser Measurements: a laser sensor typically admits an 
error of 1% of its operation range.

Performance Evaluation
Coverage Performance under Uncertainties

v Monte Carlo Simulations: The sensor noise are simulated as 
Additive White Gaussian Noise (AWGN), with:
§ Localization System: 8 = 0.05m, 0.10m, … 0.25m
§ Compass: 8$69:.;; = 0.56
§ Laser Measurements: 8<.;=> = 1.5cm

[1] L. Paull, S. Saeedi, M. Seto, and H. Li, “Auv navigation and localization: A review,” IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–149, 2014. 
[2] J. Palacin, J. A. Salse, I. Valganon, and X. Clua, “Building a mobile robot for a floor- cleaning operation in domestic environments,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 5, pp. 
1418–1424, 2004. 

Coverage ratio vs. noise for ten Monte Carlo runs
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Performance Evaluation
Choosing a Proper Sized !

Figure 1. Scenario 1: coverage trajectories for varying size of " Figure 2. Scenario 2: coverage trajectories for varying size of "

v Selection of the Size of !: 
§ Should be big enough to contain the autonomous vehicle, and small enough for the tasking sensor to be able to cover it.
§ Within these two bounds, the choice of ϵ depends on the following factors: 

o Smaller ": provides a better approximation of the search area and its obstacles. 
o Larger ": reduces the computational complexity by requiring less number of " -cells to cover the area and it also provides 

improved robustness to uncertainties for localization within a cell. 
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Real Experiments
The Autonomous Ground Vehicle (AGV)

v !⋆ algorithm was validated in real laboratory-scale experiments to address 
real-life uncertainties in sensing and vehicle control

v iRobot Create was used as the AGV, which is programmable and controllable
using feedbacks from popular sensing devices

Table. Specifics of the on-board sensing systems

An AGV integrated with multiple sensing devices


