
!⋆: Time-optimal Risk-aware Motion
Planning for Curvature-constrained Vehicles

1

Obstacle

This work has been published in:
J. Song, S. Gupta and T.A. Wettergren, “T⋆: Time-optimal Risk-aware Motion Planning for Curvature-constrained Vehicles”, IEEE Robotics and Automation Letters,
Vol. 4, Issue 1, pp 33-40, 2019.

The copyright of this presentation is held by the authors and the LINKS lab.

!⋆: Time-optimal Risk-aware Motion Planning for
Curvature-constrained Vehicles

2

v Objective: Develop a time-optimal risk-aware motion planning algorithm for curvature-constrained variable-speed vehicle.

v Challenges:
§ NP-hardness[1]: the time-optimal motion planning problem for

curvature-constrained vehicles in the presence of obstacles is

NP-hard; thus no exact and efficient solution exists.

§ Variable-speed vehicle but its motion has bounded curvature.

§ Vehicle safety: existing risk measures are typically based on

vehicle location, without considering heading and/or speed.

[1] S. Lazard, J. Reif, and H. Wang, “The complexity of the two dimensional curvature- constrained shortest-path problem,” in Proceedings of the Third International Work- shop on the Algorithmic Foundations of Robotics,(Houston, Texas, USA), 1998,

pp. 49–57.

v Features and Novel Contributions of the !⋆ Algorithm:
§ Provides a solution to this unsolved problem.

§ Proposed a novel risk function based on collision time,
using full information of vehicle state, including its

location to nearby obstacles, heading and speed

§ Integrated risk into time-optimal motion planning

§ Proposed an adaptive state pruning technique to

significantly reduce computation complexity

Time-optimal (risk-aware) paths for a variable-speed vehicle vs. the Dubins paths

Dubins vehicle: a constant-speed

curvature-constrained vehicle

Time-optimal motion planning is unsolved with obstacles

Problem Formulation
The Search Area and The Autonomous Vehicle

3

v Tiling of the Search Area ℛ ⊂ ℝ$: construct a tiling % =
'(, * = 1,… % over ℛ. Then, identify the obstacle cells if

it is (partially) occupied by any a-priori known obstacle.

v The Autonomous Vehicle
Let -, ., / ∈ 12(2), the vehicle motion is described as:

6

-̇ 8 = 9 8 ⋅ cos /(8)

.̇ 8 = 9 8 ⋅ sin /(8)

/̇(8) = @(8)

v Vehicle State: A = -, ., /, 9

Figure. Tiling of the search area

Curvature B = C

D
is bounded by 0 ≤ B ≤

CGHI

DGJK
.

§ Note: curvature is the inverse of its turning radius.

Turning Radius: when turn with ±@MNO , the turning radius is
proportional to its speed 9:

P =
Q

CRST
and U = DRVW

CRST

Variable Speed
9(8) ∈ [9MYZ, 1]

Bounded Turn Rate @ 8 ∈ [−@MNO, @MNO],
where @MNO ∈ ℝ] is the max turn rate, and
“+/-” indicates a left/right turn.

Problem Formulation
The Cost Function

4

v Admissible Control: Let Γ denote the set of collision-free paths between the start state "#$%&$ and goal state "'(%).
For each path * ∈ Γ, the control , - = (0, 2) at any point - on path *, belongs to[1]:

Ω = 0, 2 : 2678 ≤ 2 ≤ 1, 0 ≤ ;6<=
2

v Cost of a Path: Let >(-) denote the risk cost at point - on path *. Then the total cost is written as:

? * = @
A
> - ⋅ 1

2(-) C-

v Objective: Now, the goal is to find the optimal control ,⋆ ∈ Ω, which generates the collision-free path *⋆, such that:
? *⋆ ≤ ? * , ∀* ∈ Γ.

v NP-hardness: The problem of deciding whether a curvature-constrained collision-free path exists between two given
poses amid polygonal obstacles is NP-hard[2][3].

Ø No efficient exact algorithms exist for the time-optimal motion planning problem in the presence of obstacles.

[1] A. Wolek, E. Cliff, and C. Woolsey, “Time-optimal path planning for a kinematic car with variable speed,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 10, pp. 2374-2390, 2016.
[2] P. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides, “Curvature- constrained shortest paths in a convex polygon,” SIAM Journal on Computing, vol. 31, no. 6, pp. 1814–1851, 2002.
[3] S. Lazard, J. Reif, and H. Wang, “The complexity of the two dimensional curvature- constrained shortest-path problem,” in Proceedings of the Third International Work- shop on the Algorithmic Foundations
of Robotics,(Houston, Texas, USA), 1998, pp. 49–57.

risk cost time cost

!⋆ Algorithm
Configuration Space and Approximate Optimization Function

5

v The Configuration Space: Assign obstacle-free cells with
a set of possible vehicle states as follows.

(a) 4-orientation (b) 8-orientation (c) 16-orientation

risk cost time cost #(%&,&())

v Approximate Optimization Function
§ Let Ρ = -.,/ = 1,… 2 be the set of state sequences,

where -. = [4)
., 45

.,…46.] is a state sequence from
489:;9 = 4)

. to 4<=:> = 46. . Its total cost is:

? -. =@
&A)

6B)
C? 4&

., 4&()
.

where the step-wise cost:
C? 4&

., 4&()
. = min ?(%&,&())

and %&,&() refers to any collision-free path from 4&
. to 4&(). .

§ Assume the risk to be constant along %&,&(), then:

? %&,&() = G
HI,IJK

L M ⋅
1

O(M)
PM

= L %&,&() ⋅ ∫HI,IJK
)

R(8)
PM

§ Now, the goal is to find the optimal state sequence -⋆ ∈ Ρ,
s.t., ? -⋆ ≤ ? -. , ∀-. ∈ Ρ

Low Speed State High Speed State

GoalStart %&,&()
Obstacle

Obstacle

An example of the state sequence -.

4&
.

4&()
.

6

v Sufficient Set !": For any state pair #
$

%
and #

$&'

%
, authors of

[1] showed the sufficient set that contains the time-optimal

path in obstacle-free space has 34 candidate paths.

*
⋆ Algorithm

The Time Cost , -$,$&'

Dubins Paths
(Constant Speed)

v Each Path /
0,0&1

∈ !
"

§ Path Segments
1. Bang arc 3 : turn with 4

567
and 8

567
(i.e., radius 9);

2. Cornering arc : : turn with 4
567

and 8
5;<

, (i.e.,

radius =);

3. Straight line (?): move straight with 8
%AB

.

§ Direction of Each Segment
1. E: turn left with 4

%AB
;

2. G: turn right with −4
%AB

;

3. ?: move straight.

v Cost of /
0,0&1

§ 3 or : segment: turn with angle ΔJ, time is
KL

MNOP

§ ? segment: move straight with distance Q, time is Q/8
567

v Solving for Path Parameters:
§ Constraints: -

$,$&'
must start with #

STAUT
and reach #

VWAX
,

thus requiring YZ, Y[, YJ and speeds to be matched

§ But the number of parameters can be more…

§ Optimize path parameters using IPOPT[1]

Table: The set of candidate paths (Γ]) between two states

[1] A. Wolek, E. Cliff, and C. Woolsey, “Time-optimal path planning for a kinematic car with variable speed,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 10, pp. 2374-2390, 2016.

7

v The OCPS Table: To avoid computational burden during planning, we

construct offline the Optimized Candidate Paths for State-pairs
(OCPS) table to store the optimized candidate paths for all possible

state pairs in the neighborhood.

v Entries in the OCPS Table: The table has at most 2048 (8×16×16)

optimized candidate paths. Also, it is partitioned into the following

subsets based on the starting/ending arc types:

q Γ))* : paths that start and end with + arcs

q Γ),* : paths that start with + arc and end with - arc

q Γ,)* : paths that start with - arc and end with + arc

q Γ,,* : paths that start and end with - arcs

v Quick Query for Time Cost . /0,023 : For a given pair of states 456
and 45276 , the planner initiates a query to the OCPS table to obtain a

set of optimized candidate paths. Then, 8 95,527 is determined by

the collision-free one with the least time; otherwise, 8 95,527 = ∞.

<⋆ Algorithm
The OCPS Table

Table: The set of candidate paths (Γ*) between two states

>??@

>?A@

>A?@

>AA@

8

Case 1: the heading of the start state faces north, east, west
or south. Suppose it faces north, then there are:
• 3 neighbor cells where each cell contains 8 heading

choices and 2 speeds;
• 2 neighbor cells where each cell contains 5 heading

choices and 2 speeds.
Thus, it has a total number of 3×8×2 + 5×2×2 = 68 state
pairs. Moreover, since the start state can take 2 speeds, there
will be 68×2 = 136 states pairs for this case.

Case 2: the heading of the start state faces diagonally, i.e., northeast,
northwest, southeast and southwest. Suppose it faces northwest, then
there are
• 3 neighbor cells where each cell consists of 8 heading choices and

2 speeds;
• 2 neighbor cells where each cell contains 5 heading choices and 2

speeds.
Thus, it has 3×8×2 + 5×2×2 = 68 state pairs. Moreover, due to two
choices of speeds at the start state, there are 68×2 = 136 state pairs.

*⋆ Algorithm
Construction of the OCPS Table based on Symmetry

v Reduction in Construction Time: Within the 2048 state pairs in the OCPS tables, one can use symmetry to significantly reduce the
number of state pairs for optimization, which leads to much less optimization time during table construction.

v Symmetric State Pairs: There are ./. (out of 2048) unique state pairs in the OCPS table, while the rest can be derived from them.

9

v Collision Time !ℓ:
§ First, evenly sample along #$,$&' ∈ Γ* with sampling interval

Δ, ∈ ℝ& , and obtain a set of states, ./ℓ, ℓ = 1,… ,3 ,
where ./4 = /$&'5 .

§ Then, for each ./ℓ = 6ℓ, 7ℓ, 8ℓ, 9ℓ , one can geometrically
compute the collision distance ,ℓ (see figure).

§ The collision time is defined as follows, where 9ℓ ∈
9:;<, 1 .

=ℓ =
,ℓ
9ℓ

>⋆ Algorithm
The Risk Cost @ #$,$&'

Safety Threshold !⋆: For any state, the vehicle is assumed safe if the collision time =ℓ is over a threshold =⋆ ∈ ℝ&. This
is the time for the vehicle to to fully stop, maneuver around, or re-gain its control.

Sample states between /$5 and /$&'5 for 3 = 6

10

!⋆ Algorithm
The Risk Cost # $%,%'(

v Risk of a Sample State)*ℓ:

-./0 12ℓ = 4
1 + log

:⋆

:ℓ
if :ℓ < :⋆

1 if :ℓ ≥ :⋆
The risk function -./0)*ℓ

?

v Risk Cost @ AB,B'C :
Let 0 ∈ ℝ' be the user-controllable risk factor

$%,%'(= max
ℓ∈ (,…,J

-./0 12ℓ
?

Risk Cost @ AB,B'C is evaluated at the most dangerous
state on $%,%'(that results in the least collision time.

11

v !
⋆ Search:
§ We adopt the framework of #⋆ algorithm[1] to search for the optimal state sequence $⋆.
§ The cost associated with each intermediate state %

&

' is defined as

(%
&

'
= * %

+,-.,
, %
&

'
+ ℎ %

&

'
, %
23-4

5
⋆ Algorithm

Searching for the Optimal State Sequence $⋆

6789:8

6
;<=

>

6
;

>=

*(6789:8, 6;<=
>
)

6AB9C

ℎ(6
;

>
, 6AB9C)

step-wise cost DE(6
;<=

>
, 6

;

>
)

v The Cumulative Cost A 6789:8, 6;
>

§ The cumulative cost from %
+,-.,

to state %
&

' along the
state sequence %

F

'
, %
G

'
,…%

&<F

'
, %
&

' , is defined as

* %+,-.,, %&
'

=I

JKF

&<F

DE %
J

'
, %
JLF

'

v The Heuristic Cost M 6
;

>
, 6AB9C

§ Requirements:
Ø Must be admissible to guarantee optimality of $⋆

Ø Should consider kinematic constraints of vehicle

§ Admissible Design: Define ℎ %
&

'
, %23-4 as the length of

the shortest Dubins path using turning radius N, divided
by the maximum speed OPQR.

[1] P.E. Hart, N.J. Nilsson, and B. Raphael. "A Formal Basis for the Heuristic Determination of Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4. 4 (2): 100–107, 1968.

6
;

>S

6
;

>T

12

!⋆ Algorithm
The Adaptive State Pruning Technique

Step 0: Basic State Expansion
(associate 8-orientation states
in each neighbor cell)

Step 1: Obstacle-based Pruning
(The states close to and facing

obstacles/boundaries are pruned)

Step 2: Speed-based Pruning
(Low-speed states located far
from obstacles are pruned)

Low Speed States High Speed StatesObstacle

Goal

#$% #$%

Goal

#$%

Goal

Idea: dynamically identify and remove the states from the configuration space that are less likely to be part of &⋆

13

!⋆ Algorithm
The Adaptive State Pruning Technique

Step 3: Heading-based Pruning
(Diagonally facing states in an opposite direction to
the goal are pruned based on certain threshold)

v Pruning Threshold #$ ∈ [$, (]: connect the state and
the goal with a straight line, if the formed angle is over
a threshold *+ then this diagonal state is pruned

Heading-based pruning with *+ = -/2

Goal

012

Goal

012

Pruned States

Note: Base states (i.e., up, down, left and right oriented
states) are retained to ensure algorithm completeness.

14

Simulation Validations
Scenario 1: Time-optimal Paths vs. Dubins Paths

v Parameters: !"#$%# = 4m, 26m, 0, -./0 , !12$3 = 20m, 8m, 56
7
, -.89 , -.89 = 0.5m/s, -./0 = 1m/s, ?⋆ = 6s, A = 1m,

B = 2m, grid size = 2m, pruning threshold CD = E/2, sampling interval ΔG = 0.4m; buffer around obstacles with size 0.1m.
v Time Costs:

q Dubins Paths: using -./0: 35.99s; using -.89: 55.95s
q Time-optimal Path (J = 0): 34.51s

Dubins paths with constant speeds Time-optimal paths generated by K⋆

15

Simulation Validations
Scenario 1: Time-optimal Risk-aware Paths with Different Risk Parameters !

(a) ! = 0. Time cost before/after smoothing:
34.51s/25.51s

(b) ! = 0.3. Time cost before/after smoothing:
36.30s/33.61s

(c) ! = 3. Time cost before/after smoothing:
41.89s/35.68s

(d) ! = 0. Max risk before/after smoothing:
2.45/2.40

(e) ! = 0.3. Max risk before/after smoothing:
2.01/2.01

(f) ! = 3. Max risk before/after smoothing:
1.48/1.33

Speed Color-
coded Paths

Risk Color-
coded Paths

16

Simulation Validations
Scenario 2: Time-optimal Paths vs. Dubins Paths

v Parameters: !"#$%# = 4m, 26m, 0, -./0 , !12$3 = 20m, 8m, 56
7
, -.89 , -.89 = 0.5m/s, -./0 = 1m/s, ?⋆ = 6s, A = 1m,

B = 2m, grid size = 2m, pruning threshold CD = E/2, sampling interval ΔG = 0.4m; buffer around obstacles with size 0.1m.
v Time Costs:

q Dubins Paths: using -./0: 68.65s; using -.89: 89.47s
q Time-optimal Path (J = 0): 54.24s

Dubins paths with constant speeds Time-optimal paths generated by K⋆

17

Simulation Validations
Scenario 2: Time-optimal Risk-aware Paths with Different Risk Parameters !

(a) ! = 0. Time cost before/after smoothing:
54.24s/48.99s

(b) ! = 0.3. Time cost before/after smoothing:
56.00s/53.75s

(c) ! = 3.5. Time cost before/after smoothing:
68.92s/63.10s

(d) ! = 0. Max risk before/after smoothing:
2.45/2.01

(e) ! = 0.3. Max risk before/after smoothing:
1.83/1.83

(f) ! = 3.5. Max risk before/after smoothing:
1.69/1.66

Speed Color-
coded Paths

Risk Color-
coded Paths

18

Effectiveness of the Adaptive State Pruning Technique
v The uncertainty in heading angle has been incorporated into risk cost !"#$ &̂ℓ , i.e., (ℓ ± Δ(, where Δ(= 1.5/.
v Note: a higher 01 retains more diagonally facing states during the heading-based pruning, thus may produce better results.
v When 01 reduces from 2 to 2/4, the computation time reduces, while the total cost 5 6⋆ remains more or less the same.

v The results are generated on a computer with 3.4GHz CPU and 16GB RAM. The computation times are the average over 5 runs.

Scenario 1
Risk

Weight
State Pruning

Threshold
Total Cost
8(:⋆)

Computation
Time

Savings in
Computation Time

$ = 0

None 33.31 259.92s -

01 = 2 34.51 73.31s 71.80%

01 = 2/2 34.51 54.29s 79.11%

01 = 2/4 34.51 38.60s 85.36%

$ = 0.3

None 38.46 709.56s -

01 = 2 38.87 227.90s 67.88%

01 = 2/2 38.87 169.97s 76.05%

01 = 2/4 39.52 124.78s 82.41%

$ = 3

None 62.98 569.43s -

01 = 2 62.98 157.95s 72.26%

01 = 2/2 62.98 116.08s 79.61%

01 = 2/4 71.94 96.56s 83.04%

Risk
Weight

State Pruning
Threshold

Total Cost
8(:⋆)

Computation
Time

Savings in
Computation Time

$ = 0

None 54.24 97.20s -

01 = 2 54.24 69.53s 28.47%

01 = 2/2 54.24 58.47s 39.85%

01 = 2/4 54.76 34.82s 64.18%

$ = 0.3

None 59.50 264.51s -

01 = 2 59.50 204.72s 22.60%

01 = 2/2 59.50 151.03s 42.90%

01 = 2/4 62.87 94.59s 64.24%

$ = 3.5

None 138.56 306.10s -

01 = 2 138.56 218.03s 28.77%

01 = 2/2 144.18 128.52s 58.01%

01 = 2/4 255.52 94.74s 69.05%

Scenario 2

