
!⋆: An Online Coverage Path Planning Algorithm

1

This work has been published in:
J. Song and S. Gupta, “#⋆: An Online Coverage Path Planning Algorithm”, IEEE Transactions on Robotics, Vol. 34, Issue 2, pp 526-533, 2018.

The copyright of this presentation is held by the authors and the LINKS lab.

Videos Available: These slides contain videos that are accessible online at: https://linkslab.uconn.edu/videos/

!⋆: Online Coverage Path Planning in Unknown Environment

2

v Objective: Develop an online coverage path planning algorithm for an autonomous vehicle in unknown environment

v Challenges:
§ Online detection and avoidance of

unknown obstacles
§ Generate back-and-forth path with

minimized turns and overlappings
§ Must guarantee complete coverage

and prevent any local extremum
§ Low computational complexity for

real-world applications

Unexplored Explored Obstacle Forbidden

Coverage Path Planning Algorithms
State-of-the-art and Novel Contributions

3

(b) !⋆ Algorithm (c) Spanning Tree Coverage (d) Backtracking Spiral AlgorithmStart
Number of Turns: 291 Number of Turns: 348 Number of Turns: 407

v Existing Approaches:
§ Learning Real-time A⋆ (LRTA⋆)
§ Spanning-tree Coverage
§ Backtracking Spiral Algorithm
§ Brick-and-Mortar Algorithm
§ Cellular Decomposition (back-and-forth path)

Ø Rely on detection of critical points (detection and
pairing of IN & OUT critical points are difficult in
complex environment)

Ø Require cycle algorithm which leads to overlappings
Ø Cannot work in rectilinear environment

v Features and Novel Contributions of the $⋆ Algorithm:
§ Produces the desired back-and-forth path
§ Does not need critical point detection on obstacles
§ Guarantees complete coverage and prevents the local

extrema problem using hierarchical potential surfaces
(called MAPS)

§ Capable of adapting sweep direction in known sub-regions
to further reduce the number of turns

§ Computationally efficient for real-time applications

Critical Point

(a) Cellular Decomposition based Method[1]

[1] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar and D. Hull, 2002. Morse decompositions for coverage tasks. The international journal of robotics research, 21(4), pp.331-344.

Generate spiral path
with too many turns

Strong path overlappings

!⋆ Algorithm
Tiling of the Search Area

4

v Let ℛ ⊂ ℝ& be the estimated area that includes the desired area to cover.

Tiling of the Search Area

Tiling:	The set . = {12 ⊂ ℝ&: 3 = 1… |.|} is	called	a	tiling	

of	ℛ if	its	elements:

i) have	mutually	exclusive	interiors,	i.e.,	12
J ∩ 1L

J =

∅, ∀3 ≠ P,	where	3, P ∈ {1… |.|}.

ii) form	a	minimal	cover,	i.e.,	ℛ ⊆∪2UV
|W|

12,	while	removal	

of	any	tile	destroys	the	covering	property.	

! Cell: Each element 12, ∀3 ∈ 1,… . , is called an Y-cell.

v The tiling . is partitioned into three subsets:
§ Obstacle cells (.J): they are detected online.
§ Forbidden cells (.Z): create buffer around obstacles
§ Allowed cells (.[): these are the target cells to cover

v The autonomous vehicle is equipped with:
1. Localization System

Ø Provides vehicle location (e.g., GPS), and heading (e.g.,
Compass)

2. Range Detector with Sensing Radius !"
Ø Allows the vehicle to detect obstacles in the local

neighborhood (e.g., laser)
3. Tasking Sensor with Radius #$

Ø Allows the vehicle to carry out certain tasks (e.g., cleaning,
target detection, crops cutting) while it operates in the field

%⋆ Algorithm
The Autonomous Vehicle and %-Coverage

5

The autonomous vehicle and the tiling

%-Coverage Let	ℛ(-.) denote	the	total	area	of	the	allowed	cells.	Let	
< = ∈ -. be	the	@-cell	visited	by	the	autonomous	vehicle	at	time	=
and	explored	by	its	tasking	sensor.	Then,	ℛ is	said	to	achieve	@-
coverage,	if	∃N ∈ ℤP,	such	that	the	sequence	 < = , = = 1,… , N
covers	ℛ -. ,	i.e.,	

ℛ -. ⊆∪WXYZ < =

!⋆ Algorithm
The Supervisory Controller: Exploratory Turing Machine (ETM)

6

Machine States:
§ #$ ≡ Start
§ &' ≡ Compute
§ ($ ≡ Waiting
§)* ≡ Finished

Input Vector +,
§ - ∈ 1,… $: index of current cell
§ 23 ⊂ 1,… $, indices of obstacle cells
§ 56 ∈ 78, 97 , tasking status, where

78 ≡ Complete, or 97 ≡ Incomplete.

Output Vector 2,
§ 7: ∈ 8;, 5<, 9:, 6= : command to

the vehicle, where: 8; ≡ Move,
5< ≡ Task, 9: ≡ Idle, and 6= ≡ Stop.

§ >, ⊂ 1,… $, candidate set of
new waypoints for the vehicle

Multi-scale Adaptive Potential
Surfaces(MAPS)
§ ℇ@: time-varying potential

surface at the finest level
§ ℇℓ, 1 ≤ ℓ ≤ C: time-varying

potential surfaces at higher
levels

7

Multi-scale Adaptive Potential
Surfaces(MAPS)
§ ℇ": time-varying potential

surface at the finest level
§ ℇℓ, 1 ≤ ℓ ≤ ': time-varying

potential surfaces at higher
levels

(⋆ Algorithm
The Supervisory Controller: Exploratory Turing Machine (ETM)

!⋆ Algorithm
Dynamically Constructed Multi-scale Potential Surfaces (MAPS)

8

v Level 0 of MAPS
§ Symbolic Encoding: each #-cell at level 0, $%&, is

assigned with a symbolic state '%&, from below:
o (: Obstacle
o): Forbidden
o *: Explored
o +: Unexplored

§ Potential Surface ℇ-:

ℇ%& . = 0
−1 if '%& = (or)
0 if '%& = *
8%& if '%& = +

where 8 = 8%& ∈ 1, … , 8<=> , ?@ = 1,… |B@| is
a time-invariant exogenous potential field. It is
designed offline to have plateaus of equipotential
surfaces along each column of the tiling.

Allowed cells

12345678910

9

v Levels ℓ = #, %, …' of MAPS
§ Potential Surfaces ℇℓ, ℓ = 1,…*, are constructed by assigning +,ℓ the average potential generated by all the

unexplored --cells within +,ℓ, such that

ℇ,ℓ . = /,ℓ0 . ⋅ 23,ℓ
where 23,ℓ is the mean exogenous potential of +,ℓ, and /,ℓ0 . is the probability of unexplored --cells in +,ℓ.

4⋆ Algorithm
Dynamically Constructed Multi-scale Potential Surfaces (MAPS)

Note: Higher levels of MAPS are used to prevent the local extrema problem.

Local Extrema: no unexplored cells are available in the local neighborhood on Level 0.

1
2

3
4

5
6

7
8

10

v An Illustrative Example

U
E
E
E
E
E
E

UUU

O

O

U

F

E

E

U U

F F
F
F
FFF

F

F

UUUUU U U

UUUUU U U
UUUUU U U

U
U
U
U

U
U
U
U

U
U

U
U

U
U

U
U

Obstacle

Vehicle trajectory and obstacle layout

!⋆ Algorithm
An Illustrative Example: Updates of MAPS at Level 0

start

Symbolic encodings at Level 0

1
0
0
0
0
0
0

456

-1

-1

7

-1

0

0

3 2

-1 -1
-1
-1
-1-1-1

-1

-1

14567 3 2

14567 3 2
14567 3 2

1
1

1

1

2
2

2

2

3
3

3

3

4
4

4

4

MAPS update on Level 0

8
8
8
8

8
8
8
8

7
7
7
7

7
7
7
7

6
6
6
6

6
6
6
6

5
5
5
5

5
5
5
5

4
4
4
4

4
4
4
4

3
3
3
3

3
3
3
3

2
2
2
2

2
2
2
2

1
1
1
1

1
1
1
1

Potentials # at Level 0

Visualization of #

!⋆ Algorithm
An Illustrative Example: Updates of MAPS at Level 1

11

8
8
8
8
8
8
8
8

7
7
7
7
7
7
7
7

6
6
6
6
6
6
6
6

5
5
5
5
5
5
5
5

4
4
4
4
4
4
4
4

3
3
3
3
3
3
3
3

2
2
2
2
2
2
2
2

1
1
1
1
1
1
1
1

7.5

7.5

7.5

7.5

5.5

5.5

5.5

5.5

3.5

3.5

3.5

3.5 1.5

1.5

1.5

1.5

Average potential #$

0.5

0

1

0

1

1 1

1

0 0 1 1

0.5 1 1 1

U
E
E
E
E
E
E

UUU

O
O

U

F

E

E

U U

F F
F
F
FFF

F
F

UUUUU U U

UUUUU U U
UUUUU U U

U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

3.75

0

5.5

0

3.5

3.5 1.5

1.5

0 0 3.5 1.5

3.75 5.5 3.5 1.5

Update probabilities %&ℓ(MAPS update

MAPS update on Level 1

Potentials $ at Level 0 Symbolic encodings at Level 0

1
2

3
4

5
6

7
8

Visualization of $

!⋆ Algorithm
An Illustrative Example: Updates of MAPS at Level 2

12

8
8
8
8
8
8
8
8

7
7
7
7
7
7
7
7

6
6
6
6
6
6
6
6

5
5
5
5
5
5
5
5

4
4
4
4
4
4
4
4

3
3
3
3
3
3
3
3

2
2
2
2
2
2
2
2

1
1
1
1
1
1
1
1

6.5

6.5

2.5

2.5

0.375 1

10.375

U
E
E
E
E
E
E

UUU

O
O

U

F

E

E

U U

F F
F
F
FFF

F
F

UUUUU U U

UUUUU U U
UUUUU U U

U
U
U
U

U
U
U
U

U
U
U
U

U
U
U
U

2.4375 2.5

2.52.4375

MAPS update on Level 2
Average potential #$ Update probabilities %&ℓ(MAPS update

Potentials $ at Level 0 Symbolic encodings at Level 0

1
2

3
4

5
6

7
8

Visualization of $

13

!⋆ Algorithm
An Example of using MAPS to Prevent the Local Extrema Situation

Local Extrema: no unexplored cells are
available in the local neighborhood on
Level 0.

Low Complexity: even in the worst-case
scenario, it only takes #(%& + (· %ℓ)
to find waypoints, where %ℓ is the local
neighborhood on Level ℓ of MAPS, ℓ =
0,1, … , (.

!⋆: The Supervisory Control Structure
The Exploratory Turing Machine (ETM)

Machine States
§ The Start State (#$): start the machine and initialize

the MAPS with all %-cells as unexplored.

§ The Computing States (&'):
Ø &'(: compute waypoint)* using Level 0 of

MAPS, and send navigation command +,.
Ø &'-, &'/ … , &'1: sequentially used to

compute)* in case of a local extremum.

§ The Waiting State (2$): wait for the vehicle to
complete specific task (e.g., cleaning) in the current
cell, until the status 34 turns to complete

§ The Finished State (56): terminate the operation
upon complete coverage.

14

15

!⋆ Algorithm
The State Transition Graph

Default states for
vehicle navigation
and control

System
initialization

Use higher levels of MAPS to
prevent the local extrema problem

Stop the autonomous vehicle
(complete coverage is achieved)

When is it reached?
As soon as the autonomous vehicle is turned on.

What does it do?
Initialization of the system.

16

!⋆ Algorithm
Operation of the ETM: The #$ State

Operation in the #$ State:
§ Initialization:

o MAPS ℇℓ, ∀ℓ = 0,1, … -:
• Level 0: initialized with ., i.e. Unexplored.
• Level 1 ≤ ℓ ≤ -: all coarse cells 01ℓ ∈ 3ℓ are

assigned potentials by substituting 41ℓ5 (0) = 1.

o Initialize 89 as the current cell :.
§ Input: the input vector ;<= contains the current vehicle

location : and detected obstacle locations >?
§ Output: Set the vehicle to idle via output vector @<= .

17

!⋆ Algorithm
Operation of the ETM: The #$% State

Operation in the #$% State:
§ Input: the input vector &'(contains vehicle location),

obstacle locations *+; they are used to update potential
surfaces ℇℓ, ∀ℓ.

§ Compute01: the directly reachable neighbor cell with the
highest positive potential in the neighborhood 23:

01 5 = arcmax<=∈?=ℇ<=
§ Output: If 01 is found, send vector @'A to move vehicle to

01; and upon reaching, send vector @'B to start tasking.
• If 01 not found, switch to state CDE

When is it reached?
Either after system initialization, or when the current cell
has just been tasked and needs a new 01.

What does it do?
Default state to compute for 01 on Level 0 of MAPS.

18

!⋆ Algorithm
Operation of the ETM: The #$ State

Operation in the #$ State
§ Input: the input vector %&' contains task status (); if it

is complete, update current cell * as +, i.e., Explored;
then update potential surfaces ℇℓ, ∀ℓ.

§ Output:
• If task status () is complete, go to state 012 to

compute for the next 34
• Otherwise, keep on waiting.

When is it reached?
When the autonomous vehicle reaches the computed 34.

What does it do?
Command the vehicle to perform tasking (e.g., cleaning) in
the current cell.

19

!⋆ Algorithm
Operation of the ETM: The #$%, #$', …#$) States

Operation in the #$ℓ, ℓ = %, ',…) States
§ Compute ,-

• First, read the potentials in the local neighborhood
on Level 1 (i.e., ℇ/0(2)).

• If ∃560 ∈ 89(2) with positive potential, then ,- is
set as an unexplored :-cell in 560 .

• Otherwise, go to ;<= state and repeat above.
§ Output: If ,- is found, sends output >?@ to move vehicle to

,-; otherwise, sends >?0 to set vehicle idle.

When are they reached?
When waypoint ,- cannot be found in ;<A state.

What does it do?
Sequentially switches to higher levels of MAPS, until
,- can be found at some Level ℓ ≤ C.

20

!⋆ Algorithm
Operation of the ETM: The #$ State

Theorem: The ETM halts in finite time[1].

Corollary 1: Each allowed %-cell is tasked only once[1].
Corollary 2: %-coverage is achieved upon halting[1].

[1] J. Song and S. Gupta, “%⋆: An Online Coverage Path Planning Algorithm”, IEEE Transactions on Robotics, Vol. 34, Issue 2, pp 526-533, 2018.

Operation in the #$ State
§ If &' = ∅ at Level *, it implies the ETM cannot find

unexplored %-cells at the highest Level *, then it reaches
the +, state and the machinery is terminated.

When is it reached?
When &' cannot be found in -./ state.

What does it do?
Terminate operation since no unexplored cells are left.

21

Simulation Validations
Validations on the Player/Stage Robotic Simulator

Unexplored Explored Obstacle Forbidden

v Simulation Setup
§ Autonomous Vehicle: a Pioneer AT2 of

dimensions 0.44m×0.38m×0.22m was used
with kinematic constraints of:

§ Top speed: 0.5m/s
§ Maximum acceleration: 0.5m/s,
§ Minimum turning radius: 0.04m

§ Sensing systems

Ø Laser: detection range of 4m

§ Search Area: the search area is of size 50m×
50m, which is partitioned into a 50×50 tiling
consisting of --cells of size 1m×1m. This results
in MAPS with / = 5 levels.

22

Simulation Validations
Scenario 1: Coverage Trajectories and Symbolic Encodings of the Environment

§ !⋆ incrementally builds the environment map, and complete coverage is achieved.

23

Simulation Validations
Scenario 1: Comparison with Alternative Methods

(a) !⋆ Algorithm (b) Spanning Tree Coverage (c) Backtracking Spiral Algorithm (d) Brick & Mortar

Start Start Start Start

Trajectory length Number of turns

24

Simulation Validations
Scenario 2: Adaptive Sweep Direction in Known Sub-regions

v User-controllable Sweep Direction
§ If provided (partial) environment knowledge in

sub-regions, !⋆ can adapt the sweep direction to
further reduce the number of turns.

§ In Scenario 2 below, the layouts of all rooms are
assumed known, but the inside obstacles are
unknown.

§ Then, the field B was designed in a manner such
that the AV sweeps the top left room horizontally
while the other two rooms vertically

Fig. Scenario 2 Fig. Exogeneous potential field # in Scenario 2

known

unknown

25

Simulation Validations
Scenario 2: Adaptive Sweep Direction in Known Sub-regions

§ User-controllable Sweep Direction: If provided (partial) environment knowledge in sub-regions, the sweep direction can be
adapted to further reduce the number of turns. This is done by altering the exogeneous potential field !.

Scenario 2: Coverage trajectory of "⋆ in an apartment scenario Trajectories of alternative methods

26

v Coverage Ratio !":

#$ =
∪' ((*)
ℛ -.

v Sources of Uncertainties:
§ Localization System:

o Outdoor: Real-time Kinematic (RTK) GPS can achieve
an accuracy of 0.05m~0.5m[1].

o Indoor: Hagisonic StarGazer indoor localization
system provides precision of 2cm.

§ Compass: a modestly priced compass provides an
accuracy of 16 [1].

§ Laser Measurements: a laser sensor typically admits an
error of 1% of its operation range.

Performance Evaluation
Coverage Performance under Uncertainties

v Monte Carlo Simulations: The sensor noise are simulated as
Additive White Gaussian Noise (AWGN), with:
§ Localization System: 8 = 0.05m, 0.10m, … 0.25m
§ Compass: 8$69:.;; = 0.56
§ Laser Measurements: 8<.;=> = 1.5cm

[1] L. Paull, S. Saeedi, M. Seto, and H. Li, “Auv navigation and localization: A review,” IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–149, 2014.
[2] J. Palacin, J. A. Salse, I. Valganon, and X. Clua, “Building a mobile robot for a floor- cleaning operation in domestic environments,” IEEE Transactions on Instrumentation and Measurement, vol. 53, no. 5, pp.
1418–1424, 2004.

Coverage ratio vs. noise for ten Monte Carlo runs

27

Performance Evaluation
Choosing a Proper Sized !

Figure 1. Scenario 1: coverage trajectories for varying size of " Figure 2. Scenario 2: coverage trajectories for varying size of "

v Selection of the Size of !:
§ Should be big enough to contain the autonomous vehicle, and small enough for the tasking sensor to be able to cover it.
§ Within these two bounds, the choice of ϵ depends on the following factors:

o Smaller ": provides a better approximation of the search area and its obstacles.
o Larger ": reduces the computational complexity by requiring less number of " -cells to cover the area and it also provides

improved robustness to uncertainties for localization within a cell.

28

Real Experiments
The Autonomous Ground Vehicle (AGV)

v !⋆ algorithm was validated in real laboratory-scale experiments to address
real-life uncertainties in sensing and vehicle control

v iRobot Create was used as the AGV, which is programmable and controllable
using feedbacks from popular sensing devices

Table. Specifics of the on-board sensing systems

An AGV integrated with multiple sensing devices

