

T^{*}: Time-optimal Risk-aware Motion Planning for Curvature-constrained Vehicles

This work has been published in:

J. Song, S. Gupta and T.A. Wettergren, "T*: Time-optimal Risk-aware Motion Planning for Curvature-constrained Vehicles", *IEEE Robotics and Automation Letters*, Vol. 4, Issue 1, pp 33-40, 2019.

The copyright of this presentation is held by the authors and the LINKS lab.

T*: Time-optimal Risk-aware Motion Planning for Curvature-constrained Vehicles

- **Objective:** Develop a time-optimal risk-aware motion planning algorithm for curvature-constrained variable-speed vehicle.
- Challenges:
 - NP-hardness^[1]: the time-optimal motion planning problem for curvature-constrained vehicles in the presence of obstacles is NP-hard; thus no exact and efficient solution exists.
 - Variable-speed vehicle but its motion has bounded curvature.

Time-optimal motion planning is *unsolved* with obstacles

 Vehicle safety: existing risk measures are typically based on vehicle location, without considering heading and/or speed.

✤ Features and Novel Contributions of the T^{*} Algorithm:

- Provides a solution to this *unsolved problem*.
- Proposed a novel risk function based on *collision time*, using *full information* of vehicle state, including its location to nearby obstacles, heading and speed
- Integrated risk into time-optimal motion planning
- Proposed an adaptive state pruning technique to significantly reduce computation complexity

Time-optimal (risk-aware) paths for a variable-speed vehicle vs. the Dubins paths

[1] S. Lazard, J. Reif, and H. Wang, "The complexity of the two dimensional curvature- constrained shortest-path problem," in Proceedings of the Third International Work- shop on the Algorithmic Foundations of Robotics, (Houston, Texas, USA), 1998, pp. 49–57.

Problem Formulation

The Search Area and The Autonomous Vehicle

The Autonomous Vehicle

$$\begin{aligned} x(t) &= v(t) \cdot \cos \theta(t) \\ \dot{y}(t) &= v(t) \cdot \sin \theta(t) \\ \dot{\theta}(t) &= u(t) \end{aligned}$$

- ***** Vehicle State: $p = (x, y, \theta, v)$
- ★ Tiling of the Search Area $\mathcal{R} \subset \mathbb{R}^2$: construct a tiling $T = {\tau_{\alpha}, \alpha = 1, ..., |T|}$ over \mathcal{R} . Then, identify the obstacle cells if it is (partially) occupied by any a-priori known obstacle.

Figure. Tiling of the search area

Problem Formulation The Cost Function

Admissible Control: Let Γ denote the set of collision-free paths between the start state p_{start} and goal state p_{goal} . For each path $\gamma \in \Gamma$, the control $c(s) = (\kappa, \nu)$ at any point s on path γ , belongs to^[1]:

$$\Omega = \left\{ (\kappa, v) : v_{\min} \le v \le 1, |\kappa| \le \frac{u_{\max}}{v} \right\}$$

• Cost of a Path: Let R(s) denote the risk cost at point s on path γ . Then the total cost is written as:

- ◆ Objective: Now, the goal is to find the optimal control $c^* \in \Omega$, which generates the collision-free path γ^* , such that: $J(\gamma^*) \leq J(\gamma), \forall \gamma \in \Gamma.$
- NP-hardness: The problem of deciding whether a curvature-constrained collision-free path exists between two given poses amid polygonal obstacles is NP-hard^{[2][3]}.
 - > No efficient exact algorithms exist for the time-optimal motion planning problem in the presence of obstacles.

[1] A. Wolek, E. Cliff, and C. Woolsey, "Time-optimal path planning for a kinematic car with variable speed," Journal of Guidance, Control, and Dynamics, Vol. 39, No. 10, pp. 2374-2390, 2016.
[2] P. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides, "Curvature- constrained shortest paths in a convex polygon," SIAM Journal on Computing, vol. 31, no. 6, pp. 1814–1851, 2002.
[3] S. Lazard, J. Reif, and H. Wang, "The complexity of the two dimensional curvature- constrained shortest-path problem," in Proceedings of the Third International Work- shop on the Algorithmic Foundations of Robotics, (Houston, Texas, USA), 1998, pp. 49–57.

T* Algorithm

Configuration Space and Approximate Optimization Function

The Configuration Space: Assign obstacle-free cells with a set of possible vehicle states as follows.

(a) 4-orientation (b) 8-orientation (c) 16-orientation

- ✤ Approximate Optimization Function
- Let $P = \{P^m, m = 1, ... |\mathcal{P}|\}$ be the set of state sequences, where $P^m = [p_1^m, p_2^m, ... p_n^m]$ is a state sequence from $p_{start} = p_1^m$ to $p_{goal} = p_n^m$. Its total cost is:

$$J(P^{m}) = \sum_{i=1}^{n-1} \tilde{J}(p_{i}^{m}, p_{i+1}^{m})$$

where the step-wise cost:

$$\tilde{J}(p_i^m, p_{i+1}^m) = \min J(\gamma_{i,i+1})$$

and $\gamma_{i,i+1}$ refers to any collision-free path from p_i^m to p_{i+1}^m .

• Assume the risk to be *constant* along $\gamma_{i,i+1}$, then:

Now, the goal is to find the optimal state sequence P^{*} ∈ P,
s.t., J(P^{*}) ≤ J(P^m), ∀P^m ∈ P

An example of the state sequence P^m

T^{*} Algorithm The Time Cost $\mathcal{T}(\gamma_{i,i+1})$

* Sufficient Set Γ^c : For any state pair p_i^m and p_{i+1}^m , authors of * Each Path $\gamma_{i,i+1} \in \Gamma^c$ [1] showed the sufficient set that contains the time-optimal path in *obstacle-free* space has 34 candidate paths.

Table: The set of candidate paths (Γ^{c}) between two states

- Path Segments
 - 1. Bang arc (B): turn with u_{max} and v_{max} (i.e., radius **R**);
 - 2. Cornering arc (C): turn with u_{max} and v_{min} , (i.e., radius **r**);
 - 3. Straight line (S): move straight with v_{max} .
- Direction of Each Segment
 - 1. L: turn left with u_{max} ;
 - 2. *R*: turn right with $-u_{max}$;
 - 3. S: move straight.

\diamond Cost of $\gamma_{i,i+1}$

- B or C segment: turn with angle $\Delta \theta$, time is $\frac{|\Delta \theta|}{dt}$
- S segment: move straight with distance d, time is d/v_{max}

Solving for Path Parameters:

- **Constraints**: $\gamma_{i,i+1}$ must start with p_{start} and reach p_{goal} , thus requiring Δx , Δy , $\Delta \theta$ and speeds to be matched
- But the number of parameters can be more...
- Optimize path parameters using IPOPT^[1]

T^{*} Algorithm The OCPS Table

- The OCPS Table: To avoid computational burden during planning, we construct offline the Optimized Candidate Paths for State-pairs (OCPS) table to store the optimized candidate paths for all possible state pairs in the neighborhood.
- ✤ Entries in the OCPS Table: The table has at most 2048 (8×16×16) optimized candidate paths. Also, it is partitioned into the following subsets based on the starting/ending arc types:
 - \Box Γ_{BB}^{c} : paths that start and end with *B* arcs
 - \Box Γ_{BC}^{c} : paths that start with *B* arc and end with *C* arc
 - \Box Γ_{CB}^{c} : paths that start with C arc and end with B arc
 - \Box Γ_{CC}^{c} : paths that start and end with C arcs
- Quick Query for Time Cost $\mathcal{T}(\gamma_{i,i+1})$: For a given pair of states p_i^m and p_{i+1}^m , the planner initiates a query to the OCPS table to obtain a set of optimized candidate paths. Then, $\mathcal{T}(\gamma_{i,i+1})$ is determined by the collision-free one with the least time; otherwise, $\mathcal{T}(\gamma_{i,i+1}) = \infty$.

Table: The set of candidate paths (Γ^{c}) between two states

-	No.	Path Type ¹	Direction ²	No.	Path Type	Direction
Γ ^c _{BB}	1	(B)S(B)	LSL	18	(B)S(BC)	LSR
	2	(B)S(B)	LSR	19	(B)S(BC)	RSL
	3	(B)S(B)	RSL	20	(B)S(BC)	RSR
	4	(B)S(B)	RSR	21	(CB)(BCB)	LL
	5	(BCB)(B)	LL	22	(CB)(BCB)	LR
	6	(BCB)(B)	LR	23	(CB)(BCB)	RL C
	7	(BCB)(B)	RL	24	(CB)(BCB)	RR CB
	8	(BCB)(B)	RR	25	(CB)S(B)	LSL
	9	(B)(BCB)	LL	26	(CB)S(B)	LSR
	10	(B)(BCB)	LR	27	(CB)S(B)	RSL
	11	(B)(BCB)	RL	28	(CB)S(B)	RSR
	12	(B)(BCB)	RR	29	(C)(C)(C)	LRL
	13	(BCB)(BC)	LL	30	(C)(C)(C)	RLR
Γ ^c _{BC}	14	(BCB)(BC)	LR	31	(CB)S(BC)	LSL
	15	(BCB)(BC)	RL	32	(CB)S(BC)	LSR Γ_{CC}^{c}
	16	(BCB)(BC)	RR	33	(CB)S(BC)	RSL
	17	(B)S(BC)	LSL	34	(CB)S(BC)	RSR

T* Algorithm Construction of the OCPS Table based on Symmetry

- Reduction in Construction Time: Within the 2048 state pairs in the OCPS tables, one can use symmetry to significantly reduce the number of state pairs for optimization, which leads to much less optimization time during table construction.
- Symmetric State Pairs: There are 272 (out of 2048) unique state pairs in the OCPS table, while the rest can be derived from them.

Case 1: the heading of the start state faces north, east, west or south. Suppose it faces north, then there are:

- 3 neighbor cells where each cell contains 8 heading choices and 2 speeds;
- 2 neighbor cells where each cell contains 5 heading choices and 2 speeds.

Thus, it has a total number of $3 \times 8 \times 2 + 5 \times 2 \times 2 = 68$ state pairs. Moreover, since the start state can take 2 speeds, there will be $68 \times 2 = 136$ states pairs for this case.

Case 2: the heading of the start state faces diagonally, i.e., northeast, northwest, southeast and southwest. Suppose it faces northwest, then there are

- 3 neighbor cells where each cell consists of 8 heading choices and 2 speeds;
- 2 neighbor cells where each cell contains 5 heading choices and 2 speeds.

Thus, it has $3 \times 8 \times 2 + 5 \times 2 \times 2 = 68$ state pairs. Moreover, due to two choices of speeds at the start state, there are $68 \times 2 = 136$ state pairs.

(a) Case 1: Start state facing up, down, left, right (b) Case 2: Start state facing diagonally

T^{*} Algorithm The Risk Cost $R(\gamma_{i,i+1})$

Safety Threshold t^* : For any state, the vehicle is assumed safe if the collision time t_ℓ is over a threshold $t^* \in \mathbb{R}^+$. This is the time for the vehicle to to fully stop, maneuver around, or re-gain its control.

***** Collision Time t_{ℓ} :

- First, evenly sample along $\gamma_{i,i+1} \in \Gamma^c$ with sampling interval $\Delta d \in \mathbb{R}^+$, and obtain a set of states, $\{\hat{p}_{\ell}, \ell = 1, ..., M\}$, where $\hat{p}_M = p_{i+1}^m$.
- Then, for each $\hat{p}_{\ell} = (x_{\ell}, y_{\ell}, \theta_{\ell}, v_{\ell})$, one can geometrically compute the *collision distance* d_{ℓ} (see figure).
- The collision time is defined as follows, where $v_\ell \in \{v_{\min}, 1\}$.

$$t_\ell = \frac{d_\ell}{v_\ell}$$

Sample states between p_i^m and p_{i+1}^m for M = 6

T^{*} Algorithm The Risk Cost $R(\gamma_{i,i+1})$

***** Risk of a Sample State \widehat{p}_{ℓ} :

$$risk(\hat{p}_{\ell}) = \begin{cases} 1 + \log\left(\frac{t^{\star}}{t_{\ell}}\right) & \text{if } t_{\ell} < t^{\star} \\ 1 & \text{if } t_{\ell} \ge t^{\star} \end{cases}$$

***** Risk Cost $R(\gamma_{i,i+1})$:

Let $k \in \mathbb{R}^+$ be the user-controllable risk factor

 $R(\gamma_{i,i+1}) = \max_{\ell \in \{1,\dots,M\}} (risk(\hat{p}_{\ell}))^{k}$

Risk Cost $R(\gamma_{i,i+1})$ is evaluated at the most dangerous state on $\gamma_{i,i+1}$ that results in the **least** collision time.

T^* Algorithm Searching for the Optimal State Sequence P^*

A^* Search:

- We adopt the framework of A^{*} algorithm^[1] to search for the optimal state sequence P^{*}.
- The cost associated with each intermediate state p_i^m is defined as

 $f(p_i^m) = g(p_{start}, p_i^m) + h(p_i^m, p_{goal})$

***** The Cumulative Cost $g(p_{start}, p_i^m)$

The cumulative cost from p_{start} to state p_i^m along the state sequence [p₁^m, p₂^m, ... p_{i-1}^m, p_i^m], is defined as

$$g(p_{start}, p_i^m) = \sum_{j=1}^{i-1} \tilde{J}(p_j^m, p_{j+1}^m)$$

* The Heuristic Cost $h(p_i^m, p_{goal})$

- Requirements:
 - > Must be admissible to guarantee optimality of P^*
 - Should consider kinematic constraints of vehicle
- Admissible Design: Define $h(p_i^m, p_{goal})$ as the length of the shortest Dubins path using turning radius r, divided by the maximum speed v_{max} .

T^{*} Algorithm The Adaptive State Pruning Technique

Idea: dynamically identify and remove the states from the configuration space that are less likely to be part of P^*

Step 0: **Basic State Expansion** (associate *8-orientation* states in each neighbor cell)

Step 1: **Obstacle-based Pruning** (The states close to and facing obstacles/boundaries are pruned)

Goal

Step 2: **Speed-based Pruning** (Low-speed states located far from obstacles are pruned)

High Speed States

T^{*} **Algorithm** The Adaptive State Pruning Technique

Step 3: Heading-based Pruning

(Diagonally facing states in an opposite direction to the goal are pruned based on certain threshold)

◆ Pruning Threshold $η_0 \in [0, π]$: connect the state and the goal with a straight line, if the formed angle is over a threshold $η_0$ then this diagonal state is pruned

Note: Base states (i.e., up, down, left and right oriented states) are retained to ensure algorithm completeness.

Scenario 1: Time-optimal Paths vs. Dubins Paths

◆ Parameters: $p_{start} = (4m, 26m, 0, v_{max}), p_{goal} = (20m, 8m, \frac{3\pi}{2}, v_{min}), v_{min} = 0.5m/s, v_{max} = 1m/s, t^* = 6s, r = 1m, t^* = 10, t^* = 10$

 $\mathbf{R} = 2$ m, grid size = 2m, pruning threshold $\eta_0 = \pi/2$, sampling interval $\Delta d = 0.4$ m; buffer around obstacles with size 0.1m.

***** Time Costs:

- \Box Dubins Paths: using v_{max} : 35.99s; using v_{min} : 55.95s
- **\Box** Time-optimal Path (k = 0): 34.51s

Dubins paths with constant speeds

Time-optimal paths generated by T^{\star}

15

16

Scenario 2: Time-optimal Paths vs. Dubins Paths

• Parameters: $p_{start} = (4m, 26m, 0, v_{max}), p_{goal} = (20m, 8m, \frac{3\pi}{2}, v_{min}), v_{min} = 0.5m/s, v_{max} = 1m/s, t^* = 6s, r = 1m,$

 $\mathbf{R} = 2$ m, grid size = 2m, pruning threshold $\eta_0 = \pi/2$, sampling interval $\Delta d = 0.4$ m; buffer around obstacles with size 0.1m.

Time Costs:

- \Box Dubins Paths: using v_{max} : 68.65s; using v_{min} : 89.47s
- **\Box** Time-optimal Path (k = 0): 54.24s

Dubins paths with constant speeds

Time-optimal paths generated by T*

17

Effectiveness of the Adaptive State Pruning Technique

- The uncertainty in heading angle has been incorporated into risk cost $risk(\hat{p}_{\ell})$, i.e., $\theta_{\ell} \pm \Delta \theta$, where $\Delta \theta = 1.5^{\circ}$.
- Note: a higher η_0 retains more diagonally facing states during the heading-based pruning, thus may produce better results.
- When η_0 reduces from π to $\pi/4$, the computation time reduces, while the total cost $J(P^*)$ remains more or less the same.
- The results are generated on a computer with 3.4GHz CPU and 16GB RAM. The computation times are the average over 5 runs.

Risk Weight	State Pruning Threshold	Total Cost $\boldsymbol{J}(\boldsymbol{P}^{\star})$	Computation Time	Savings in Computation Time
	None	33.31	259.92s	-
k = 0	$\eta_0 = \pi$	34.51	73.31s	71.80%
$\kappa = 0$	$\eta_0 = \pi/2$	34.51	54.29s	79.11%
	$\eta_0 = \pi/4$	34.51	38.60s	85.36%
	None	38.46	709.56s	-
k = 0.3	$\eta_0 = \pi$	38.87	227.90s	67.88%
$\kappa = 0.5$	$\eta_0 = \pi/2$	38.87	169.97s	76.05%
	$\eta_0 = \pi/4$	39.52	124.78s	82.41%
	None	62.98	569.43s	-
k - 3	$\eta_0 = \pi$	62.98	157.95s	72.26%
$\kappa = 5$	$\eta_0 = \pi/2$	62.98	116.08s	79.61%
	$\eta_0 = \pi/4$	71.94	96.56s	83.04%

Scenario 1	L
------------	---

Risk Weight	State Pruning Threshold	Total Cost $J(P^{\star})$	Computation Time	Savings in Computation Time
h = 0	None	54.24	97.20s	-
	$\eta_0 = \pi$	54.24	69.53s	28.47%
$\kappa = 0$	$\eta_0 = \pi/2$	54.24	58.47s	39.85%
	$\eta_0 = \pi/4$	54.76	34.82s	64.18%
	None	59.50	264.51s	-
k = 0.2	$\eta_0 = \pi$	59.50	204.72s	22.60%
$\kappa = 0.5$	$\eta_0 = \pi/2$	59.50	151.03s	42.90%
	$\eta_0 = \pi/4$	62.87	94.59s	64.24%
	None	138.56	306.10s	-
k - 25	$\eta_0 = \pi$	138.56	218.03s	28.77%
$\kappa = 5.5$	$\eta_0 = \pi/2$	144.18	128.52s	58.01%
	$\eta_0 = \pi/4$	255.52	94.74s	69.05%

Scenario 2