£*. An Online Coverage Path Planning Algorithm

Junnan Sond Shalabh Gupta™

Abstract—The paper presents an algorithm, calledes™, for online / Exploratory Turing Machine \
Coverage Path Planning (CPP) of unknown environments. The MAPS [N
algorithm is built upon the concept of an Exploratory Turing oL orl
Machine (ETM) which acts as a supervisor to the autonomous & (k)g) 4 i=1L :
vehicle to guide it with adaptive navigation commands. The EM ; Cl-’l
generates a coverage path online usinultiscale Adaptive Potential = E1(k)=> — |
Surfaces (MAPS) which are hierarchically structured and dynam- ( ) el q =
ically updated based on sensor information. Thes*-algorithm is 0
computationally efficient, guarantees complete coverageand does & (k)g t=0 wT
not suffer from the local extrema problem. Its performance & Vehicle Location /=7 Neighborhood ﬂ/
validated by: i) high-fidelity simulations on Player/Stage and ii) k
actual experiments in a laboratory setting on autonomous Jgcles. . 1 o

Ly ol | Autonomous Op
ts Vehicle |YP
1. INTRODUCTION T3

Typical operations of autonomous vehicles that req@os-
erage Path PlanninglCPP) [1][2] include floor cleaning [3],
lawn mowing [4], map generation [5], oil spill cleaning [&]e- Figure 1. ETM as a supervisor of the autonomous vehicle

mining [7][8], etc. Often, these operations are conduateeither Both STC and BSA generate spiral paths, and this limits their
completely unknown or partially known environments. THere, application when turning is regarded expensive and unetbsir
it is essential to utilize sensor-based methods which ematline More recently, Acar and Choset [13] developed a sensorbase
planning for complete coverage [9][10]. coverage method that detects the critical points on olestatcl

A variety of coverage algorithms exist in literature; a Bwi divide the area into cells; coverage is then achieved vik bad
of such algorithms is presented in [11]. The CPP methods a&th motion in each cell. However, this method relies orreor
categorized into two types: offline or online (i.e. sensasdxl). detection and pairing of the IN and OUT critical points [18],
While offline approaches [12] assume the environment t@bewhich could be difficult in complex environments. Furthenso
priori known, online approaches [13] compute the coverage pakis method cannot function in rectilinear environments.
in situ based on sensor information. Independently, CPP methodshis paper presents thet-algorithm (that stands fos-STAR
are also characterized as randomized or systematic. Randgm¢-coverage via Structural Transitions to Abstract Resolu-
strategies follow simple behavior-based rules, requinegher tiong’), wheree refers to the cell resolution. As shown in Fig. 1,
localization system nor costly computational resourcesidver, the algorithm utilizes arExploratory Turing Maching(ETM),
they generate strongly overlapped trajectories. In cehtrifie that consists of a two-dimensional multilevel tape formed b
systematic coverage strategies are typically based omla@ell pyltiscale Adaptive Potential Surfac@APS). The ETM stores
decomposition [13] of the search area into cells of varylmpes. and updates the information corresponding to unexplorgd, e
Lumelsky et al. [1] decomposed the area into fixed-widthscelpiored, and obstacle-occupied regions, as time-varyingnials
and presented theightseerand theseed-spreadestrategies for on MAPS. In essence, it takes advantage of both the potential
coverage. This algorithm was later improved by Hert et &]. [Zie|d-based and sensor-based planning methods by incrafiyent
by reducing the upper bound on path length; however, thasgiiding the MAPS using real-time sensor measurementsléVhi
algorithms are limited to a small set of obstacle geometries by default the ETM uses the lowest level of MAPS for generatin

Zelinsky et al. [12] used a grid of equal-sized cells to i@ni the coverage path online, it switches to higher levels aslexe
an a priori known area and assigned a potential to each cely escape from a local extremum. The ETM acts as a supervisor
then the coverage path was generated along the steepest asgfi guides the autonomous vehicle with navigation commands
from the start to the goal. Koenig et al. [14] used the soecall The advantages of*-algorithm in comparison to existing
‘ant robots’ with limited sensing and computational cafiies to  onjine methods are that it produces the desired back arturfust
scan unknown areas. Gabriely and Rimon [15] usedS{p@nning tjon and does not rely on critical points detection. Funthere,
Tree Covering(STC) algorithm for online coverage, which wasne algorithm is computationally efficient, guarantees pate
later improved toFull Spiral STC (FS-STC) algorithm [16]. coverage, and does not suffer from the local extremum pnoble
Gonzalez et.al. [17] proposed tlBacktracking Spiral Algorithm The g*-algorithm is validated via: i) high-fidelity simulationsio
(BSA), which utilizes a spiral filling path for online covefa  pjayer/Stage and ii) real experiments in a laboratoryregtti

s . . - . The rest of the paper is organized as follows. Section 2
Smr'f;pé‘frt”(}ggggf 'E'g‘jﬁ”ca' & Computer Engineering, Univgee Connecticut, describes the CPP problem. Section 3 presents the detah® of

* Corresponding author, email: shalabh.gupta@uconn.edu g*-algorithm, while Section 4 presents the results. The paper

The paper includes video files that show simulation and éxeertal results.  ~qncluded in Section 5 with suggestions on future work.
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of the allowed cells in72 C 7. Let 1(k) € 72 be thee-cell
visited by the autonomous vehicle at time k and exploredsy it
tasking sensor. Theny is said to achieve-coverage ifd K €

Z* s.t. the sequencgr(k), k=1,...K} coversZ(72), i.e.

K
R(T?) C U 7(k).
Area Rs k:l
Remark 2.1. e-coverage achieves complete coverage if the
tasking sensor completely covers every viserkll.
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Allowed Cells 3. THE £€*-ALGORITHM

/ The g*-algorithm utilizes the concept of ETM fa-coverage
of unknown environments. As shown in Fig. 1, the ETM con-
stantly takes feedback from the autonomous vehicle andrin tu
acts as its supervisor to guide it with operational commards
2. PROBLEM DESCRIPTION navigation waypoints; thus, it falls in the categoryloferactive
This section presents the concept&toverage of an envi- Transition Systemf20][21]. The ETM consists of a single tape
ronment that is populated with unknown obstacles of amyitrahead and a two-dimensional multilevel tape formed by MAPS

Forbidden Cells

Figure 2: An autonomous vehicle working in its environment.

shapes. The autonomous vehicle as shown in Fig. 2 contdingsee Section 3-A), which act as guidance surfaces for degisi
a localization device (e.g. GPS), ii) range detectors (@.taser making. Formally, the ETM is defined as follows.

scanner) to detect obstacles within a circular region ofusad
Rs € RT, and iii) a task-specific sensor for performing its mai
task (e.g., cleaning) with a circular area of radius< Rs. For
operation in GPS-denied environments, #tealgorithm can be
integrated with a SLAM algorithm as in [19] to achieve coyma
Let.e# C R? be the estimated region which includes the desired
area to be covered. First we construct a tiling.@has follows.
Definition 2.1 (Tiling). A set.7 = {tg CR?,a =1,...|7|} is
called a tiling of & if its elements: i) have mutually exclusive
interiors, i.e. 7, N 75 = 0, Va,B € {1,...|7|}, a#B, where
° denotes an interior, and ii) form an exact cover .of, i.e.
o = U‘Oi‘lra. If an exact cover is not possible (e.g., square °
tiles cannot exactly cover a circular region), condition gan
be relaxed toe C U‘f:‘l Ty, to form a minimal tiling ofes, s.t.
removal of any single tile destroys the covering property.

The tiling formed by square tiles of side is called ane-
cell tiling. It is recommended that asicell should be atleast big
enough to contain the autonomous vehicle and small enough fo
the tasking sensor to be able to cover it when the vehicleegass
through it. Within these two bounds, the choicesoflepends on
the following factors. A smalleg provides a better approximation

.Definition 3.1 (Exploratory Turing Machine ). An Exploratory
l:]'uring Machine is a7-tuple M= (Q,=,1p,0p,d,0q0,F) where:

Q={ST,CF°,....CP-,WT,FN} is the set of machine states,
where ST='Start’, CP ='Compute’, WT='Wait’, and

FN ='Finish’. The superscript on CP specifies the level of
MAPS at which the head is operating. The WT state implies
waiting for the vehicle to finish tasking in the current cell.

e =={=':¢=0,1,..L}, where=f = {={, .=k is the

set of potential values that can be encoded on each cell at
Level? of the MAPS.

I, is the set of input parameters containing the feedback
information received from the autonomous vehicle. An input
vectorip € Ip includes:

i. Ae{1,...|7]}: Index of thee-cell where the vehicle

is currently located on tiling7 . It is computed using
the onboard positioning system.

ii. olc{1,...|7|}: Vector of the obstacle locations which
consists of the indices of alcells where obstacles are
detected using the range detectors.
tse {cmic}: Task status of the vehicle in its current
e-cell, where cme‘Complete’ and ic='Incomplete’.

of the search area and its obstacles. On the other hand, @ o, is the set of output parameters containing instructions for

larger € reduces the computational complexity by requiring less
number ofe-cells to cover the area and it also provides improved
robustness to uncertainties for localization within a.cell

The tiling .7 is partitioned into three sets: dbstacle(.7°), ii)
forbidden(.7 ), and iii) allowed(.7?), as shown in Fig. 2. While
the obstacles cells are occupied by obstacles, the forbideks
create a buffer around the obstacles to prevent collisiarestd
inertia or large turning radius of the vehicle. The remajniells
are allowed which are desired to be covered. The autonomous
vehicle discovers the obstacles online, updates the dbsaad
forbidden cells, and performs tasks in the allowed cellsvNee
define the concept of-coverage of the allowed cells. ¢

Definition 2.2 (e-Coveragg. Let Z(7?) denote the total area

the autonomous vehicle. An output veatgre Oy includes:
i. cd € {mvtk,id,sp}: Operational command, where
mv='Move’, tk="Task’, id ='ldle’, and sp="'Stop’.
i. wpcC {1,...|.7]}: Candidate set of navigation way-
points for the vehicle trajectory on tiling’.
0 is the control function that is a partial mapping from
lp xQxM ,r — QxT x0Op, wherell is the set of all
possible configurations of potentials on MAPS generated by
the sets=‘, while I . is the above set restricted to a local
neighborhood #* at Level? of the MAPS.

(o=ST is the initial state, and
F=FN is the final state implying complete coverage.



Remark 3.1. An advantage of Turing Machine over Finite Stat Obstacle yu o I E I
Automaton (FSA) is that it has the capacity of containing mgm ulululululululululy
which is a necessary feature for coverage problems. » ulululuulululululu 3
U[U|U|U|U|U|U|U|U|U
Before delving into the operational details of the ETM, wi vehicle stotororutotarators B
describe the process of dynamic construction of the MAPS. Exploration Started uu[u] u[ululululu[u l
‘ Vehigle VU U[U[U[U]U[Uju Exogenous Potential Field B
A. Deg;ription of MAPS Trajectory Location ETETUTUlUTUTU[UTUTU| Obstacle and Forbidden
. . . . . . . E [U[u]ulu[u[uluu
To build MAPS, first a hierarchical multiscale tiling (MST§ i E\E UL UL Explored I
constructed on the are& by recursive decomposition [6][10]. EINJu[F[o[o[F[u[u]u \ A
As shown in Fig. 1, the-cell tiling . of the search area forms . EE 3 OlFIPLFTols i »
the finest level of MST and is referred @° from now on. Let  exploration and Dynamic |-l lalaro[Ulululu ,
n e N be the maximum number af-cells alongx-axis over all Obstacle Discovery  [E[E[E[U[U[U[U[U[U[U] Unexplored = .
rows. If n is even, then the axis is divided into two regions © Symiboliv g By hatentiskeuntee(id

g elements each. If is odd, then the axis is divided into two
regions withn’ andn’ — 1 elements, such thate Nand 2v — 1=

n. This procedure is repeated along tprexis over all columns andzgm: Bmax The symbolic encoding is updated by the ETM
to generate 4 coarse cells in total, which form the coarde®l,t using sensor information and results in a dynamically chang
i.e. 7L, L e N. Now, again leth € N be the maximum number potential surface?’o(k) as shown in Fig. 3.

of e-cells along thex-axis in a coarse cell. Then, using the above i.) Modeling of the Potential Surfaces at Higher Levels
procedure, each of these four coarse cells are furtheradiviicto )" ) | “the potential surface (K)={&, (k) € =': a’ =
two regions along each axis to generate 16 cells in tiliig . I “
This procedure is repeated umjl2 < 2 orn’ — 1 < 2 to generate
a MST with tilings 79 71,...7" such that7* = {1, : a’ =
1,...|.7%}, ¥t € {0,...L}, wherea’, ¥/ > 1, indexes coarse
cells at Levell of the MST, whilea® indexese-cells. Eqt(k) = pg/(k)Eag (3)

i.) Modeling of the Potential Surface at the Lowest Level
For level? = 0, the potential surface is constructed using a sim

Figure 3: Dynamic construction of the potential surfat®

1,...|.7"|}, is constructed by assigning a potential to each coarse
cell T, € 7'. This is done by assigning,, the average potential
generated by all the unexploreecells within 7,¢, such that

where B,/ is the mean exogenous potential B, and p‘;[(k)

_ X X s P the probability of unexplored-cells in 1,,. The probability
process. First, the environmental information is encoded’®  couid be computed using a simple counting process. Witle litt
by assigning a symbolic state [22] to eagleell 1,0 € 70 from inspection, it could be seen thaf,, =0 and=,= max By..
the alphabet seS= {O, F, E, U, where O= obstacle F = ' " M egt O
forbidden E = explored and U= unexplored Then, the potential

surfaceg®(K)={&,0(k) € =°: a®=1,...|7°}, is constructed by B. Operation of the ETM as a Supervisor

assigning a discrete potential to each, such that The ETM functions as follows. Its head has a stateQ and
it operates on one level of the MAPS at a time; by default Level
-1, if syo(k)=0OorF 0. Fig. 4 shows the state transition graph of the ETM, which

&0(K) =10, if s,0(k) =E (2) realizes the control functiod. The input vectorsy; €1p,j =1,2,

the output vector®p, € Op,j = 1,...4 and the state transition
conditions are defined therein. While the operational teiai
wheres,o(k) € Sis the state off,0 at timek. The first condition each state are presented later, a summary is provided here.
in Eq. (2) assigns a potential of1 to 1,0, if it contains In stateST, the ETM initializes the MAPS. Since the whole
an obstacle or if it is forbidden, i.e. it lies in an obstaclarea is initially unexplored, alk-cells are assigned the state
neighborhood. The latter createsf@abidden zonearound the U, thus MAPS are constructed using only the potential figld
obstacles to prevent the vehicle from colliding with thetabkes Then, the ETM cycles on and between the st&&8 andWT,
due to inertia, skidding, large turning radius, or locdi@a as follows. In each iteration of sta@P’, the ETM takes input
errors. The second condition in Eq. (2) assigns a potenfial foom the autonomous vehicle about the newly discoverechohest
0 to 1,40, if it has been explored by the tasking sensor. THecations and its current positiod ). Then, it moves the head
third condition assigns a potential &,0 to 740, if it is yet on the tape tot and updates the MAPS in accordance with the
unexplored, wher8={B,o € {1,...Bmax},a® = 1,...| 7%} is a discovered obstacles, and performs the following opematid)
time-invariant exogenous potential field. It is designeftire to  reads the potentials from the local neighborho¢@(A) of A to
have plateaus of equipotential surfaces along each coldrtireo compute the new waypoint, ii) changes the head stai# Toif
tiling. As shown in Fig. 3, the plateaus monotonically irase waypoint is reached otherwise staysdR°, and iii) generates an
in height by one unit from 1 on the rightmost columnBgax on  output vector for the vehicle containing the operationahomand
the leftmost column. This field facilitates back and forthtimo and the new waypoint. In each iteration of st#dd, it receives
in an obstacle-free region by following the highest equeptial the task status from the vehicle, and continues to sendnigski
surface from left to right. The sweep direction could be @aeldp command until it is complete. Once the current cell is tasked
by modifyingB according to the users’ needs. CIeaE[ﬂ,in: —1 updates the MAPS and returns to the s@f.

Bc{o7 if Sao(k) =U



Legend: Conditions: Algorithm 1: Updatewp(k)
A wp =0; —A: w .
tw, glsgu‘t’e\;e‘:tfor P o,, |’ w;’:f;' iy wng input :wp(k—1), A, & 1, q {CF,t=0,...L}
w=) State Transition | _ g4 CPL IC: ts =cm; .jC: ts = ic _OUtpUt' &p(k)
eE M o 1 if q=CP" then _ _
Updater wp bp, =0l )ity = (== ts)| 5 compute2° I/ form the computing se®® using Eq. (4)
N % o —hsy| 3 if A € 2° then Il current cellA is unexplored
0, A rﬁ % | o, = (mv, wp); ,,: g if {AUP,AdoWm = %0 then // AUP & A99Wn ynexplored
cPl 5 | wp(K) = {AUP, 140N Nsehicle picks one per Eq. (5)
Read: & 41()) 6 elsewp(k) = A; // setA as waypoint and start tasking
Update: wp e o 7 else if 2° £ 0 then /I other eligiblee-cells exist
A P"m —~ 8 wp(K) = argmaxd&y,o // pick the ones with max potential
Op, 4 ) a0c 50
ST CcP° B WT 9 else if &yp-1) > 0 then // pre-computedwp still available
Intialze: 6 - U, 0 Update: & + 0,/ A@ I C i true, 10 | wp(k) =wp(k—1)
Updgz:; ip‘; i)* v f Rgzi;i{:‘f;) ?update: &' Bt 1 | elsewp(k) = 0; /I local extremum detected at Level O
T o, t M 0. t 12 _end
| | . - _ 13 if q=CP/,1<¢<L then
'y b, %pa tp, 14 | compute2! I/ form the computing se®’ using Eq. (4)
Figure 4: State transition graph of the ETM. 15 if 2!+ 0 then /Il coarse cells witht-ve potentials exist
If the head gets stuck in cal extremumin stateCFP, i.e. ° ‘ welk) = '(aﬁfg!;?xg"”)
no waypoint could be found in the local neighborhood at Level elsewp(k) = 0; /I no waypoint found at Levef

0 of the MAPS, then it switches t6P! and operates on Levelis end
1. Here it searches for the coarse cell with the highest igesit
potential in a local neighborhood1(A) to find a waypoint. If
no waypoint is found even at Level 1, then it switches to st ) )

CP? arﬁaso on until it finds one, then it comes down to sG@ ' & Then[; it moves its head ® and updates the MAPS at all
and continues. If no waypoint is found even at the highea&llev!evels’ le.£% « O, vee{0,..L}, as described previously. Next,

then the ETM halts in stateN and the coverage is complete.It reads the potentialg ) in the local neighborhood °(A)

The details of operations in each state are explained below. |nclud.|ng A. Bgsed on t_hese it computes the next waypoint by
following Algorithm 1 (Lines 1-12 as follows.

i.) Operation in the ST State:The ETM starts in statg=ST Waypoint computatianFirst, it forms a computing se#® C
atk = 0 when vehicle is turned on. Since agriori information A#O(A) (Line 2) that consists okligible e-cells for the next
is available, alle-cells in.7° are initialized with the state U, i.e. waypoint. An e-cell is considered eligible if it is: i)directly
unexplored Then all e-cells are assigned potentials accordin[gbacmme i.e. it is not behind an obstacle, and iipexplored
to field B as per Eq. (2). Subsequently, all higher level cells aj& i has positive potential.
assigned potentials using Eq. (3), by substitutiiaig(O) =1. This o . .

MAPS initialization process is denoted &+« U, v/ € {0,...L}. Definition 3.2 (Directly Reachable Se). An e-cell is called
directly reachable fromh if the line segment joining the centroids

~ Map updating processNext, the autonomous vehicle detectys ) anq that cell is not obstructed by any obstacle cell. The set
its current locatiorA and obstacle locatiordl using its onboard o 5y girectly reachable cells in#°(A) is defined as the directly
sensors, and sends this information to the ETM via the NP chable set DR\).

vectorip,. The ETM moves its tape head fo and initializes
the waypointwp = A. Then it updates the symbolic encoding by In general, the computing sét’ is defined as
flipping the states at all newly discovered obstacle indilet® _
O, and their associated neighborhood cells to F; subselguent ;¢ _ {a%c #°(A): &40 >0,0°€DR(A)} if £=0 @)
their potentials are updated tel using Eg. (2). As a next {ale #*(A): &, >0} if £>1
step, the probabilitiepg/(O) are updated at all higher levels, for
the corresponding coarse cells containing the newly dis@s which means tha#® contains eligibles-cells, while 2%, 1< ¢ <
obstacles, by counting the remaining unexploeecells inside L, contains eligible coarse cells with positive potentiatgplying
those coarse cells. Then, using Eq. (3), the potential sesfathat they contain unexploregtcells. The sets2!,1< ¢ <L, are
are updated’/ € {1,...L}. In short, this entire MAPS updatingused in theCP’ states later. Note that the direct reachability
process is denoted @& < O, ¥/ € {0,...L}. condition is only enforced at Level O to prevent unnecessary
Then, the ETM transitions to the computing stgte CP° and distortions in the back and forth trajectory. At higher lsyehe
sends the output vectar, to command the vehicle to go ‘idle’. algonthm uses Bug2 [23] t_o reach the ce_IIs behwgd o_bstacles
Next, if the current cell is unexplored, i.eA € 2° (Line 3),
ii.) Operation in the CP® State: CPY is the default state then it further checks if the cell abova {P) and the cell below
to compute waypoints. Every time the ETM react@gC, it (A9°"") both belong toZ° (Line 4). This condition means that

receives the input vector,, from the vehicle containing its
rrent positiom and the newly discovered obstacle locatiohs




the vehicle is in the middle of unexplored cells both above amntil it finds the lowest levet € {1,...L} where2" # 0. Once the
below A. If this is true, then it should rather first move to &TM finds a waypoint it switches back to the state- CP° and
cell that is adjacent to a forbidden or explored cell. Thispst sends the output vectog, to move the vehicle to the waypoint.
is imposed such that the trajectory is not distorted by tegkilf it is unable to find a coarse cell with positive potentiatavat
in the middle of unexplored cells, and allows for maintaingn the highest Level, it implies that no coarsest cell contains any
nice back and forth motion. Thus, the waypoint candidatdassetunexplorede-cell. In that case, it switches to the state- FN
chosen asvp = {AYP, 299 (Line 5). The vehicle picks one of and sends the output vectog, commanding the vehicle to stop
these based on its turn and travel cost as per Eq. (5) belder Aits machinery since the coverage is complete.
computingwp, the ETM loops in state) = CP? and sends the ) Operation in the WT State: The ETM comes to the state
output \{ectoropa to move the vehicle to the next waypoint. g=WT from the stateg= CF® if wp = A. Here the ETM waits

It A is unexplored and the cells above and below are nghie the vehicle performs task at and reports back the task
both unexploredLl(ine 6), then the vehicle is well positioned for gi5t,s via input vectorp,. If it is * Completg then the ETM
tasking. Thenwp .is set equal td and the ETM transitions toi the updates the state of the current cell to E, eplored which
stateq =WT while sending an output vectar,, commanding s assigned with 0 potential according to Eq. (2). Subsetiyen
the vehicle to task ak. The operation oW T is described later. i potential surfaces’, V¢ € {1,...L}, are updated according to

If the current cellA is not unexplored but there exist otherEq_ (3). This MAPS update process is represented’as- E,
eligible e-cells in 7° (Line 7), then the candidate sew iS vy < (0. L}. Then, the ETM transitions back to the computing
selected to consist of the-cells that have the highest potentlagtateq — CP? and resumes searching for a new waypoint. If the
in 2° (Line 8). Note that there could be more than one cethsk is not completed yet then the ETM loops in the stiatéV T,
with the highest potential, if they belong to an equipo@nti,,ije sending the output vectar,, to continue tasking.
surface. Finally, if° =0, but a pre-computedp(k—1) is stil In statesCP® andW T, the MAPS are updated by assigningd
accessible, s.6yp-1) > 0 (Line 9), thenwp remains the same 5, o potentials to obstacle and explored regions, respégti
(Line 10). If a wp is obtained from the above steps, then gy in unexplored regions, the MAPS maintain the +ve peten
ETM stays in statey=CP° and sends the output Vectop, 10 iais defined byB, as shown in Fig. 3. Since the waypoint is
move the vehicle to the next waypoint, as seen in Fig. 4. ainy chosen as the-cell in the neighborhood with the highest

It is possible thatvp contains more than one elements. In tha, potential, this enables tracking the highest equigizten

case, the autonomous vehicle selects the cell with the 68t ¢, taces oB and produces the desired back and forth motion.
travel and turn cost to reach it from Let the current position of

the vehicle bd)\x7/\y)er)\_ Then’ for eacm € wp, a COStCIJ)\ Remark 3.2. The ETM uses the flood fill algorithm to fill
is defined as the total travel and turn cost needed to reach @ unexplored cells inside a closed obstacle with the clsta

centroid (i, ty,) of the e-cell T, such that symbol O, when the boundary of the obstacle is detected but
. interior is not detected. This prevents the ETM from trying t
Cua = duaCrr + 62 Cru ®) pick undetected cells inside large obstacles.

where Crr is the cost of traveling per unit distanc€ry IS  Remark 3.3. At higher levels, if the computed waypoint is behind
the cost of turning per degree from the heading arjleand p gpstacle, then the vehicle could use any existing shiqrteh

=l (K, Hye) = (Ax Ay)l[2 and 6, 2=16, i) — 6h| are the  gigorithm to reach it. Here we use Bug2 [23] for simplicity.
distance and the turning angle, respectively. S
iii.) Operation in the CP’ States, 1 < ¢ < L: Although Theorem 1. The ETM halts in finite time.

. Proof: From the ETM state transition graph in Fig. 4, we
the ETM usually cycles betweeﬁPO_ and WT states, it may see that the ETM halts whap= FN. Also, there are two kinds
sometimes happen that the computing $8t= 0 and the pre-

computed waypoint is also not available sigy_1) < 0. Then of cycles in the graph: i) betwed®P® andW T states, where the

- ; : . . primary operation in these states is to compmpeand check task
wp =0 (Line 11) and the ETM is said to be inlacal extremum statusts, respectively: and ii) betwee@P° andCP’,1< ¢ < L,

Escaping from the Local Extremum: As shown in Fig. 4, states, where the primary operation in any of these statés is
when wp = 0, the ETM transitions to the computing stateomputewp. Since the computing set’ used to computevp in
q=CP', while its head moves to Level 1 on the MAPS angny CF' state, and the tasking time spentWiT state, are both
points at the coarse cell containing the currertell A. Here finjte: therefore, the total time spent in each cycle is finite
it reads the potential surfac€ 1, in the local neighborhood  pyriher, during the execution of these cycles, the uneeglor
A1(A) including the coarse cell whevefalls in, and forms the ¢_cells with state U are constantly flipped to states O, F or E
computing sez! C #1(A) (Line 14). If there exist coarse cells accordingly. This implies thapg[(k), Val € {1,..| 7, Ve e
with positive potentialsiine 15), then it first picks the coarse {1 . |}, decreases monotonically. Thusa finite K € Z*, s.t.
cell with the highest potential iw!. Subsequently, the function pY,(K) = 0. This in turn implies that,. (K) = 0, as per Eq. (3).
I(-) randomly selects an unexploreetell in this coarse cell and Tﬁérefore, attim&, 2¢ =0,v¢ € {1,...L}, as per Eq. (4); hence,
assigns it toap (Line 16). However, it may happen that even afy, ) = 9. Thus, at timeK the control will exit from all the

(=1, ate #*A) with positive potential, themp =0 (Line  ¢ycles and transition to thEN state where it halts. ]
17). In that case, the ETM switches to the stgte CP? and its

head moves up to Level 2 on the MAPS. This process continu@eémark 3.4. SinceZ"- = 0 upon halting £-coverage is achieved.
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Figure 5: Scenario 1: A complex environment with arbitrabstacles (full video available in the multimedia matetrial)

Corollary 1. Each allowede-cell is tasked only once. was used for simulations. Several complex scenarios af 60
Proof: From Theorem 1, the ETM achievescoverage in 50m search areas with different obstacle layouts were drawn and

finite time, thus each allowed cell is tasked, its state isssEtand partitioned into a 5& 50 tiling structure consisting ofrihx 1m

its potential is updated to 0. Therefore, according to Alpon  e-cells. This resulted in an MST with = 5. For computation,

1, this cell will never be assigned top and hence cannot bethe neighborhood was chosen to contain 7 cells at the lowest

tasked again. Thus, every allowed cell is tasked only oncl level and 3x 3 cells at higher levels. The simulations were run

C. Computational Complexity 8 times faster than the real-time speed.

The e*-algorithm has fairly low computational complexity Figs. 5 and 6 show the results gf-algorithm for two different
and is real-time implementable. Suppose the local neidgtdmat Scenarios, respectively. The results are compared withotiver
JVO(/\) containsN &-cells. S|m||ar|y, suppose the local neigth”ne algorithms: FS-STC and BSA. Three metrics are used fo
borhood.#"“(1), ¥¢ > 1, containsM coarse cells. The ETM first performance evaluation as follows:dpverage ratio ¢ = S,
searches in the local neighborhood at Level 0 to find nawgatiii) number of turnsand iii) trajectory length First, in Figs. 5a
waypoints and only if it is stuck into an extremum, it switstte and 6a we show snapshots of the trajectory generateet at
higher levels as needed. Thus, for Level O decisions theigiigo four different instants and the corresponding symbolicogimgs
has a complexity ok~O(N); and even in the worst case, wherfliscoveredn situ. These snapshots show several instances when
the ETM has to go to the highest Levelto make a decision, the vehicle gets stuck into a local extremum, surrounded by
the complexity issO(N+L-M). Since the coarse cells at higheeither obstacle or explored cells in the local neighborhdod
levels contain the mean potentials of all unexplogezells within each such instance, the vehicle successfully comes outeof th
them, this bottom-up hierarchical approach to escape fromlagal extremum using higher levels of MAPS and finally ach@v
local extremum avoids searching for an exponentially iasiegy complete coverage. Since the vehicle sees only the peyigtier
number ofe-cells; thus significantly reducing the complexity. large obstacles, th#oodfill algorithm is used by the ETM at
regular intervals to fill the interiors of all closed obstxl

Fig. 6 tested another condition, & priori knowledge was

The g*-algorithm is validated by simulations as well as expegyailable, it could be used to adapt the sweep direction ef th
iments and its performance is compared with other algosthmyehicle. In this scenario it was assumed that the layoutsllof a
A. Validation on a Simulation Platform rooms are known but the inside obstacles are unknown. Then, t

The first level of validation was done via simulation runs on feld B was designed in a manner such that the vehicle sweeps the
high-fidelity robotic platform called Player/Stage [24h&robot top left room horizontally while the other two rooms vertlgaas
server Player provides a software base whose librariesatontseen in Fig. 6a.2. This enables reducing the total numberro$t
models of different types of robots, sensors, and actuatns Finally, Figs. 5b and 6b show the trajectories of FS-STC and
the other hand, Stage is a highly configurable robot simul&io BSA algorithms, which are spiral in contrast to the back athf
this paper, a Pioneer 2AT robot of dimensiond4in x 0.38mx  trajectories generated f&y. Figs. 5¢c and 6¢c compare the number
0.22m was simulated with kinematic constraints such as the top turns and total trajectory length. Clearly, tl&-algorithm
speed (5m/s, maximum acceleration.Bm/s?, and the minimum produces significantly less number of turns and shortegdtajy
turn radius 0.04m. It was equipped with a laser sensor withlengths. Furthermore, Table | provides the qualitative parison
detection range of 4m, having 16 beams located around that robetween the features @ and other online algorithms.
to detect obstacles. A 3.40 GHZ CPU computer with 16GB RAM The average computation time to updage in stateCP° was

4, RESULTS ANDDISCUSSION
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Figure 6: Scenario 2: A house with several rooms and strest(full video available in the multimedia material).

Table I: Comparison of Key Features &f with Other Algorithms Table II: Specifications of Onboard Sensing Systems
p FS- BSA [17] Cellular Dec- Localization Laser Ultrasonic
STC [16] omposition [13] Model StarGazer URG-04LX XL-MaxSonar-EZ
Environ- any any any non-rectilinear Range — 0.02m ~ 5.6m, 240¢° 0.2m~ 7.65m
ment Resolution 1cm1° 1mm0.36° icm

back and forth
Path with adjustable
Pattern  sweep direction
in known areas

. ) Accuracy 2cm 1° +1% of Measurement -
spiral spiral back and forth

respectively. The Hagisonic StarGaze indoor localizathys-
uses spiral relies on criti-  tem provides a precision ofckn [26], while the GPS system
circumvents Paths tofill - cal point detect- sing Real-Time Kinematic (RTK) can achieve an accuracy of
the spanning 27€8S and ion for Morse 0.05~ 0.5m251. Th h . d | lizati
Approach uses ETM as e SPANING. pacyrack. gecomposition. 009~ 0. m([25]. Thus, the uncertainty due to localization system
a supervisor cted ing to es- Then uses Reeb is studied using AWGN with standard deviation ranging from
cape spiral graph and cycle g —(.05mto 0.25m. Fig. 7 shows the average coverage ratio vs.

endings algorithm . .
9 9 noise over ten Monte Carlo runs for the two scenarios.

1.000 o908 ' ‘ ‘ B. Validation by Real Experiments
| The g*-algorithm was further validated by real-experiments in
a laboratory setting. The laboratory area was partitiongd i
a 8x 8 tiling structure with eacte-cell of dimension G61m.
This resulted in an MST with. = 2. The forbidden region was
not defined due to limited laboratory space. For computation
a neighborhood of size 83 was chosen at all levels; An
@ iRobot Create was utilized that was equipped with the Hamjiso
—>~Scenario 2 StarGazer system [26] for indoor localization, the HOKUYO
005 04 015 02 025 URG-04LX scanning laser with-2m detection range, and 10
Noise Level (o) ultrasonic sensors evenly placed around the vehicle body fo
Figure 7: Coverage ratio vs. noise. collision avoidance. Table Il provides the specificatiohshese

~ 0.577 milliseconds, while it was- 0.437 milliseconds in any Sensing systems. A hardware-in-the-loop setup was estiailj

CP!,1< ¢ <L state; hence it is suitable for real-time applicationgvhere the vehicle carries an onboard laptop that runs theePla
which acts as the server to collect the real-time sensor uneas

e Performance in Presence of Uncertaintiesfor uncertainty ,ants. The autonomous vehicle stops every few secondsléztol
analysis, noise was injected into the measurements of rangg, The client computer runs the ETM which incrementally
detector (laser), the heading angle (compass), and thizaitan 1, iiqs the map by real-time obstacle discovery. The sermer a
system. A laser sensor typically admits an error of 1% of fis O client communicate through a wireless connection fai-re
eration range. Similarly, a modestly priced compass cami€0 (ime control and navigation. Fig. 8 shows the results of 4 rea
heading information as accurate a3 [25]. The above errors experiment, where the vehicle successfully evacuated é&rtonal
were simulated with Additive White Gaussian Noise (AWGN)ytremum and explored different rooms to achieveoverage

with standard deviations Ofiaser = 1.5cm and dcompass= 0.5°  thys revealing the effectiveness of thealgorithm.
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(a) Coverage started

(c) Continue coverage in another room

emy

(b) Escaping from a local extremum using wall-following

(d) Complete coverage

Figure 8: Real experiment in a laboratory environment (fidleo available in the multimedia material).

5. CONCLUSIONS ANDFUTURE WORK

The paper presents an algorithm, cali&dfor online coverage
of unknown environments. The algorithm utilizes the conce
of an Exploratory Turing MachindETM) which supervises the
vehicle with adaptive navigation decisions. It is shownt ttie
e*-algorithm is computationally efficient, produces the debi
back and forth motion with adjustable sweep direction, duats
rely on the critical point detection concept, and guarastasm-
plete coverage. In comparison with other online algorithafs [14]
produces less number of turns and shorter trajectory lengtne
algorithm is validated via: i) high-fidelity simulationsdluding
sensor uncertainties, and ii) real experiments in laboyato

Future research areas include: i) extension to muIti—rob[%]
coverage, ii) integration of SLAM with coverage control.
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