
ε⋆: An Online Coverage Path Planning Algorithm

Junnan Song† Shalabh Gupta†⋆

Abstract—The paper presents an algorithm, calledε⋆, for online
Coverage Path Planning (CPP) of unknown environments. The
algorithm is built upon the concept of an Exploratory Turing
Machine (ETM) which acts as a supervisor to the autonomous
vehicle to guide it with adaptive navigation commands. The ETM
generates a coverage path online usingMultiscale Adaptive Potential
Surfaces (MAPS) which are hierarchically structured and dynam-
ically updated based on sensor information. Theε⋆-algorithm is
computationally efficient, guarantees complete coverage,and does
not suffer from the local extrema problem. Its performance is
validated by: i) high-fidelity simulations on Player/Stage and ii)
actual experiments in a laboratory setting on autonomous vehicles.

1. INTRODUCTION

Typical operations of autonomous vehicles that requireCov-
erage Path Planning(CPP) [1][2] include floor cleaning [3],
lawn mowing [4], map generation [5], oil spill cleaning [6],de-
mining [7][8], etc. Often, these operations are conducted in either
completely unknown or partially known environments. Therefore,
it is essential to utilize sensor-based methods which enable online
planning for complete coverage [9][10].

A variety of coverage algorithms exist in literature; a review
of such algorithms is presented in [11]. The CPP methods are
categorized into two types: offline or online (i.e. sensor-based).
While offline approaches [12] assume the environment to bea
priori known, online approaches [13] compute the coverage path
in situ based on sensor information. Independently, CPP methods
are also characterized as randomized or systematic. Random
strategies follow simple behavior-based rules, requiringneither
localization system nor costly computational resources; however,
they generate strongly overlapped trajectories. In contrast, the
systematic coverage strategies are typically based on cellular
decomposition [13] of the search area into cells of varying shapes.
Lumelsky et al. [1] decomposed the area into fixed-width cells
and presented thesightseerand theseed-spreaderstrategies for
coverage. This algorithm was later improved by Hert et al. [2]
by reducing the upper bound on path length; however, these
algorithms are limited to a small set of obstacle geometries.

Zelinsky et al. [12] used a grid of equal-sized cells to partition
an a priori known area and assigned a potential to each cell;
then the coverage path was generated along the steepest ascent
from the start to the goal. Koenig et al. [14] used the so-called
‘ant robots’ with limited sensing and computational capabilities to
scan unknown areas. Gabriely and Rimon [15] used theSpanning
Tree Covering(STC) algorithm for online coverage, which was
later improved toFull Spiral STC (FS-STC) algorithm [16].
Gonzalez et.al. [17] proposed theBacktracking Spiral Algorithm
(BSA), which utilizes a spiral filling path for online coverage.

† Department of Electrical & Computer Engineering, University of Connecticut,
Storrs, CT 06269, USA

⋆ Corresponding author, email: shalabh.gupta@uconn.edu
The paper includes video files that show simulation and experimental results.

Figure 1: ETM as a supervisor of the autonomous vehicle

Both STC and BSA generate spiral paths, and this limits their
application when turning is regarded expensive and undesired.
More recently, Acar and Choset [13] developed a sensor-based
coverage method that detects the critical points on obstacles to
divide the area into cells; coverage is then achieved via back and
forth motion in each cell. However, this method relies on correct
detection and pairing of the IN and OUT critical points [18],
which could be difficult in complex environments. Furthermore,
this method cannot function in rectilinear environments.

This paper presents theε⋆-algorithm (that stands forε-STAR
or “ε-coverage via Structural Transitions to Abstract Resolu-
tions”), whereε refers to the cell resolution. As shown in Fig. 1,
the algorithm utilizes anExploratory Turing Machine(ETM),
that consists of a two-dimensional multilevel tape formed by
Multiscale Adaptive Potential Surfaces(MAPS). The ETM stores
and updates the information corresponding to unexplored, ex-
plored, and obstacle-occupied regions, as time-varying potentials
on MAPS. In essence, it takes advantage of both the potential
field-based and sensor-based planning methods by incrementally
building the MAPS using real-time sensor measurements. While,
by default the ETM uses the lowest level of MAPS for generating
the coverage path online, it switches to higher levels as needed
to escape from a local extremum. The ETM acts as a supervisor
and guides the autonomous vehicle with navigation commands.

The advantages ofε⋆-algorithm in comparison to existing
online methods are that it produces the desired back and forth mo-
tion and does not rely on critical points detection. Furthermore,
the algorithm is computationally efficient, guarantees complete
coverage, and does not suffer from the local extremum problem.
The ε⋆-algorithm is validated via: i) high-fidelity simulations on
Player/Stage and ii) real experiments in a laboratory setting.

The rest of the paper is organized as follows. Section 2
describes the CPP problem. Section 3 presents the details ofthe
ε⋆-algorithm, while Section 4 presents the results. The paperis
concluded in Section 5 with suggestions on future work.

2

Figure 2: An autonomous vehicle working in its environment.

2. PROBLEM DESCRIPTION

This section presents the concept ofε-coverage of an envi-
ronment that is populated with unknown obstacles of arbitrary
shapes. The autonomous vehicle as shown in Fig. 2 contains: i)
a localization device (e.g. GPS), ii) range detectors (e.g.a laser
scanner) to detect obstacles within a circular region of radius
Rs ∈ R+, and iii) a task-specific sensor for performing its main
task (e.g., cleaning) with a circular area of radiusrt ≤ Rs. For
operation in GPS-denied environments, theε⋆-algorithm can be
integrated with a SLAM algorithm as in [19] to achieve coverage.

Let A ⊂ R2 be the estimated region which includes the desired
area to be covered. First we construct a tiling onA as follows.

Definition 2.1 (Tiling). A setT = {τα ⊂ R2,α = 1, . . . |T |} is
called a tiling of A if its elements: i) have mutually exclusive
interiors, i.e. τ◦α

⋂

τ◦β = /0, ∀α,β ∈ {1, . . . |T |}, α 6=β , where
◦ denotes an interior, and ii) form an exact cover ofA , i.e.
A =

⋃|T |
α=1τα . If an exact cover is not possible (e.g., square

tiles cannot exactly cover a circular region), condition ii) can
be relaxed toA ⊆

⋃|T |
α=1 τα , to form a minimal tiling ofA , s.t.

removal of any single tile destroys the covering property.

The tiling formed by square tiles of sideε is called anε-
cell tiling. It is recommended that anε-cell should be atleast big
enough to contain the autonomous vehicle and small enough for
the tasking sensor to be able to cover it when the vehicle passes
through it. Within these two bounds, the choice ofε depends on
the following factors. A smallerε provides a better approximation
of the search area and its obstacles. On the other hand, a
largerε reduces the computational complexity by requiring less
number ofε-cells to cover the area and it also provides improved
robustness to uncertainties for localization within a cell.

The tiling T is partitioned into three sets: i)obstacle(T o), ii)
forbidden(T f), and iii) allowed(T a), as shown in Fig. 2. While
the obstacles cells are occupied by obstacles, the forbidden cells
create a buffer around the obstacles to prevent collisions due to
inertia or large turning radius of the vehicle. The remaining cells
are allowed which are desired to be covered. The autonomous
vehicle discovers the obstacles online, updates the obstacle and
forbidden cells, and performs tasks in the allowed cells. Now we
define the concept ofε-coverage of the allowed cells.

Definition 2.2 (ε-Coverage). Let R(T a) denote the total area

of the allowed cells inT a ⊆ T . Let τ(k) ∈ T a be theε-cell
visited by the autonomous vehicle at time k and explored by its
tasking sensor. Then,A is said to achieveε-coverage if∃ K ∈
Z+ s.t. the sequence{τ(k), k= 1, . . .K} coversR(T a), i.e.

R(T a)⊆
K
⋃

k=1

τ(k). (1)

Remark 2.1. ε-coverage achieves complete coverage if the
tasking sensor completely covers every visitedε-cell.

3. THE ε⋆-ALGORITHM

The ε⋆-algorithm utilizes the concept of ETM forε-coverage
of unknown environments. As shown in Fig. 1, the ETM con-
stantly takes feedback from the autonomous vehicle and in turn
acts as its supervisor to guide it with operational commandsand
navigation waypoints; thus, it falls in the category ofInteractive
Transition Systems[20][21]. The ETM consists of a single tape
head and a two-dimensional multilevel tape formed by MAPS
(see Section 3-A), which act as guidance surfaces for decision-
making. Formally, the ETM is defined as follows.

Definition 3.1 (Exploratory Turing Machine). An Exploratory
Turing Machine is a7-tuple M= (Q,Ξ, Ip,Op,δ ,q0,F) where:

• Q= {ST,CP0, ...,CPL,WT,FN} is the set of machine states,
where ST≡‘Start’, CP ≡‘Compute’, WT≡‘Wait’, and
FN ≡‘Finish’. The superscript on CP specifies the level of
MAPS at which the head is operating. The WT state implies
waiting for the vehicle to finish tasking in the current cell.

• Ξ = {Ξℓ : ℓ = 0,1, ...L}, where Ξℓ = {Ξℓ
min, ...Ξℓ

max} is the
set of potential values that can be encoded on each cell at
Levelℓ of the MAPS.

• Ip is the set of input parameters containing the feedback
information received from the autonomous vehicle. An input
vector ip ∈ Ip includes:

i. λ ∈ {1, . . . |T |}: Index of theε-cell where the vehicle
is currently located on tilingT . It is computed using
the onboard positioning system.

ii. ol⊂{1, . . . |T |}: Vector of the obstacle locations which
consists of the indices of allε-cells where obstacles are
detected using the range detectors.

iii. ts∈ {cm, ic}: Task status of the vehicle in its current
ε-cell, where cm≡‘Complete’ and ic≡‘Incomplete’.

• Op is the set of output parameters containing instructions for
the autonomous vehicle. An output vectorop ∈ Op includes:

i. cd ∈ {mv, tk, id,sp}: Operational command, where
mv≡‘Move’, tk≡‘Task’, id≡‘Idle’, and sp≡‘Stop’.

ii. wp ⊂ {1, . . . |T |}: Candidate set of navigation way-
points for the vehicle trajectory on tilingT .

• δ is the control function that is a partial mapping from
Ip×Q×Π

N ℓ → Q×Π×Op, where Π is the set of all
possible configurations of potentials on MAPS generated by
the setsΞℓ, while Π

N ℓ is the above set restricted to a local
neighborhoodN ℓ at Levelℓ of the MAPS.

• q0=ST is the initial state, and

• F=FN is the final state implying complete coverage.

3

Remark 3.1. An advantage of Turing Machine over Finite State
Automaton (FSA) is that it has the capacity of containing memory
which is a necessary feature for coverage problems.

Before delving into the operational details of the ETM, we
describe the process of dynamic construction of the MAPS.

A. Description of MAPS

To build MAPS, first a hierarchical multiscale tiling (MST) is
constructed on the areaA by recursive decomposition [6][10].
As shown in Fig. 1, theε-cell tiling T of the search area forms
the finest level of MST and is referred asT 0 from now on. Let
n∈ N be the maximum number ofε-cells alongx-axis over all
rows. If n is even, then the axis is divided into two regions of
n
2 elements each. Ifn is odd, then the axis is divided into two
regions withn′ andn′−1 elements, such thatn′ ∈N and 2n′−1=
n. This procedure is repeated along they-axis over all columns
to generate 4 coarse cells in total, which form the coarsest tiling,
i.e. T L, L ∈ N. Now, again letn∈ N be the maximum number
of ε-cells along thex-axis in a coarse cell. Then, using the above
procedure, each of these four coarse cells are further divided into
two regions along each axis to generate 16 cells in tilingT L−1.
This procedure is repeated untiln/2 < 2 or n′−1 < 2 to generate
a MST with tilings T 0,T 1, ...T L such thatT ℓ = {ταℓ : αℓ =
1, . . . |T ℓ|}, ∀ℓ ∈ {0, . . .L}, where αℓ, ∀ℓ ≥ 1, indexes coarse
cells at Levelℓ of the MST, whileα0 indexesε-cells.

i.) Modeling of the Potential Surface at the Lowest Level:
For levelℓ= 0, the potential surface is constructed using a simple
process. First, the environmental information is encoded on T 0

by assigning a symbolic state [22] to eachε-cell τα0 ∈ T 0 from
the alphabet setS= {O, F, E, U}, where O≡ obstacle, F ≡
forbidden, E≡ explored, and U≡ unexplored. Then, the potential
surfaceE 0(k)={Eα0(k) ∈ Ξ0 : α0 = 1, ...|T 0|}, is constructed by
assigning a discrete potential to eachτα0, such that

Eα0(k) =











−1, if sα0(k) = O or F

0, if sα0(k) = E

Bα0, if sα0(k) = U

(2)

wheresα0(k) ∈ S is the state ofτα0 at timek. The first condition
in Eq. (2) assigns a potential of−1 to τα0, if it contains
an obstacle or if it is forbidden, i.e. it lies in an obstacle
neighborhood. The latter creates aforbidden zonearound the
obstacles to prevent the vehicle from colliding with the obstacles
due to inertia, skidding, large turning radius, or localization
errors. The second condition in Eq. (2) assigns a potential of
0 to τα0, if it has been explored by the tasking sensor. The
third condition assigns a potential ofBα0 to τα0, if it is yet
unexplored, whereB={Bα0 ∈ {1, ...Bmax},α0 = 1, ...|T 0|} is a
time-invariant exogenous potential field. It is designed offline to
have plateaus of equipotential surfaces along each column of the
tiling. As shown in Fig. 3, the plateaus monotonically increase
in height by one unit from 1 on the rightmost column toBmax on
the leftmost column. This field facilitates back and forth motion
in an obstacle-free region by following the highest equipotential
surface from left to right. The sweep direction could be adapted
by modifyingB according to the users’ needs. Clearly,Ξ0

min=−1

Figure 3: Dynamic construction of the potential surfaceE 0.

andΞ0
max= Bmax. The symbolic encoding is updated by the ETM

using sensor information and results in a dynamically changing
potential surfaceE 0(k) as shown in Fig. 3.

ii.) Modeling of the Potential Surfaces at Higher Levels:
For 1≤ ℓ ≤ L, the potential surfaceE ℓ(k)={Eαℓ(k) ∈ Ξℓ : αℓ =
1, ...|T ℓ|}, is constructed by assigning a potential to each coarse
cell ταℓ ∈ T ℓ. This is done by assigningταℓ the average potential
generated by all the unexploredε-cells within ταℓ , such that

Eαℓ(k) = pU
αℓ(k)Bαℓ (3)

where Bαℓ is the mean exogenous potential ofταℓ and pU
αℓ(k)

is the probability of unexploredε-cells in ταℓ . The probability
could be computed using a simple counting process. With little
inspection, it could be seen thatΞℓ

min = 0 andΞℓ
max= max

ταℓ∈T ℓ
Bαℓ .

B. Operation of the ETM as a Supervisor

The ETM functions as follows. Its head has a stateq∈Q and
it operates on one level of the MAPS at a time; by default Level
0. Fig. 4 shows the state transition graph of the ETM, which
realizes the control functionδ . The input vectorsip j ∈ Ip, j = 1,2,
the output vectorsop j ∈ Op, j = 1, . . .4 and the state transition
conditions are defined therein. While the operational details in
each state are presented later, a summary is provided here.

In stateST, the ETM initializes the MAPS. Since the whole
area is initially unexplored, allε-cells are assigned the state
U, thus MAPS are constructed using only the potential fieldB.
Then, the ETM cycles on and between the statesCP0 andWT,
as follows. In each iteration of stateCP0, the ETM takes input
from the autonomous vehicle about the newly discovered obstacle
locations and its current position (λ). Then, it moves the head
on the tape toλ and updates the MAPS in accordance with the
discovered obstacles, and performs the following operations: i)
reads the potentials from the local neighborhoodN 0(λ) of λ to
compute the new waypoint, ii) changes the head state toWT if
waypoint is reached otherwise stays inCP0, and iii) generates an
output vector for the vehicle containing the operational command
and the new waypoint. In each iteration of stateWT, it receives
the task status from the vehicle, and continues to send tasking
command until it is complete. Once the current cell is tasked, it
updates the MAPS and returns to the stateCP0.

4

Figure 4: State transition graph of the ETM.

If the head gets stuck in alocal extremumin stateCP0, i.e.
no waypoint could be found in the local neighborhood at Level
0 of the MAPS, then it switches toCP1 and operates on Level
1. Here it searches for the coarse cell with the highest positive
potential in a local neighborhoodN 1(λ) to find a waypoint. If
no waypoint is found even at Level 1, then it switches to state
CP2 and so on until it finds one, then it comes down to stateCP0

and continues. If no waypoint is found even at the highest level
then the ETM halts in stateFN and the coverage is complete.
The details of operations in each state are explained below.

i.) Operation in the ST State:The ETM starts in stateq=ST
at k= 0 when vehicle is turned on. Since noa priori information
is available, allε-cells inT 0 are initialized with the state U, i.e.
unexplored. Then all ε-cells are assigned potentials according
to field B as per Eq. (2). Subsequently, all higher level cells are
assigned potentials using Eq. (3), by substitutingpU

αℓ(0) = 1. This
MAPS initialization process is denoted asE ℓ← U, ∀ℓ∈ {0, ...L}.

Map updating process: Next, the autonomous vehicle detects
its current locationλ and obstacle locationsol using its onboard
sensors, and sends this information to the ETM via the input
vector ip1. The ETM moves its tape head toλ and initializes
the waypointwp = λ . Then it updates the symbolic encoding by
flipping the states at all newly discovered obstacle indicesol to
O, and their associated neighborhood cells to F; subsequently,
their potentials are updated to−1 using Eq. (2). As a next
step, the probabilitiespU

αℓ(0) are updated at all higher levels, for
the corresponding coarse cells containing the newly discovered
obstacles, by counting the remaining unexploredε-cells inside
those coarse cells. Then, using Eq. (3), the potential surfaces
are updated∀ℓ ∈ {1, ...L}. In short, this entire MAPS updating
process is denoted asE ℓ← O, ∀ℓ ∈ {0, ...L}.

Then, the ETM transitions to the computing stateq=CP0 and
sends the output vectorop1 to command the vehicle to go ‘idle’.

ii.) Operation in the CP0 State: CP0 is the default state
to compute waypoints. Every time the ETM reachesCP0, it

Algorithm 1: Updatewp(k)

input : wp(k−1), λ , E
N ℓ , q∈ {CPℓ, ℓ= 0, . . .L}

output: wp(k)
1 if q=CP0 then
2 computeD0 // form the computing setD0 using Eq. (4)
3 if λ ∈D0 then // current cellλ is unexplored
4 if {λ up,λ down} ⊂D0 then // λ up & λ down unexplored
5 wp(k) = {λ up,λ down} //Vehicle picks one per Eq. (5)
6 elsewp(k) = λ ; // setλ as waypoint and start tasking
7 else if D0 6= /0 then // other eligibleε-cells exist
8 wp(k) = argmax

α0∈D0
Eα0 // pick the ones with max potential

9 else if Ewp(k−1) > 0 then // pre-computedwp still available
10 wp(k) = wp(k−1)
11 elsewp(k) = /0; // local extremum detected at Level 0
12 end
13 if q=CPℓ,1≤ ℓ≤ L then
14 computeD ℓ // form the computing setDℓ using Eq. (4)
15 if D ℓ 6= /0 then // coarse cells with+ve potentials exist
16 wp(k) = I(argmax

αℓ∈D ℓ

Eαℓ)

17 elsewp(k) = /0; // no waypoint found at Levelℓ
18 end

receives the input vectorip1 from the vehicle containing its
current positionλ and the newly discovered obstacle locationsol,
if any. Then, it moves its head toλ and updates the MAPS at all
levels, i.e.E ℓ← O, ∀ℓ ∈ {0, ...L}, as described previously. Next,
it reads the potentialsEN 0(λ) in the local neighborhoodN 0(λ)
including λ . Based on these it computes the next waypoint by
following Algorithm 1 (Lines 1-12) as follows.

Waypoint computation: First, it forms a computing setD0 ⊆

N 0(λ) (Line 2) that consists ofeligible ε-cells for the next
waypoint. An ε-cell is considered eligible if it is: i)directly
reachable, i.e. it is not behind an obstacle, and ii)unexplored,
i.e. it has positive potential.

Definition 3.2 (Directly Reachable Set). An ε-cell is called
directly reachable fromλ if the line segment joining the centroids
of λ and that cell is not obstructed by any obstacle cell. The set
of all directly reachable cells inN 0(λ) is defined as the directly
reachable set DR(λ).

In general, the computing setD ℓ is defined as

D
ℓ =

{

{α0 ∈N 0(λ) : Eα0 > 0,α0 ∈DR(λ)} if ℓ= 0

{αℓ ∈N ℓ(λ) : Eαℓ > 0} if ℓ≥ 1
(4)

which means thatD0 contains eligibleε-cells, whileD ℓ, 1≤ ℓ≤
L, contains eligible coarse cells with positive potentials,implying
that they contain unexploredε-cells. The setsD ℓ,1≤ ℓ≤ L, are
used in theCPℓ states later. Note that the direct reachability
condition is only enforced at Level 0 to prevent unnecessary
distortions in the back and forth trajectory. At higher levels, the
algorithm uses Bug2 [23] to reach the cells behind obstacles.

Next, if the current cellλ is unexplored, i.e.λ ∈D0 (Line 3),
then it further checks if the cell above (λ up) and the cell below
(λ down) both belong toD0 (Line 4). This condition means that

5

the vehicle is in the middle of unexplored cells both above and
below λ . If this is true, then it should rather first move to a
cell that is adjacent to a forbidden or explored cell. This step
is imposed such that the trajectory is not distorted by tasking
in the middle of unexplored cells, and allows for maintaining a
nice back and forth motion. Thus, the waypoint candidate setis
chosen aswp = {λ up,λ down} (Line 5). The vehicle picks one of
these based on its turn and travel cost as per Eq. (5) below. After
computingwp, the ETM loops in stateq = CP0 and sends the
output vectorop3 to move the vehicle to the next waypoint.

If λ is unexplored and the cells above and below are not
both unexplored (Line 6), then the vehicle is well positioned for
tasking. Then,wp is set equal toλ and the ETM transitions to the
stateq = WT while sending an output vectorop2 commanding
the vehicle to task atλ . The operation ofWT is described later.

If the current cellλ is not unexplored but there exist other
eligible ε-cells in D0 (Line 7), then the candidate setwp is
selected to consist of theε-cells that have the highest potential
in D0 (Line 8). Note that there could be more than one cell
with the highest potential, if they belong to an equipotential
surface. Finally, ifD0 = /0, but a pre-computedwp(k−1) is still
accessible, s.t.Ewp(k−1) > 0 (Line 9), thenwp remains the same
(Line 10). If a wp is obtained from the above steps, then the
ETM stays in stateq= CP0 and sends the output vectorop3 to
move the vehicle to the next waypoint, as seen in Fig. 4.

It is possible thatwp contains more than one elements. In that
case, the autonomous vehicle selects the cell with the leasttotal
travel and turn cost to reach it fromλ . Let the current position of
the vehicle be(λx,λy)∈τλ . Then, for eachµ ∈ wp, a costCµ,λ
is defined as the total travel and turn cost needed to reach the
centroid(µxc,µyc) of the ε-cell τµ such that

Cµ,λ , dµ,λCTr +θµ,λCTu (5)

where CTr is the cost of traveling per unit distance;CTu is
the cost of turning per degree from the heading angleθh; and
dµ,λ =||(µxc,µyc)− (λx,λy)||2 and θµ,λ =|θ(µxc,µyc)

− θh| are the
distance and the turning angle, respectively.

iii.) Operation in the CPℓ States, 1 ≤ ℓ ≤ L: Although
the ETM usually cycles betweenCP0 and WT states, it may
sometimes happen that the computing setD0 = /0 and the pre-
computed waypoint is also not available sinceEwp(k−1)≤ 0. Then
wp = /0 (Line 11) and the ETM is said to be in alocal extremum.

Escaping from the Local Extremum: As shown in Fig. 4,
when wp = /0, the ETM transitions to the computing state
q = CP1, while its head moves to Level 1 on the MAPS and
points at the coarse cell containing the currentε-cell λ . Here
it reads the potential surfaceEN 1(λ) in the local neighborhood
N 1(λ) including the coarse cell whereλ falls in, and forms the
computing setD1⊆N 1(λ) (Line 14). If there exist coarse cells
with positive potentials (Line 15), then it first picks the coarse
cell with the highest potential inD1. Subsequently, the function
I(·) randomly selects an unexploredε-cell in this coarse cell and
assigns it towp (Line 16). However, it may happen that even at
ℓ = 1, ∄ α1 ∈N 1(λ) with positive potential, thenwp = /0 (Line
17). In that case, the ETM switches to the stateq=CP2 and its
head moves up to Level 2 on the MAPS. This process continues

until it finds the lowest levelℓ∈ {1, ...L} whereD ℓ 6= /0. Once the
ETM finds a waypoint it switches back to the stateq=CP0 and
sends the output vectorop3 to move the vehicle to the waypoint.
If it is unable to find a coarse cell with positive potential even at
the highest LevelL, it implies that no coarsest cell contains any
unexploredε-cell. In that case, it switches to the stateq= FN
and sends the output vectorop4 commanding the vehicle to stop
its machinery since the coverage is complete.

iv.) Operation in the WT State: The ETM comes to the state
q=WT from the stateq=CP0 if wp = λ . Here the ETM waits
while the vehicle performs task atλ and reports back the task
status via input vectorip2. If it is ‘ Complete’, then the ETM
updates the state of the current cell to E, i.e.explored, which
is assigned with 0 potential according to Eq. (2). Subsequently,
the potential surfacesE ℓ, ∀ℓ∈ {1, ...L}, are updated according to
Eq. (3). This MAPS update process is represented asE ℓ ← E,
∀ℓ ∈ {0, ...L}. Then, the ETM transitions back to the computing
stateq=CP0 and resumes searching for a new waypoint. If the
task is not completed yet then the ETM loops in the stateq=WT,
while sending the output vectorop2 to continue tasking.

In statesCP0 andWT, the MAPS are updated by assigning−1
and 0 potentials to obstacle and explored regions, respectively,
while in unexplored regions, the MAPS maintain the +ve poten-
tials defined byB, as shown in Fig. 3. Since the waypoint is
mainly chosen as theε-cell in the neighborhood with the highest
+ve potential, this enables tracking the highest equipotential
surfaces ofB and produces the desired back and forth motion.

Remark 3.2. The ETM uses the f lood f ill algorithm to fill
the unexplored cells inside a closed obstacle with the obstacle
symbol O, when the boundary of the obstacle is detected but
interior is not detected. This prevents the ETM from trying to
pick undetected cells inside large obstacles.

Remark 3.3. At higher levels, if the computed waypoint is behind
an obstacle, then the vehicle could use any existing shortest path
algorithm to reach it. Here we use Bug2 [23] for simplicity.

Theorem 1. The ETM halts in finite time.
Proof: From the ETM state transition graph in Fig. 4, we

see that the ETM halts whenq= FN. Also, there are two kinds
of cycles in the graph: i) betweenCP0 andWT states, where the
primary operation in these states is to computewp and check task
statusts, respectively; and ii) betweenCP0 andCPℓ,1≤ ℓ ≤ L,
states, where the primary operation in any of these states isto
computewp. Since the computing setD ℓ used to computewp in
anyCPℓ state, and the tasking time spent inWT state, are both
finite; therefore, the total time spent in each cycle is finite.

Further, during the execution of these cycles, the unexplored
ε-cells with state U are constantly flipped to states O, F or E
accordingly. This implies thatpU

αℓ(k), ∀αℓ ∈ {1, ...|T ℓ|}, ∀ℓ ∈
{1, ...L}, decreases monotonically. Thus,∃ a finite K ∈ Z+, s.t.
pU

αℓ(K) = 0. This in turn implies thatEαℓ(K) = 0, as per Eq. (3).
Therefore, at timeK, D ℓ = /0, ∀ℓ∈ {1, ...L}, as per Eq. (4); hence,
wp(K) = /0. Thus, at timeK the control will exit from all the
cycles and transition to theFN state where it halts.

Remark 3.4. SinceDL = /0 upon halting,ε-coverage is achieved.

6

Figure 5: Scenario 1: A complex environment with arbitrary obstacles (full video available in the multimedia material).

Corollary 1. Each allowedε-cell is tasked only once.
Proof: From Theorem 1, the ETM achievesε-coverage in

finite time, thus each allowed cell is tasked, its state is setto E and
its potential is updated to 0. Therefore, according to Algorithm
1, this cell will never be assigned towp and hence cannot be
tasked again. Thus, every allowed cell is tasked only once.

C. Computational Complexity
The ε⋆-algorithm has fairly low computational complexity

and is real-time implementable. Suppose the local neighborhood
N 0(λ) containsN ε-cells. Similarly, suppose the local neigh-
borhoodN ℓ(λ), ∀ℓ≥ 1, containsM coarse cells. The ETM first
searches in the local neighborhood at Level 0 to find navigation
waypoints and only if it is stuck into an extremum, it switches to
higher levels as needed. Thus, for Level 0 decisions the algorithm
has a complexity of∼O(N); and even in the worst case, when
the ETM has to go to the highest LevelL to make a decision,
the complexity is∼O(N+L ·M). Since the coarse cells at higher
levels contain the mean potentials of all unexploredε-cells within
them, this bottom-up hierarchical approach to escape from a
local extremum avoids searching for an exponentially increasing
number ofε-cells; thus significantly reducing the complexity.

4. RESULTS AND DISCUSSION

Theε⋆-algorithm is validated by simulations as well as exper-
iments and its performance is compared with other algorithms.

A. Validation on a Simulation Platform
The first level of validation was done via simulation runs on a

high-fidelity robotic platform called Player/Stage [24]. The robot
server Player provides a software base whose libraries contain
models of different types of robots, sensors, and actuators. On
the other hand, Stage is a highly configurable robot simulator. In
this paper, a Pioneer 2AT robot of dimensions 0.44m×0.38m×
0.22m was simulated with kinematic constraints such as the top
speed 0.5m/s, maximum acceleration 0.5m/s2, and the minimum
turn radius 0.04m. It was equipped with a laser sensor with a
detection range of 4m, having 16 beams located around the robot
to detect obstacles. A 3.40 GHZ CPU computer with 16GB RAM

was used for simulations. Several complex scenarios of 50m×
50m search areas with different obstacle layouts were drawn and
partitioned into a 50×50 tiling structure consisting of 1m×1m
ε-cells. This resulted in an MST withL = 5. For computation,
the neighborhood was chosen to contain 7×7 cells at the lowest
level and 3×3 cells at higher levels. The simulations were run
8 times faster than the real-time speed.

Figs. 5 and 6 show the results ofε⋆-algorithm for two different
scenarios, respectively. The results are compared with twoother
online algorithms: FS-STC and BSA. Three metrics are used for
performance evaluation as follows: i)coverage ratio rc =

⋃

k τ(k)
R(T a) ,

ii) number of turns, and iii) trajectory length. First, in Figs. 5a
and 6a we show snapshots of the trajectory generated byε⋆ at
four different instants and the corresponding symbolic encodings
discoveredin situ. These snapshots show several instances when
the vehicle gets stuck into a local extremum, surrounded by
either obstacle or explored cells in the local neighborhood. In
each such instance, the vehicle successfully comes out of the
local extremum using higher levels of MAPS and finally achieves
complete coverage. Since the vehicle sees only the periphery of
large obstacles, thefloodfill algorithm is used by the ETM at
regular intervals to fill the interiors of all closed obstacles.

Fig. 6 tested another condition, ifa priori knowledge was
available, it could be used to adapt the sweep direction of the
vehicle. In this scenario it was assumed that the layouts of all
rooms are known but the inside obstacles are unknown. Then, the
field B was designed in a manner such that the vehicle sweeps the
top left room horizontally while the other two rooms vertically, as
seen in Fig. 6a.2. This enables reducing the total number of turns.
Finally, Figs. 5b and 6b show the trajectories of FS-STC and
BSA algorithms, which are spiral in contrast to the back and forth
trajectories generated byε⋆. Figs. 5c and 6c compare the number
of turns and total trajectory length. Clearly, theε⋆-algorithm
produces significantly less number of turns and shorter trajectory
lengths. Furthermore, Table I provides the qualitative comparison
between the features ofε⋆ and other online algorithms.

The average computation time to updatewp in stateCP0 was

7

Figure 6: Scenario 2: A house with several rooms and structures (full video available in the multimedia material).

Table I: Comparison of Key Features ofε⋆ with Other Algorithms

ε⋆ FS-
STC [16] BSA [17]

Cellular Dec-
omposition [13]

Environ-
ment

any any any non-rectilinear

Path
Pattern

back and forth
with adjustable
sweep direction
in known areas

spiral spiral back and forth

Approach uses ETM as
a supervisor

circumvents
the spanning
tree constru-
cted

uses spiral
paths to fill
areas and
backtrack-
ing to es-
cape spiral
endings

relies on criti-
cal point detect-
ion for Morse
decomposition.
Then uses Reeb
graph and cycle
algorithm

Figure 7: Coverage ratio vs. noise.

∼ 0.577 milliseconds, while it was∼ 0.437 milliseconds in any
CPℓ,1≤ ℓ≤ L state; hence it is suitable for real-time applications.

• Performance in Presence of Uncertainties:For uncertainty
analysis, noise was injected into the measurements of range
detector (laser), the heading angle (compass), and the localization
system. A laser sensor typically admits an error of 1% of its op-
eration range. Similarly, a modestly priced compass can provide
heading information as accurate as 1o [25]. The above errors
were simulated with Additive White Gaussian Noise (AWGN)
with standard deviations ofσlaser = 1.5cm and σcompass= 0.5o,

Table II: Specifications of Onboard Sensing Systems

Localization Laser Ultrasonic
Model StarGazer URG-04LX XL-MaxSonar-EZ

Range − 0.02m∼ 5.6m,240o 0.2m∼ 7.65m

Resolution 1cm,1o 1mm,0.36o 1cm

Accuracy 2cm,1o ±1% of Measurement −

respectively. The Hagisonic StarGaze indoor localizationsys-
tem provides a precision of 2cm [26], while the GPS system
using Real-Time Kinematic (RTK) can achieve an accuracy of
0.05∼0.5m [25]. Thus, the uncertainty due to localization system
is studied using AWGN with standard deviation ranging from
σ = 0.05m to 0.25m. Fig. 7 shows the average coverage ratio vs.
noise over ten Monte Carlo runs for the two scenarios.

B. Validation by Real Experiments
The ε⋆-algorithm was further validated by real-experiments in

a laboratory setting. The laboratory area was partitioned into
a 8× 8 tiling structure with eachε-cell of dimension 0.61m.
This resulted in an MST withL = 2. The forbidden region was
not defined due to limited laboratory space. For computation,
a neighborhood of size 3× 3 was chosen at all levels; An
iRobot Create was utilized that was equipped with the Hagisonic
StarGazer system [26] for indoor localization, the HOKUYO
URG-04LX scanning laser with∼2m detection range, and 10
ultrasonic sensors evenly placed around the vehicle body for
collision avoidance. Table II provides the specifications of these
sensing systems. A hardware-in-the-loop setup was established,
where the vehicle carries an onboard laptop that runs the Player,
which acts as the server to collect the real-time sensor measure-
ments. The autonomous vehicle stops every few seconds to collect
data. The client computer runs the ETM which incrementally
builds the map by real-time obstacle discovery. The server and
the client communicate through a wireless connection for real-
time control and navigation. Fig. 8 shows the results of a real
experiment, where the vehicle successfully evacuated froma local
extremum and explored different rooms to achieveε-coverage,
thus revealing the effectiveness of theε⋆-algorithm.

8

Figure 8: Real experiment in a laboratory environment (fullvideo available in the multimedia material).

5. CONCLUSIONS ANDFUTURE WORK

The paper presents an algorithm, calledε⋆, for online coverage
of unknown environments. The algorithm utilizes the concept
of an Exploratory Turing Machine(ETM) which supervises the
vehicle with adaptive navigation decisions. It is shown that the
ε⋆-algorithm is computationally efficient, produces the desired
back and forth motion with adjustable sweep direction, doesnot
rely on the critical point detection concept, and guarantees com-
plete coverage. In comparison with other online algorithms, ε⋆
produces less number of turns and shorter trajectory lengths. The
algorithm is validated via: i) high-fidelity simulations including
sensor uncertainties, and ii) real experiments in laboratory.

Future research areas include: i) extension to multi-robot
coverage, ii) integration of SLAM with coverage control.

REFERENCES

[1] V. Lumelsky, S. Mukhopadhyay, and K. Sun, “Dynamic path planning
in sensor-based terrain acquisition,”IEEE Transactions on Robotics and
Automation, vol. 6, no. 4, pp. 462–472, 1990.

[2] S. Hert, S. Tiwari, and V. Lumelsky, “A terrain-coveringalgorithm for an
AUV,” Journal of Autonomous Robots, vol. 3, pp. 91–119, 1996.

[3] J. Palacin, J. A. Salse, I. Valganon, and X. Clua, “Building a mobile robot
for a floor-cleaning operation in domestic environments,”IEEE Transactions
on Instrumentation and Measurement, vol. 53, no. 5, pp. 1418–1424, 2004.

[4] M. Weiss-Cohen, I. Sirotin, and E. Rave, “Lawn mowing system for
known areas,” inProceedings of International Conference on Computational
Intelligence for Modelling Control and Automation, Vienna, 2008, pp. 539–
544.

[5] E. Krotkov and R. Hoffman, “Terrain mapping for a walkingplanetary
rover,” IEEE Transactions on Robotics and Automation, vol. 10, no. 6, pp.
728 – 739, 1994.

[6] J. Song, S. Gupta, J. Hare, and S. Zhou, “Adaptive cleaning of oil spills by
autonomous vehicles under partial information,” inOCEANS’13 MTS/IEEE,
San Diego, CA, September 2013, pp. 1–5.

[7] P. F. Santana, J. Barata, and L. Correia, “Sustainable robots for humanitarian
demining,” International Journal of Advanced Robotic Systems, vol. 4, pp.
207–218, 2007.

[8] K. Mukherjee, S. Gupta, A. Ray, and S. Phoha, “Symbolic analysis of sonar
data for underwater target detection,”IEEE Journal of Oceanic Engineering,
vol. 36, no. 2, pp. 219–230, 2011.

[9] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,”International Journal of Robotics Research, vol. 5, pp. 90–98, 1986.

[10] X. Jin, S. Gupta, J. M. Luff, and A. Ray, “Multiresolution navigation of mo-
bile robots with complete coverage of unknown and complex environments,”
in Proceedings of the American Control Conference, Montreal, Canada,
2012, pp. 4867–4872.

[11] E. Galceran and M. Carreras, “A survey on coverage path planning for
robotics,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–
1276, 2013.

[12] A. Zelinsky, R. Jarvis, J. Byrne, and S. Yuta, “Planningpaths of complete
coverage of an unstructured environment by a mobile robot,”in Proceedings
of the International Conferenceon Advanced Robotics, Tokyo, Japan, 1993,
pp. 533–538.

[13] E. Acar and H. Choset, “Sensor-based coverage of unknown environments:
Incremental construction of Morse decompositions,”International Journal
of Robotics Research, vol. 21, no. 4, pp. 345–366, 2002.

[14] S. Koenig, B. Szymanski, and Y. Liu, “Efficient and inefficient ant coverage
methods,”Annals of Mathematics and Artificial Intelligence, vol. 31, no. 1-
4, pp. 41–76, 2001.

[15] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of continous
areas by a mobile robot,”Annals of Mathematics and Artificial Intelligence,
vol. 31, pp. 77–98, 2001.

[16] ——, “Competitive on-line coverage of grid environments by a mobile
robot,” Computational Geometry, vol. 24, no. 3, pp. 197–224, 2003.

[17] E. Gonzalez, O. Alvarez, Y. Diaz, C. Parra, and C. Bustacara, “Bsa: a
complete coverage algorithm,” inProceedings of the IEEE International
Conference on Robotics and Automation, 2005, pp. 2040–2044.

[18] E. Garcia and P. G. de Santos, “Mobile-robot navigationwith complete
coverage of unstructured environments,”Robotics and Autonomous Systems,
vol. 46, pp. 195–204, 2004.

[19] A. Kim and R. Eustice, “Active visual slam for robotic area coverage:
Theory and experiment,”The International Journal of Robotics Research,
vol. 34, no. 4-5, pp. 457–475, 2015.

[20] P. Wegner and E. Eberbach, “New models of computation,”The Computer
Journal, vol. 47, no. 1, pp. 4–9, 2004.

[21] D. Goldin, S. Smolka, P. Attie, and E. Sonderegger, “Turing machines,
transition systems, and interaction,”The Computer Journal, vol. 194, no. 2,
pp. 101–128, 2004.

[22] S. Gupta, A. Ray, and S. Phoha, “Generalized ising modelfor dynamic
adaptation in autonomous systems,”European Physics Letters, vol. 87, p.
10009, 2009.

[23] J. Ng and T. Braunl, “Performance comparison of bug navigation algo-
rithms,” Journal of Intelligent and Robotic Systems, vol. 50, pp. 73–84,
2007.

[24] B. Gerkey, R. Vaughan, and A. Howard, “The Player/Stageproject: Tools
for multi-robot and distributed sensor systems,” inProceedings of the
International Conference on Advanced Robotics, Coimbra, Portugal, 2003,
pp. 317–323.

[25] L. Paull, S. Saeedi, M. Seto, and H. Li, “Auv navigation and localization: A
review,” IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp. 131–149,
2014.

[26] J. L. Fernández, C. Watkins, D. P. Losada, and M. D. Medina, “Evaluating
different landmark positioning systems within the ride architecture,”Journal
of Physical Agents, vol. 7, no. 1, pp. 3–11, 2013.

