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UCONN Curvature-constrained Vehicles
*** Objective: Develop a time-optimal risk-aware motion planning algorithm for curvature-constrained variable-speed vehicle.
% Challenges: ¢ Features and Novel Contributions of the T* Algorithm:
= NP-hardness'll: the time-optimal motion planning problem for = Provides a solution to this unsolved problem.

curvature-constrained vehicles in the presence of obstacles is

. . . = Proposed a novel risk function based on collision time,
NP-hard; thus no exact and efficient solution exists. P

using full information of vehicle state, including its

n [Variable-speed]vehicle but its motion has bounded curvature. location to nearby obstacles, heading and speed
Time-optimal motion planning is unsolved with obstacles » |ntegrated risk into time-optimal motion planning
=  Vehicle Safety: EXiSting risk measures are typlcally based on [ Proposed an adaptive state pruning technique to
vehicle location, without considering heading and/or speed. significantly reduce computation complexity

Dubins Path \

Obstacle

Dubins Path

Time-optimal
Risk-aware Path

Dubins vehicle: a constant-speed /
curvature-constrained vehicle

Time-optimal Path

Start—= Goal

----- Low-speed path segment — High-speed path segment
Time-optimal (risk-aware) paths for a variable-speed vehicle vs. the Dubins paths

[1] S. Lazard, J. Reif, and H. Wang, “The complexity of the two dimensional curvature- constrained shortest-path problem,” in Proceedings of the Third International Work- shop on the Algorithmic Foundations of Robotics,(Houston, Texas, USA), 1998, 2
pp. 49-57.
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UCONN The Search Area and The Autonomous Vehicle

** The Autonomous Vehicle ¢ Vehicle State: p = (x,y,0,v)

Let (x,, 0) € SE(2), the vehicle motion is described as: % Tiling of the Search Area R c R? : construct a tiling T =
x(t) = v(t) - cosO(t)

{t,,a = 1,...|T|} over R. Then, identify the obstacle cells if

y(t) = v(t) - sin6(t) it is (partially) occupied by any a-priori known obstacle.
6(t) = u(t)
Variable Speed Bounded Turn Rafe. u(t) € [—uUmax Umaxl ..
where U, € R is the max turn rate, and
v(t) € [vmin: 1] P . Obstacle
+/-" indicates a left/right turn.
Curvature k = % is bounded by 0 < k| < |% : Gc'z'
Obstacle Cells “1
= Note: curvature is the inverse of its turning radius. — ;
G- \ ’
G‘urning Radius: when turn with +u,,,,, the turning radius is\ )/ X 4
proportional to its speed v: ~ el ks i I Free Cells
. Start
R=—" and r=2zn» s

\_ Umax Umax ) Figure. Tiling of the search area
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UCONN The Cost Function

D)

0‘0

Admissible Control: Let I denote the set of collision-free paths between the start state pg;,,; and goal state pq;-
For each path y €T, the control c(s) = (k, v) at any point s on path y, belongs tol!:

u
= {06, 1): Vpin SV <1, 11| < ‘;’j‘"}

D)

*

Cost of a Path: Let R(s) denote the risk cost at point s on path y. Then the total cost is written as:

](V)—L[Iz]g%

risk cost /lme cost

» Objective: Now, the goal is to find the optimal control ¢* € (), which generates the collision-free path y*, such that:
Jy) <J{) vy €.

D)

L)

4

0

NP-hardness: The problem of deciding whether a curvature-constrained collision-free path exists between two given
poses amid polygonal obstacles is NP-hard?!3],

» No efficient exact algorithms exist for the time-optimal motion planning problem in the presence of obstacles.

[1] A. Wolek, E. Cliff, and C. Woolsey, “Time-optimal path planning for a kinematic car with variable speed,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 10, pp. 2374-2390, 2016.
[2] P. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides, “Curvature- constrained shortest paths in a convex polygon,” SIAM Journal on Computing, vol. 31, no. 6, pp. 1814-1851, 2002.

[3] S. Lazard, J. Reif, and H. Wang, “The complexity of the two dimensional curvature- constrained shortest-path problem,” in Proceedings of the Third International Work- shop on the Algorithmic Foundations
of Robotics,(Houston, Texas, USA), 1998, pp. 49-57.
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Configuration Space and Approximate Optimization Function

UCONN

+* The Configuration Space: Assign obstacle-free cells with
a set of possible vehicle states as follows.

—

Low-speed
State
—_

\ High-speed
State

(a) 4-orientation (b) 8-orientation (c) 16-orientation

An example of the state sequence P™

pi" m
[ Pty Obstacle
Start Obstacle
Vii+1

* Low Speed State 1 High Speed State

Goal

:0’ LINKS
Laboratory of Intelligent Networks

and Knowledge-Perception Systems

** Approximate Optimization Function
Let P = {P™,m = 1,...|P|} be the set of state sequences,
[p1, 3, ...pnt] is a state sequence from

where P™ =
Dstart = P1' t0 Dgoar = Pn'- Its total cost is:
n-—1
JP™M) = ) 1](1?[”,19?.11)
i=

where the step-wise cost:
J@{", pi%1) = minJ (¥i41)

and y; ;.1 refers to any collision-free path from p;" to p/’} ;.

= Assume the risk to be constant along y; ; +1, then:
1
J(Viis1) = j R(s) o ds

Vii+1
1

time cost T (¥ i4+1)

risk cost
Now, the goal is to find the optimal state sequence P* € P,

s.t., J(P*) <J(P™),vP™ € P
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The Time Cost T(y; ;+1)
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%+ Sufficient Set I'“: For any state pair p;" and p;},, authors of < Each Pathy;; . € I’

[1] showed the sufficient set that contains the time-optimal

path in obstacle-free space has 34 candidate paths.

Table: The set of candidate paths (') between two states

No. Path Type! Direction’ No. PathType  Direction

=  Path Segments
1. Bangarc (B): turn with Uy, and vy, (i.e., radius R);
2. Cornering arc (C): turn with uy ., and vy, (i.e.,
radius r);
3. Straight line (§): move straight with v,,,,-

1 | (B)S(B) LSL 18 (B)S(BC) LSR .

g ((ggg Iﬁgi ;(9) A ks Dubins Paths = Direction of Each Sc::’gment

4 | (B)S(B) RSR 21 ((CB)BCB)) LL  (Constant Speed) 1. L:turn Igft W'th Umax;

5 (BCB)YB) LL 22 | (CB)(BCB) 2. R:turnright with —u,, 44;

6 (BCB)B) LR 23 | (CB)(BCB) 3. S: move straight.

7  (BCB)B) RL 24 \(CB)(BCB)) R .

8 (BCB)YB) RR 25 (CB)S(B) LS % CostofV;ii1

9 (B)BCB) LL 26 (CB)S(B) . . .. |a8]

10 (BYBCB) LR 27 (CB)S(B) " B or C segment: turn with angle A@, time is —

11 (B)BCB) RL 28 (CB)S(B) = S segment: move straight with distance d, time is d /V,.x
12 (BYBCB) RR 29 | (C)(C)C)

13 ((BCB)BC)) LL 30 [(C)CXC) RLR ¢ Solving for Path Parameters:

14 | (BCB)BC)| LR 31 ((CB)S(BC)\ LSL ke 1 :

15 | @cBYBO[RT 2| (cmsEo) | LSk . Constraln.tsf. Yii+1 must start with pgqq,. and reach pgoq,
16 CBYBCY RR 33 | (CB)S(BC) | RSC thus requiring 4x, 4y, A0 and speeds to be matched

17 (B)S(BC)  LSL 34 \(CB)S(BC)) RSR But the number of parameters can be more...

= Optimize path parameters using IPOPT!

[1] A. Wolek, E. Cliff, and C. Woolsey, “Time-optimal path planning for a kinematic car with variable speed,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 10, pp. 2374-2390, 2016.
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UCONN The OCPS Table

construct offline the Optimized Candidate Paths for State-pairs

(OCPS) table to store the optimized candidate paths for all possible

No. Path Type! Direction’ No. PathType  Direction

state pairs in the neighborhood. 1 ((B)S(B) | LSL 18 ((B)S(BC) ) LSR
2 (B)S(B) LSR 19 |(B)S(BC) |RSL
% Entries in the OCPS Table: The table has at most 2048 (8x16x16) i Eg;gg gg; g‘l) 13?)(1133((::13) EER
optimized candidate path§. Also, !t is partltlorTed into the following re,s |eem| w 22 |(CB)BCB) | LR
subsets based on the starting/ending arc types: 6 | ®cB)®)| LR 23 |(CB)(BCB) 'RL
O TS paths that start and end with B arcs 7 | (BCB)B)| RL 24 (CB)(BCB) RR
8 | (BCB)B)| RR 25 (CB)S(B) ' LSL
O T5.: paths that start with B arc and end with C arc 9 | B)BCB)| LL 26 (CB)S(B) LSR
. . 10 | (B)BCB)| LR 27 (CB)S(B) | RSL
O Tg: paths that start with C arc and end with B arc 11 | ®@ce)| R 28 \(CB)SB) J RSR
O T paths that start and end with C arcs 12 \(BMBCBY RR 29 (C)(O)C) LRL
. ) . . _ m 13 ((BCB)BC)) LL 30 J(C)CYC) |RLR
** Quick Query for Time Cost T (yi,,-+1): For a given pair of states p; 14 | (BCB)BC) | LR 31 |(CB)S(BC) |LSL
and p/";, the planner initiates a query to the OCPS table to obtain a 15 | (BCB)BC) | RL 32 |(CB)S(BC) |LSR [ ¢¢
. . . : 16 | (BCB)BC)| RR 33 |(CB)S(BC) | RSL
set of optimized candidate paths. Then, T(yi'iﬂ) is determined by 17 \Bsae J LsL 34 \(CB)S(BC) ) RSR

the collision-free one with the least time; otherwise, T(yi'iﬂ) = 00,
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UCONN Construction of the OCPS Table based on Symmetry

** Reduction in Construction Time: Within the 2048 state pairs in the OCPS tables, one can use symmetry to significantly reduce the
number of state pairs for optimization, which leads to much less optimization time during table construction.

s Symmetric State Pairs: There are 272 (out of 2048) unique state pairs in the OCPS table, while the rest can be derived from them.

Case 1: the heading of the start state faces north, east, west Case 2: the heading of the start state faces diagonally, i.e., northeast,

or south. Suppose it faces north, then there are: northwest, southeast and southwest. Suppose it faces northwest, then
* 3 neighbor cells where each cell contains 8 heading there are

choices and 2 speeds; * 3 neighbor cells where each cell consists of 8 heading choices and
* 2 neighbor cells where each cell contains 5 heading 2 speeds;

choices and 2 speeds. * 2 neighbor cells where each cell contains 5 heading choices and 2
Thus, it has a total number of 3X8X2 + 5X2X2 = 68 state speeds.
pairs. Moreover, since the start state can take 2 speeds, there ~ Thus, it has 3X8X2 + 5X2X2 = 68 state pairs. Moreover, due to two
will be 68Xx2 = 136 states pairs for this case. choices of speeds at the start state, there are 68X2 = 136 state pairs.

x| A 2
K | s K|
X |2 XK [

(a) Case 1: Start state facing up, down, left, right (b) Case 2: Start state facing diagonally
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UCONN The Risk Cost R(¥; i+1)

Safety Threshold t*: For any state, the vehicle is assumed safe if the collision time t, is over a threshold t* € R*. This
is the time for the vehicle to to fully stop, maneuver around, or re-gain its control.

Sample states between p/™ and p]’t, for M = 6

¢ Collision Time t,:

= First, evenly sample along y; ;11 € I'° with sampling interval dl," d Obstacle
Ad € R*, and obtain a set of states, {p,,£=1,..,M}, :
where Py = pi 4. —
= Then, for each p, = (xp,¥,,0,,V,), One can geometrically 3
compute the collision distance d, (see figure). | A ds
= The collision time is defined as follows, where v, € 4’ PDabd q
{vminr 1}- ﬁz %‘-ﬁs _____ °
d, Py / Pi+1
ty =— -
¢
Vyp {
m
Pi

T Min-speed State | Max-speed State
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UCONN The Risk Cost R(¥; i+1)

¢ Risk of a Sample State D ,:

*

t _ .
risk(p,) = 1+ log (t_) ift, <t

1k
7 The risk function (risk(p,))
1 ift, >t 2 T M A —
—_—k =0
———=k =0.5
= - = k=
Ll S O R R k=2
** Risk Cost R(Yi,i+1): k=3
+ . —*—k =D
Let k € R™ be the user-controllable risk factor x "
X \
R(Vii = max (risk(p '
(rii+1) ee{1,...,M}( ®0)) 5L%
T~ T risk — 1
] T ——— e
Risk Cost R(y,-,,-+1) is evaluated at the most dangerous

0 1 2 3 1 ) t* 00

state on y; ;41 that results in the least collision time. o _
Collision Time

10
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UCONN Searching for the Optimal State Sequence P*
% A” Search:
= We adopt the framework of A* algorithm[! to search for the optimal state sequence P*.

» The cost associated with each intermediate state p]" is defined as

f®M = 9Wstare, I + R(P™ Pgoar)

o The Cumulative Cost g(pstartr p:n 0:0 The Heuristic Cost h(p:n’ pgoal)

= The cumulative cost from pg;,,; to state p/™ along the

m ..m m  .mA . =  Requirements:
state sequence [p7*, py, ...pi" 1, pi"], is defined as

» Must be admissible to guarantee optimality of P*

l_l . . . . .
I Pstare, P = z ,_lf(pjmrpﬁﬂ » Should consider kinematic constraints of vehicle
/= = Admissible Design: Define h(pim,pgoal) as the length of
the shortest Dubins path using turning radius 7, divided
p7_n1 by the maximum speed v, 4«.
- L
/ my
Pstart k - Pgoal
m3
m ?11 \_pi
g(pstart; pi—l) h(p:n, pgoal)

[1] P.E. Hart, N.J. Nilsson, and B. Raphael. "A Formal Basis for the Heuristic Determination of Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4. 4 (2): 100-107, 1968. H
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UCONN The Adaptive State Pruning Technique

[Idea: dynamically identify and remove the states from the configuration space that are less likely to be part of P* ]

Step 0: Basic State Expansion Step 1: Obstacle-based Pruning Step 2: Speed-based Pruning
(associate 8-orientation states (The states close to and facing (Low-speed states located far
in each neighbor cell) obstacles/boundaries are pruned) from obstacles are pruned)
Gogl Goal Gohl
<@ =@ <@

-l KK
£ br

|z

[ ] Obstacle T Low Speed States 1 High Speed States

X
¥
N7

KKK
|

KKK

=

12
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UCONN

Step 3: Heading-based Pruning
(Diagonally facing states in an opposite direction to
the goal are pruned based on certain threshold)

Go

T™ Algorithm
The Adaptive State Pruning Technique

:0’ LINKS
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% Pruning Threshold 1y € [0, 1t]: connect the state and
the goal with a straight line, if the formed angle is over
a threshold n, then this diagonal state is pruned

Kote: Base states (i.e., up, down, left and right orient&

|~ L
’

L |

- v

states) are retained to ensure algorithm completeness.

Gd

¥

Heading-based pruning with ny = /2

Pruned States

/

13
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Simulation Validations
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Scenario 1: Time-optimal Paths vs. Dubins Paths

< Parameters: psrqpe = (4m, 26m, 0, Vyax), Pgoar = (ZOm, 8m,3?”,vmin), Vpin = 0.5m/s, vy, = 1m/s, t* = 6s,r = 1m,

R = 2m, grid size = 2m, pruning threshold n, = /2, sampling interval Ad = 0.4m; buffer around obstacles with size 0.1m.

% Time Costs:
L Dubins Paths: using v, 4x: 35.99s; using vy, in: 55.95s

O Time-optimal Path (k = 0): 34.51s

- 4 a4 a4 a4
O =~ N W B O

- N W s~ 00O N 0 ©

1

Dubins paths with constant speeds

Min-speed
Dubins Path
Max-speed

/ Dubins Path

2 3 4 5 6 7 8 9 101112 13 14 15

Time-optimal paths generated by T*

-
()]

g R

( \ Zoom In
Min-speed /I

% I8

- o
- N W s

.
o

o

A Max-speed State
! Min-speed State

- N W s OO N ®

| Max-speed segment

1 23456 7 8 9 10111213 14 15 @ "nspeedsegment
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ININ Scenario 1: Time-optimal Risk-aware Paths with Different Risk Parameters k
15 15
14 14
13 13
12 l 12 Min-speed
11 Smoothed 11 Mln -speed §ECLE‘OIOI‘
10 10 - Lncoding
9 9 Smooth d | Max-speed
Speed Color- | . r—— “State
coded Paths 7 7 ] Min-speed
6 6 State
5 5 Smoothed / | Max-speed
4 4 . t
2 2 Min-speed
1 ) segment
6 9 10 11 12 13 14 15 2 3 4 7 8 9 10 11 12 13 14 15 1 23 456 7 8 9 1011 12 13 14 15
(a) £ = 0. Time cost before/after smoothing: (b) k =0.3. T|me cost before/after smoothing:  (c) k = 3. Time cost before/after smoothing:
34.51s/25.51s 36.30s/33.61s 41.89s/35.68s
15 15 15
14 14 14
13 13 13
12 High-risk 12 High-risk 12
11 11 « 11 Risk Color
. 10 ). . 10 - ) ,- 10 Encoding
Risk Color- Z Sy Z o Max = 2.5
coded Paths l

- N W s OO0 O N

12 3 45 6 7 8 9 101112 13 14 15

(d) k = 0. Max risk before/after smoothing:
2.45/2.40

Smoothed

.

= N W s~ OO N

1 2 3456 7 8 9101112131415
(e) k = 0.3. Max risk before/after smoothing:

2.01/2.01

Min=1

- N W s 00O N ®

1 2 3 456 7 8 9 1011 12 13 14 15
(f) k = 3. Max risk before/after smoothing:

1.48/1.33
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UCONN Scenario 2: Time-optimal Paths vs. Dubins Paths

< Parameters: Psyqr = (4m, 26m, 0, Viyay), Pgoar = (ZOm, 8m,37”,vmin), Vpin = 0.5Mm/S, V. = 1m/s, t* = 6s, r = 1m,

R = 2m, grid size = 2m, pruning threshold n, = /2, sampling interval Ad = 0.4m; buffer around obstacles with size 0.1m.
% Time Costs:
O Dubins Paths: using v, ,4: 68.65s; using v,i,: 89.47s
O Time-optimal Path (k = 0): 54.24s

. . . . N
Dubins paths with constant speeds Time-optimal paths generated by T
15 15 1 VN
14 14 :
13 13 b
12 12
11 11 :
10 10 . g
9 . 9 Min-speed
8 Max-speed 8 \
7 Dubins Path 7
6 6 Zoom In
5 S Y,
4
4 ; A Max-speed Pose
3 Min-Speed 2 T Min-speed Pose
; Dublns fath 1 | Max-speed segment
1

: Min-speed segment
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 12 3 4 5 6 7 8 9 10111213 14 15




QL NkKs
0 Laboratory of Intelligent Networks

% SI m u Iat I O n Va I Id at I O n S and Knowledge-Perception Systems
ININ Scenario 2: Time-optimal Risk-aware Paths with Different Risk Parameters k
15 15 15
14 14 14
13 13 13
i 5 5 Speed Colo
Encoding
10 Smoothed 10 Smoothed 10 moothed fcodin
9 9 9 Max-speed
Speed Color- o .Min»speed . . W State
coded Paths 7 Min-speed 7 A~ 7 \n Min-speed
6 6 ' Goal 6 Goal State
5 5 L. 5 . Max-speed
4 4 4 7 | segment
3 3 3 Min-speed : Min-speed
2 2 2 ! segment
1 1 1
12 345 6 7 8 910111213 14 15 1 2 3 456 7 8 9 10111213 14 15 2 3 45 6 7 8 9 1011 12 13 14 15
(a) k = 0. Time cost before/after smoothing:  (b) k = 0.3. Time cost before/after smoothing: (c) k = 3.5. Time cost before/after smoothing:
54.24s/48.99s 56.00s/53.75s 68.925/63.10s
15 15
14 14
13 13
12 12
11 11 Risk Color
. 10 Smoothed 10 Encoding
Risk Color- o i : .
Max=2.5
coded Paths 8 8 >
7 W High-risk T 7 l
6 o . Goal 6
5 5
4 k 4
High-risk 3 3 .
2 2
1 1 Min=1

7 8 9 10 11 12 13 14 15
(d) k = 0 Max r|sk before/after smoothing:

2.45/2.01

9 10 11 12 13 14 15
(e) k = O 3 Max r|sk before/after smoothing:

1.83/1.83

(k=3

2

3 45 9 10 11 12 13 14 15
3.5. Max rlsk before/after smoothing:

1.69/1.66
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% The uncertainty in heading angle has been incorporated into risk cost risk(p,), i.e., 8, + AB, where A = 1.5°.

Risk
Weight

k=0
k=03
k=3

State Pruning
Threshold

None
Mo =T
No =m/2
no =m/4
None
Mo =T
No =m/2
no =m/4
None
Mo =T
No =m/2
no =m/4

Effectiveness of the Adaptive State Pruning Technique

Scenario 1

Total Cost | Computation Savings in
J(P*) Time Computation Time

33.31
34.51
34.51
34.51
38.46
38.87
38.87
39.52
62.98
62.98
62.98
71.94

259.92s
73.31s
54.29s
38.60s
709.56s
227.90s
169.97s
124.78s
569.43s
157.95s
116.08s
96.56s

71.80%
79.11%
85.36%
67.88%
76.05%
82.41%
72.26%
79.61%
83.04%

k=0
k=03
k=35

State Pruning

Threshold
None
No =T
No =1/2
no =1/4
None
Mo =T
Mo = m/2
no = 1/4
None
Mo =T
Mo = m/2
no = 1/4

Scenario 2

Total Cost | Computation Savings in
J(P®) Time Computation Time

54.24
54.24
54.24
54.76
59.50
59.50
59.50
62.87
138.56
138.56
144.18
255.52

97.20s
69.53s
58.47s
34.82s
264.51s
204.72s
151.03s
94.59s
306.10s
218.03s
128.52s
94.74s
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** Note: a higher 1, retains more diagonally facing states during the heading-based pruning, thus may produce better results.
% When 7, reduces from 1 to /4, the computation time reduces, while the total cost J(P*) remains more or less the same.

** The results are generated on a computer with 3.4GHz CPU and 16GB RAM. The computation times are the average over 5 runs.

Risk
Weight

28.47%
39.85%
64.18%
22.60%
42.90%
64.24%
28.77%
58.01%
69.05%



