
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018 1

T?: Time-Optimal Risk-Aware Motion Planning for
Curvature-Constrained Vehicles

Junnan Song1 Shalabh Gupta1? Thomas A. Wettergren2

Abstract—This paper addresses the time-optimal risk-aware
motion planning problem for curvature-constrained variable-
speed vehicles in the presence of obstacles. To the best of our
knowledge, this problem has not been solved. To obtain a feasible
solution, we present a grid-based method, called T?, which
computes the time-optimal risk-aware path by finding the optimal
sequence of vehicle states from the start to the goal with the
minimum total cost of time and risk. We propose a novel risk
function based on the concept of collision time, which utilizes the
complete information of the vehicle state, including its location
with respect to obstacles, heading angle, and speed. We also
propose a state pruning technique that can significantly reduce
the computational complexity. The algorithm was validated in
simulations of complex obstacle-rich scenarios, and the resulting
paths are shown to be superior than the Dubins paths.

Index Terms—Motion and Path Planning, Nonholonomic Mo-
tion Planning, Robot Safety, Optimization and Optimal Control.

1. INTRODUCTION

A fundamental problem for autonomous vehicles is to plan
a collision-free path to reach a goal state in minimal

time. Typically, autonomous vehicles are subject to kinematic
constraints, such as bounded curvature and bounded turn rate,
which limit their manoeuvrability. Along this line, Dubins [1]
addressed the problem of finding the shortest path for a vehicle
with kinematic constraints, that moves at a constant speed
in an obstacle-free space. He used a geometric approach and
showed that the shortest path between a pair of vehicle poses
must be one of the following 6 types: RSR, RSL, LSR, LSL,
RLR and LRL, where L(R) refer to a left (right) turn with
maximum curvature, and S indicates a straight line segment.
Dubins-like path planning is popular because the resulting path
consists of optimized parametric curves that can be expressed
analytically and computed quickly, based on which many path-
following methods could be designed. Further research on
this problem considered bounded acceleration [2], field-of-
view constraint [3], the orienteering problem [4][5], polygonal
obstacles [6][7], and external disturbances [8][9].

The above methods following the Dubins’ approach focused
on shortest path planning; however, autonomous vehicles can
travel at variable speeds, thus the time-optimal path can be

Manuscript received: June 9, 2018; Revised September 5, 2018; Accepted
October 5, 2018. This paper was recommended for publication by Editor
Nancy Amato upon evaluation of the Associate Editor and Reviewers’
comments. This work was supported by US Office of Naval Research under
Award Number N000141613032. Any opinions or findings herein are those of
the authors and do not necessarily reflect the views of the sponsoring agencies.

1J. Song and S. Gupta are with Department of Electrical and Computer
Engineering, University of Connecticut, Storrs, CT, 06269, USA. 2T.A.
Wettergren is with Naval Undersea Warfare Center, Newport, RI 02841, USA.

? Corresponding Author (email id: shalabh.gupta@uconn.edu)
Digital Object Identifier (DOI): see top of this page.

(a) Time-optimal path vs. Dubins
path

(b) Time-optimal risk-aware path
vs. Dubins path

Figure 1: Time-optimal and time-optimal risk-aware paths as compared to
the Dubins paths in different environment

different from the shortest path. In a recent study, Wolek et
al. [10] derived the solution to find the time-optimal path for
curvature-constrained variable-speed vehicles in an obstacle-
free space. They identified a sufficient set of 34 candidate
paths, where each candidate path contains circular arcs or
straight line segments on which the vehicle travels at extremal
(i.e., maximum or minimum) speeds. Then, for a given pair
of start and goal poses, the time-optimal path is the least-
cost candidate path. Fig. 1a shows an example of time-optimal
path vs. Dubins path, where the slow speed segments in the
time-optimal path enable smaller turning radii which help in
reducing the total path length.

However, to the best of our knowledge, the time-optimal
motion planning problem for curvature-constrained variable-
speed vehicles has not been solved in the presence of obstacles.
As shown in [6], the problem of deciding whether a curvature-
constrained collision-free path exists between two given poses
amid polygonal obstacles is NP-hard [7]. This implies that
no efficient exact algorithms exist for curvature-constrained
time-optimal motion planning in arbitrary environment. In
this paper, we present the T? algorithm that provides an
approximate solution to solve the above-mentioned problem
in the discrete domain [11].

The second issue addressed in this paper is that of vehicle
safety. Due to complexities of the environment, it is also
critical that the time-optimal path is safe for the vehicle.
Pereira et al. [12] proposed a minimum-risk planning strat-
egy using the risk map for autonomous underwater vehicles
(AUVs). Hernández et al. [13] presented a safe path planning
algorithm for AUVs, where safety is ensured by creating a
risk zone around the vehicle for obstacle avoidance. Liu et
al. [14] proposed a episodic memory-based planning method,
where the risk in the local behavioral planning strategy is
measured by the minimum distance to danger areas. Pfeiffer

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018

et al. [15] assumed a priori known threat zones to UAVs and
presented an approach to find paths with minimized probability
of being exposed to threats. Davoodi [16] proposed a bi-
objective optimization approach to find the Pareto-optimal
paths with minimized path length and maximized distance to
the obstacles. Wang et al. [17] presented a multi-objective Par-
ticle Swarm Optimization (PSO) approach for car-like robots,
where the objectives are to minimize the path length and the
total risk defined by terrain roughness. Huang and Savkin [18]
presented the Shortest Viable Path Planning (SVPP) algorithm
to address a variant of Dubins Travelling Salesman Problem
in presence of obstacles to visit a set of sensor nodes in a
sensing field. The above papers addressed safe-path planning;
however, the risk measures therein were based on only partial
information of the vehicle state, i.e., its location with respect to
the obstacles or threats, while ignoring its speed and heading
angle. Fraichard and Asama [19] introduced the concept of
inevitable collision states into safe-path planning, where the
states that cannot avoid future collision must be prohibited.

Along this line, we propose a continuous risk function based
on the concept of collision time, which is the time in which
the vehicle can hit the obstacle along its heading direction, if
it loses control. Thus, a vehicle is deemed safe if its collision
time is greater than the time it takes to stop, maneuver around,
or re-gain its control. The concept of collision time considers
the complete information about the vehicle state, including
its location with respect to the obstacles, heading angle, and
speed. Furthermore, this risk function is seamlessly integrated
with the time cost for motion planning. Fig. 1b shows an
example where the time-optimal risk-aware path stays away
from the obstacles as compared to the Dubins path.

After defining the joint optimization function, we construct
a discrete configuration space and use a grid-based A?-like
search for motion planning. As compared to other grid-based
methods under motion constraints such as Hybrid-A?[20], the
motion primitives in T? are optimized over both risk and time.

The paper makes the following novel contributions:
• presented a solution to the time-optimal risk-aware mo-

tion planning problem in the presence of obstacles,
• integrated a risk function into the time-optimal cost which

is based on the concept of collision time, and
• presented an adaptive pruning technique that can signifi-

cantly reduce the computation time while maintaining the
solution quality and ensuring completeness.

The algorithm is validated on simulations of complex obstacle-
rich scenarios, where the results show superiority in time
savings over the Dubins paths. The algorithm can also produce
multiple choices of paths with decreasing risk at the expense
of increasing time cost for the planner.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates the time-optimal risk-aware motion planning
problem. Section 3 presents the details of the T? algorithm.
Section 4 presents the results on a simulated scenario and the
paper is concluded in Section 5.

2. PROBLEM FORMULATION

Let A ⊂ R2 be the search area which is populated with a
number of obstacles. The vehicle motion is described as:


ẋ(t) = v(t)cosθ(t)
ẏ(t) = v(t)sinθ(t)
θ̇(t) = u(t),

(1)

where (x,y,θ)∈ SE(2), u is the turning rate, and v is the speed.
It is assumed that the autonomous vehicle is capable of

traveling at a variable speed, s.t., v∈ [vmin,1], where vmin ∈R+

is the minimum speed, and with a modified distance unit the
maximum speed vmax is normalized to 1 [10]. Note that the
Dubins path considered the special case where v is constant.

Also, the turn rate u is symmetric and bounded, s.t.,
u ∈ [−umax,umax], where umax ∈R+ is the maximum turn rate
and the +/− sign refers to a left/right turn. The turn rate and
speed are connected by the curvature κ = u/v, which is the
inverse of the turning radius. The curvature |κ| = 0 means
that the vehicle is moving in a straight line, this happens
when u = 0. On the other hand, when the vehicle turns at
the maximum turn rate (i.e., ±umax), it can do so at the
maximum or minimum speed, which result in the curvature
|κ|= umax or |κ|= umax/vmin, respectively. These correspond
to the maximum and minimum turning radii of the vehicle
as R = 1/umax and r = vmin/umax, respectively. Thus, the
curvature is bounded as |κ| ∈ [0,umax/vmin].

Now, let us denote the state of the vehicle as p = (x,y,θ ,v).
Let Γ denote the set of all collision-free paths between the start
state pstart and the goal state pgoal . Then, for each path γ ∈ Γ,
the control c(s) = (κ,v) at any point s on γ belongs to the
following constraint set [10]:

Ω =

{
(κ,v) | vmin ≤ v≤ 1 and |κ| ≤ umax

v

}
. (2)

The admissible control must be piece-wise continuous and
should satisfy the boundary conditions, i.e., c must drive the
vehicle from pstart to pgoal along the path γ while avoiding
obstacles. Further, let R(s) denote the risk cost at a point s on
γ . Then, the total cost of time and risk is defined as

J(γ) =
∫

γ

R(s) · 1
v(s)

ds, (3)

where the term 1
v(s) evaluates the time cost when the vehicle

moves along a small path segment ds.
Therefore, the objective is to find the control c? ∈Ω, which

generates a collision-free path γ? with the minimal cost J(γ?),
s.t. J(γ?)≤ J(γ),∀γ ∈Γ. Note that the outcome of optimization
is a trajectory; however, we use the term path for trajectory in
this paper with slight abuse of terminology.

3. T? ALGORITHM

Since there is no efficient exact algorithm to minimize (3)
in the presence of obstacles, even when the risk is ignored [6],
this section develops a novel grid-based algorithm, called T?,
to obtain an approximate solution in the discrete domain.

A. Configuration Space

Since any feasible path γ between pstart and pgoal consists
of multiple intermediate states, the time-optimal risk-aware
motion planning problem can be solved by identifying the

SONG et al.: T?: TIME-OPTIMAL RISK-AWARE MOTION PLANNING 3

(a) L = 4 (b) L = 8 (c) L = 16

Figure 2: State expansion in each cell when L = 4, 8 and 16, respectively

optimal sequence of states. This in turn motivates to partition
the search area into grid cells and then assign each cell with
a sufficient number of possible discrete states, which forms a
configuration space described as below.

First, the search area A is discretized into a set of grid cells,
C= {cα ⊂R2,α = 1, . . . , |C|}, where

⋃|C|
α=1 cα =A, c◦α

⋂
c◦

β
=

/0, ∀α,β ∈ {1, . . . , |C|}, α 6= β , and ◦ denotes the interior.
Then, each cα ∈ C is encoded with a symbolic state sα ∈

{O,F}, where O≡ obstacle and F ≡ f ree. Specifically, sα =O
if cα is (partially) occupied by an obstacle; otherwise, sα = F .
This generates the free space C f ree = {cα ∈ C : sα = F}.

Then the configuration space Q is constructed as follows.

Definition 3.1 (Configuration Space). Let O = {(xα ,yα) ∈
cα : cα ∈ C f ree} be the set of center positions of all obstacle-
free cells. Let Θ = { 2πl

L : l = 0, . . . ,L−1} be the set of L ∈N+

heading angles. Let V= {vmin,1} be the set of speeds. Then,
the configuration space is defined as:

Q= O×Θ×V.

Fig. 2 shows the state expansion for different L. Clearly,
the size of Q relies on the size of C f ree and the value
of L. Although a larger L could potentially produce better
results, it will also increase the size of Q that leads to higher
computational complexity for motion planning. This paper
adopts the 8-orientation state expansion with L = 8.

B. Approximate Optimization Function

Now, we present an approximation to the optimization
problem in Section 2. Let P = {Pm,m = 1, . . . , |P|} be the
set of all valid state sequences, where Pm = [pm

1 ,p
m
2 , . . . ,p

m
n]

is a sequence of states that connects pstart and pgoal . Here
pm

i = (xi,yi,θi,vi)∈Q, ∀i∈ {1, . . . ,n}, and n∈N+ denotes the
length of the sequence. To satisfy the boundary conditions, it
should have pm

1 = pstart , and pm
n = pgoal . Note that any two con-

secutive states pm
i and pm

i+1, ∀i ∈ {1, . . . ,n− 1}, must belong
to two neighboring cells. Also, a valid state sequence cannot
contain duplicate states, i.e., pm

i 6= pm
j ,∀i, j ∈ {1, . . . ,n}, i 6= j;

otherwise a loop will be present, thus it will not be optimal
since its cost can be further reduced by removing such loop.

Then, we compute the total cost of a state sequence Pm in
a piece-wise manner as follows:

J(Pm),
n−1

∑
i=1

J̃(pm
i ,p

m
i+1), (4)

where J̃ is the step-wise cost to move from pm
i to pm

i+1, subject
to the vehicle motion constraints and the obstacle layout. Let
Γc be the set of all feasible paths between pm

i and pm
i+1, then

J̃ is computed as the minimal cost among all paths γi,i+1 ∈ Γc:

J̃(pm
i ,p

m
i+1) = min

γi,i+1∈Γc
J(γi,i+1), (5)

where according to (3),

J(γi,i+1) =
∫

γi,i+1

R(s) · 1
v(s)

ds. (6)

For simplicity, the risk is assumed constant along γi,i+1 and
is measured at the most dangerous state on γi,i+1 which has
the least collision time (Details are in Section 3-D). Thus, the
risk cost and the time cost can be separated, as follows:

J(γi,i+1) = R(γi,i+1)︸ ︷︷ ︸
risk cost

·
∫

γi,i+1

1
v(s)

ds︸ ︷︷ ︸
time cost T(γi,i+1)

. (7)

We aim to find the optimal state sequence P? ∈ P, s.t.
J(P?) ≤ J(Pm),∀Pm ∈ P. Then, the optimal path γ? can be
reconstructed in a piece-wise manner using the states of P?

and the optimal paths between adjacent states. While the
solution to the optimization problem is presented in Section
3-F, we first present the details on computation of the time
cost T(γi,i+1) and the risk cost R(γi,i+1).

C. Time Cost T(γi,i+1)

Now, let us define the time cost T(γi,i+1) in (7). As com-
pared to the Dubins curves, since the vehicle can travel at
variable speeds, the time-optimal path that minimizes T(γi,i+1)
can contain arcs of different turning radii (see Fig. 1), which
implies more choices of candidate paths, or in other words, a
larger candidate set than the Dubins curves.

1) The Sufficient Set of Candidate Paths: For any pair
of states pm

i and pm
i+1, the authors of [10] showed that the

sufficient set, which guarantees to contain the time-optimal
path in the absence of obstacles, consists of 34 candidate paths.
These candidate paths form the set Γc, as shown in Table I.
Each path γi,i+1 ∈ Γc consists of up to five segments, where
each segment could be one of the following [10]:

1) Bang arcs (B), where the vehicle turns at maximum speed
with maximum turn rate (i.e. with radius R);

2) Cornering arcs (C), where the vehicle turns at minimum
speed with maximum turn rate (i.e., with radius r);

3) Straight line segments (S), where the vehicle moves
straight with the maximum speed.

Any circular arc (i.e., B or C) can be either left (L) or right
(R), as shown under the direction column. Each candidate path
is read from left to right, and the consecutive turns within
parentheses are of the same direction. For example, the No.18
path of (B)S(BC) with direction LSR is read as: a left bang
arc, followed by a straight line segment, a right bang arc, and
then a right cornering arc.

Each candidate path has to be optimized for its parameters
(i.e., the angles for arc segments and the lengths of straight line
segments) to achieve time optimality, thus one must solve a
nonlinear constrained optimization problem [10]. Specifically,
the total time cost for each candidate path between a pair
of states is the summation of cost for each segment. An arc
segment (B or C) with angle ∆θ contributes to the time cost

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018

Table I: Γc: The set of candidate paths between any pair of states

No. Path Type1 Direction2 No. Path Type Direction

1 (B)S(B) LSL 18 (B)S(BC) LSR
2 (B)S(B) LSR 19 (B)S(BC) RSL
3 (B)S(B) RSL 20 (B)S(BC) RSR
4 (B)S(B) RSR 21 (CB)(BCB) LL
5 (BCB)(B) LL 22 (CB)(BCB) LR
6 (BCB)(B) LR 23 (CB)(BCB) RL
7 (BCB)(B) RL 24 (CB)(BCB) RR
8 (BCB)(B) RR 25 (CB)S(B) LSL
9 (B)(BCB) LL 26 (CB)S(B) LSR
10 (B)(BCB) LR 27 (CB)S(B) RSL
11 (B)(BCB) RL 28 (CB)S(B) RSR
12 (B)(BCB) RR 29 (C)(C)(C) LRL
13 (BCB)(BC) LL 30 (C)(C)(C) RLR
14 (BCB)(BC) LR 31 (CB)S(BC) LSL
15 (BCB)(BC) RL 32 (CB)S(BC) LSR
16 (BCB)(BC) RR 33 (CB)S(BC) RSL
17 (B)S(BC) LSL 34 (CB)S(BC) RSR
1 B is a bang arc, C is a cornering arc and S is a straight line

segment. The parentheses are used to indicate consecutive turns
of the same direction.

2 L is a left turn, R is a right turn and S means move straight.

by |∆θ |
umax

; while a displacement of d ∈ R+ for the straight line
segment contributes to the cost by d while moving at vmax = 1.

Since each candidate path is required to exactly reach
pm

i+1 from pm
i , there are five constraints including the total

displacement along each axis, the total change in the heading
angle, and the speeds specified by the first and last arc
types. These boundary conditions ensure the continuity in
position, heading and speed when the vehicle reaches every
state pm

i ∈ Pm, including pstart and pgoal .
In this paper, the path parameters for each candidate path

are optimized using the nonlinear solver IPOPT (Interior Point
OPTimizer) [10]. The time-optimal path between a given pair
of states is the candidate path with the least time cost.

Next, we construct the Optimized Candidate Paths for State-
pairs (OCPS) table, that contains the optimized candidate paths
for all possible pairs of states pm

i and pm
i+1.

2) The OCPS Table: To avoid computational burden during
motion planning, the parameters of the candidate paths are
optimized offline to construct the OCPS Table.

Specifically, consider a state pm
i located in a center cell

and all the possible states pm
i+1 located in its 3×3 neighbor-

hood. Since pm
i has 8× 2 = 16 choices corresponding to 8

directions and 2 speeds, and pm
i+1 has 8×8×2 = 128 choices

corresponding to 8 positions in the neighborhood, 8 directions,
and 2 speeds, the total number of 2048 pairs are considered.
However, by exploring symmetry, one can easily figure out
that only 272 pairs must be optimized for, while the rest can
be derived accordingly.

For each pair of pm
i and pm

i+1, depending on the speed
information of pm

i and pm
i+1, the associated candidate paths

belong to one of the following four subsets of Γc:
• Γc

BB, which contains No.1-12 paths that start and end with
vmax, i.e., they start and end with bang arcs B;

• Γc
BC, which contains No.13-20 paths that start with vmax

and end with vmin, i.e., they start with a bang arc B and
end with a cornering arc C;

• Γc
CB, which contains No.21-28 paths that start with vmin

and end with vmax, i.e., they start with a cornering arc C
and end with a bang arc B; and

• Γc
CC, which contains No.29-34 paths that start and end

with vmin, i.e., they start and end with cornering arcs C.
Thus, for each pair of pm

i and pm
i+1, the path parameters of

candidate paths within the corresponding subset are optimized
offline using IPOPT. The resulting optimized candidate paths
and their time costs are stored in the OCPS table.

3) Computation of T(γi,i+1): During the planning process,
when computing for the time cost T between a certain state
pair pm

i and pm
i+1, the planner can initiate a query to the OCPS

table to obtain a set of optimized candidate paths within the
corresponding subset determined by the speed information of
pm

i and pm
i+1. Then for each obtained optimized candidate path

γi,i+1, T(γi,i+1) is assigned with the associated time cost if it
is collision-free; otherwise, T(γi,i+1) = +∞.

D. Risk Cost R(γi,i+1)

This section presents a state-based risk function to evaluate
the risk cost of each candidate path γi,i+1 ∈ Γc.

As mentioned in Section 3-B, the risk cost R(γi,i+1) of a
candidate path γi,i+1 between a pair of states pm

i and pm
i+1 is

determined by the most dangerous state along γi,i+1 that results
in the least collision time to an obstacle or the space boundary
in its heading direction, if the vehicle loses control. For
any state, the vehicle is considered safe if the corresponding
collision time is greater than a threshold t? ∈ R+, which
indicates the time for the vehicle to fully stop, maneuver
around, or re-gain its control. Thus, the risk of the vehicle
relies on its state, including its location, heading and speed.
Now, we present the computation of R(γi,i+1).

Consider a candidate path γi,i+1 ∈ Γc. First, a set of M ∈
N+ states, {p̂` : `= 1, . . . ,M}, are evenly sampled along γi,i+1
with a sampling interval ∆d ∈R+, s.t. p̂M = pm

i+1. Specifically,
p̂` =(x`,y`,θ`,v`), where (x`,y`,θ`)∈ SE(2) and v` ∈{vmin,1}
indicates the speed of the sampled state. Fig. 3a shows an
example of sampled states between pm

i and pm
i+1 when M = 6.

Then, for each p̂`, ` ∈ {1, . . . ,M}, one can geometrically
compute the collision distance d`, as shown in Fig. 3b. Denote
by line ` the extended line of state p̂` along angle θ`, which
hits the obstacle at the hit point H = (xh,yh) ∈R2. Then, d` =
‖(x`− xh,y`− yh)‖. Once d` is determined, the corresponding
collision time t` is computed as:

t` =
d`
v`
. (8)

Algorithm 1 computes t`, by sequentially exploring the
frontier cells in the quadrant determined by θ`, until line `
intersects a frontier cell that either contains an obstacle or
lies on the space boundary. The frontier cells are labeled with
incrementing numbers during exploration, i.e., the numbers
0©∼ 4© in Fig. 3b. Note that line ` cannot intersect a higher
numbered frontier cell before intersecting a lower numbered
frontier cell. Also, for all frontier cells that are labeled with
the same number, line ` can only intersect one of them.

Algorithm 1 uses a queue q to record the frontier cells
discovered during exploration. The queue is initialized with

SONG et al.: T?: TIME-OPTIMAL RISK-AWARE MOTION PLANNING 5

(a) Sampling of γi,i+1 (b) Computation of Collision Distance d` (c) The Risk Function (risk(p̂`))
k

Figure 3: The collision distance and the risk function

Algorithm 1: Computation of Collision Time t`
input : p̂` = (x`,y`,θ`,v`), t?

output: t`
1 Initialize: queue q← cell that contains p̂`

2 while q is not empty do
3 Update len← current size of q;
4 for i← 1 to len do
5 Remove the front cell from q and make it cλ ;
6 if sλ = O or cλ contains the space boundary then
7 if line ` intersects cλ at (xh,yh) ∈ R2 then
8 Compute d`←‖(x`− xh,y`− yh)‖;
9 Return t`← d`

v`
;

10 end
11 end

// Enqueue the new frontier cells
12 Push into q the neighbor cells of cλ that are

located within a distance of d?
` = t?×v` from p̂`;

13 end
14 end
15 Return t`← t? // If t` cannot be found from the above steps

the cell that contains the state p̂` and it is labeled with 0©
(Line 1). As long as the queue is non-empty (Line 2), the
variable len is updated with the size of the queue (Line 3).
Then, within the for loop, these frontier cells are sequentially
extracted from the front of the queue (Line 4), and recorded in
a variable cλ at each iteration (Line 5). Thereafter, it checks
whether: (i) cλ is occupied by any obstacle (i.e., sλ = O) and
line ` intersects with any edge of cλ ; or (ii) cλ lies on the
space boundary and line ` intersects with its boundary edge
(Line 6− 7). If either is true, then the collision distance d`
and the collision time t` are computed based on the hit point
(xh,yh) ∈ R2(Line 8−9).

If t` is not found from the above steps, then new frontier
cells (i.e., the neighbor cells of cλ not in q) are enqueued
for further computations and they are labeled with a number
incremented by 1 (Line 12). Note that the new frontier cells
are determined by θ`, e.g., as shown in Fig. 3b, θ` resides in
the first quadrant, hence the new frontier cells are the neighbor
cells located in the north and east directions of cλ .

Figure 4: Uncertainties in heading angle θ`

Since the vehicle is safe at p̂` when t` ≥ t?, one only needs
to search the frontier cells located within a distance of d?

` =
t?×v` from p̂`. A frontier cell is said to be within a distance
of d?

` from p̂`, if the distance between any of its four vertices
and the point (x`,y`) is smaller than d?

` .
If no t` is returned and the queue becomes empty, then it

implies that line ` does not intersect any obstacle cell or the
space boundary up to distance d?

` . Then, t` = t?, i.e., state p̂`

is risk-free. (Line 15).
Based on the collision time t`, the risk at p̂` is defined as

risk(p̂`) =

{
1+ log

(
t?
t`

)
if t` < t?

1 if t` ≥ t?.
(9)

As t`→ 0, the risk approaches ∞; while for t` ≥ t?, the risk
reduces to 1, i.e., no risk penalty is added to the time cost.

The risk cost for a candidate path γi,i+1 is computed as

R(γi,i+1) = max
`∈{1,...,M}

(
risk(p̂`)

)k
, (10)

where k≥ 0 is the weight parameter. Fig. 3c shows the curves
of (risk(p̂`))

k for different k when t? = 6. It is seen that for a
fixed t` ∈ (0, t?), a larger k produces a higher risk. In particular,
when k = 0, R(γi,i+1) = 1, thus the total cost J̃(pm

i ,pm
i+1) =

T(γi,i+1), hence the resulting path is time-optimal. Note that
R(γi,i+1) ∈ [1,∞), because risk(p̂`) ∈ [1,∞), ∀`.

Planning under Uncertainties: During plan execution, the
vehicle may have uncertainties in its heading and position.
Thus, an uncertainty of ∆θ is added to θ` during planning, and

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018

Figure 5: Illustration of the adaptive state pruning within each cell

the collision distances d+
` and d−` corresponding to headings of

θ +∆θ and θ −∆θ are computed, as shown in Fig. 4. Then
t` is computed based on min{d`,d+

` ,d
−
` }. Since a modestly

priced compass has an accuracy of 1o [21], ∆θ is chosen as
1.5o. Also, a buffer of size 0.1m is added around all obstacles
to compensate position uncertainties, such that any path γi,i+1
which intersects with the buffer has R(γi,i+1) = +∞.

E. Adaptive State Pruning for Complexity Reduction

This section presents a three-step adaptive state pruning
technique for complexity reduction of Q, as shown in Fig. 5.
Consider a state pm

i and the baseline 8-orientation 2-speed
state expansion in its neighbor cells, as shown in Fig. 5a.

1) Obstacle-based Pruning: The states close to and facing
obstacles or boundaries are considered as inevitable col-
lision states, thus they are pruned, as shown in Fig. 5b.

2) Speed-based Pruning: In open regions away from obsta-
cles, the vehicle is expected to travel at the highest speed
to minimize the time cost; while the low-speed states are
typically useful near obstacles to allow turning with a
smaller turning radius for better controllability. Therefore,
the low-speed states in the cells located far from obstacles
can be pruned, as shown in Fig. 5c.

3) Heading-based Pruning: Since the states with a diagonal
heading and in an opposite direction to the goal will very
likely produce higher costs, they are less likely to be
part of the optimal state sequence. Thus, they can be
dynamically identified and removed from Q. Note that the
states with non-diagonal heading angles of 0, π/2, π and
3π/2 must be retained to ensure the completeness of the
algorithm. In this regard, first connect the centers of each
cell and pgoal using a straight line as shown in Fig. 5d.
Then, for each state with a diagonal heading, compute the
angle ξ ∈ (−π,π] formed with the corresponding line. If
|ξ |> η , where η ∈ (0,π] is a pre-defined threshold, then
such state is pruned. Fig. 5d shows an example when
η = π/2.

F. Searching for the Time-optimal Risk-aware Path

The step-wise cost J̃(pm
i ,pm

i+1) between any two consecutive
states pm

i and pm
i+1 is determined by the least product cost

of T(γi,i+1) and R(γi,i+1) among all corresponding optimized
candidate paths in the OCPS table. Now, for an intermediate
state pm

i , we define

f (pm
i) = g(pstart ,pm

i)+h(pm
i ,pgoal), (11)

where the cumulative cost function g is

g(pstart ,pm
i) =

i−1

∑
j=1

J̃(pm
j ,p

m
j+1), (12)

and the heuristic cost h(pm
i ,pgoal) is determined by the length

of the shortest Dubins path using turning radius r divided by
the maximum speed vmax. Such heuristic is admissible thus
it guarantees the optimality of P?. Thereafter, we adopt the
framework of A? algorithm to search for P?, where the states
are gradually explored and assigned with the cost using (11).
The search process repeats until the goal state is found. Then,
the time-optimal risk-aware path γ? can be reconstructed in
a piece-wise manner using the states of P? and the optimal
paths between the adjacent states of P?.

4. RESULTS AND DISCUSSION

The T? algorithm has been validated in complex obstacle-
rich scenarios. The results were compared with Dubins paths,
the effect of risk weight k in (10) was investigated, and the
efficiency of the adaptive state pruning technique in reducing
the computational complexity was quantitatively examined.

The autonomous vehicle is subject to the following kine-
matic constraints: maximum turn rate umax = 0.5rad/s, and
speeds vmin = 0.5m/s and vmax = 1m/s. Hence, its turning radii
are R = 2m and r = 1m. Also, t? is chosen as 6s.

The search area A of size 30m × 30m is partitioned into a
set C consisting of 15×15 cells, where each cell is of size 2m
× 2m. The adaptive state pruning method was applied with
the threshold η = π/2.

A. Comparison of Time-optimal and Dubins Approaches

First, we compare the time-optimal path with the Dubins
paths. The time-optimal path was obtained by using k = 0 in
(10), i.e., the effect of risk was not considered. On the other
hand, since a Dubins vehicle must move at a constant speed,
we generated two such paths one at the maximum and the other
at the minimum speed. The start and goal states were chosen as
pstart = (4m,26m,0,vmax) and pgoal = (20m,8m,3π/2,vmin).

Fig. 6a shows the two Dubins paths, while Fig. 6b shows
the time-optimal path. Since the Dubins path with vmax results
in large turning radius R, its movement through the shortcut
taken by the time-optimal path is restricted. Thus, it takes a

SONG et al.: T?: TIME-OPTIMAL RISK-AWARE MOTION PLANNING 7

(a) Dubins paths. Total time cost using vmax: 35.99s.
Total time cost using vmin: 55.95s

(b) Time-optimal path (for k = 0). Total time cost: 34.51s

Figure 6: The Dubins paths vs. time-optimal path in an obstacle-rich environment

Table II: Total costs and computation times using adaptive state pruning

Risk
Weight

State Pruning
Threshold

Total Cost
J(P?)

Computation
Time

Saving in Com-
putation Time

k = 0

None 33.31 259.92s −
η = π 34.51 73.31s 71.80%

η = π/2 34.51 54.29s 79.11%
η = π/4 34.51 38.06s 85.36%

k = 0.3

None 38.46 709.56s −
η = π 38.87 227.90s 67.88%

η = π/2 38.87 169.97s 76.05%
η = π/4 39.52 124.78s 82.41%

k = 3

None 62.98 569.43s −
η = π 62.98 157.95s 72.26%

η = π/2 62.98 116.08s 79.61%
η = π/4 71.94 96.56s 83.04%

longer path with a total time cost of 35.99s. On the other hand,
the Dubins path with vmin has better controllability with the
turning radius r; thus, it produces the minimum-length path
through the shortcut. However, it takes 55.95s which is much
higher due to the minimum speed.

In comparison, the time-optimal path shown in Fig. 6b is
composed of segments with different speeds. This enables the
vehicle to travel at vmax in relatively open regions to reduce
the total time cost, while subject to a larger turning radius R.
In congested regions, it tends to decrease its speed to vmin to
gain better maneuverability with a smaller turning radius r.
The total time cost of the time-optimal path is 34.51s, which
is lower than both the Dubins paths described above.

B. Time-optimal Risk-aware Paths for Different k

This section examines the effect of k in (10) on the motion
planning. A higher k is expected to produce a safer path,
however, the time cost would be potentially higher.

Fig. 7a to Fig. 7c show the time-optimal risk-aware paths
for k = 0, 0.3 and 3, respectively. These paths are color-
coded based on the speed information. Fig. 7d to Fig. 7f show
the same paths but they are color-coded based on the risk
information. The risk of a state along the path was evaluated
using (9), where the sample states were generated using the
sampling interval of ∆d = 0.4m.

It is seen that, for k = 0, the time-optimal path reaches
the goal in 34.51s through the shortcut in congested regions.
However, it has multiple dangerous segments as shown in
Fig. 7d by the risk color-coding. The max risk of the whole
path was 2.45. For k = 0.3, the time-optimal risk-aware path
selects a less-risky route to avoid the congested region, but
requires a higher time cost of 36.30s. Accordingly, the number
of risky segments was significantly reduced; however, the
segments in cells (9,9) and (9,11) still present high risk.
Further, for k = 3, the resulting path picked the safest route,
where the max risk reduced to 1.48, but the corresponding
time cost reaches 41.89s.

In addition, a smoothing operation can help remove zigzag-
shaped segments, e.g., near cell (8,7) in Fig. 7a; and further
reduce J(P?). Here, we re-optimize over randomly sampled
state pairs along the optimal path and replace with lower-
cost collision-free segments if they exist. This operation was
repeated for four iterations, and the smoothed paths and their
risk color-codings are shown in Fig. 7a∼ 7f, respectively.
C. Complexity Reduction by Adaptive State Pruning

This section examines the efficiency of the adaptive state
pruning technique in reducing the computational complexity.
Table II summarizes the total cost J(P?), the average compu-
tation time over 5 runs, and the savings in computation time
as compared to no pruning, for varying η . The results are
presented for three values of k = 0, 0.3 and 3. The results are
generated on a computer with 3.4GHz CPU and 16GB RAM.

Note that a higher threshold of η would retain more
diagonally facing states during the heading-based pruning.
The results in Table II show that the adaptive state pruning
technique can significantly reduce the computation time. When
η is reduced from π to π/4, the computational cost reduces;
however, the total optimization cost remains more or less the
same, thus revealing the effectiveness of the pruning approach.

5. CONCLUSIONS

This paper presents an algorithm for time-optimal risk-
aware motion planning for curvature-constrained variable-
speed vehicles. The results show superiority in time savings
over the Dubins paths. The algorithm allows users to generate

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2018

(a) k = 0, time cost before/after smoothing:
34.51s/25.51s

(b) k = 0.3, time cost before/after smoothing:
36.30s/33.61s

(c) k = 3, time cost before/after smoothing:
41.89s/35.68s

(d) k = 0, max risk before/after smoothing:
2.45/2.40

(e) k = 0.3, max risk before/after smoothing:
2.01/2.01

(f) k = 3, max risk before/after smoothing:
1.48/1.33

Figure 7: Time-optimal risk-aware paths for different k: top row shows the speed encodings, while bottom row shows the corresponding risk encodings.

various path choices of decreasing risk at the expense of in-
creasing time cost. The effectiveness of the proposed adaptive
state pruning technique was thoroughly tested to reduce the
computation time while maintaining the path quality.

REFERENCES

[1] L. Dubins, “On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tan-
gents,” American Journal of mathematics, vol. 79, no. 3, pp. 497–516,
1957.

[2] J. Faigl and P. Váňa, “Surveillance planning with bézier curves,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 750–757, 2018.

[3] P. Salaris, D. Fontanelli, L. Pallottino, and A. Bicchi, “Shortest paths
for a robot with nonholonomic and field-of-view constraints,” IEEE
Transactions on Robotics, vol. 26, no. 2, pp. 269–281, 2010.

[4] R. Pěnička, J. Faigl, P. Váňa, and M. Saska, “Dubins orienteering
problem,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
1210–1217, 2017.

[5] N. Tsiogkas and D. Lane, “Dcop: Dubins correlated orienteering prob-
lem optimizing sensing missions of a nonholonomic vehicle under
budget constraints,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 2926–2933, 2018.

[6] S. Lazard, J. Reif, and H. Wang, “The complexity of the two dimensional
curvature-constrained shortest-path problem,” in The Third International
Workshop on the Algorithmic Foundations of Robotics, Houston, TX,
1998, pp. 49–57.

[7] P. Agarwal, T. Biedl, S. Lazard, S. Robbins, S. Suri, and S. Whitesides,
“Curvature-constrained shortest paths in a convex polygon,” SIAM
Journal on Computing, vol. 31, no. 6, pp. 1814–1851, 2002.

[8] T. McGee and J. Hedrick, “Optimal path planning with a kinematic
airplane model,” Journal of guidance, control, and dynamics, vol. 30,
no. 2, pp. 629–633, 2007.

[9] A. Wolek and C. Woolsey, “Feasible dubins paths in presence of un-
known, unsteady velocity disturbances,” Journal of Guidance, Control,
and Dynamics, vol. 38, no. 4, pp. 782–787, 2014.

[10] A. Wolek, E. Cliff, and C. Woolsey, “Time-optimal path planning for a
kinematic car with variable speed,” Journal of Guidance, Control, and
Dynamics, vol. 39, no. 10, pp. 2374–2390, 2016.

[11] J. Song, S. Gupta, and T. Wettergren, “Time-optimal path planning for
underwater vehicles in obstacle constrained environments,” in MTS/IEEE
OCEANS’17, Anchorage, AK, 2017, pp. 1–6.

[12] A. Pereira, J. Binney, G. Hollinger, and G. Sukhatme, “Risk-aware path
planning for autonomous underwater vehicles using predictive ocean
models,” Journal of Field Robotics, vol. 30, no. 5, pp. 741–762, 2013.

[13] J. Hernández, M. Moll, E. Vidal, M. Carreras, and L. Kavraki, “Planning
feasible and safe paths online for autonomous underwater vehicles
in unknown environments,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, South Korea, 2016, pp. 1313–1320.

[14] D. Liu, M. Cong, and Y. Du, “Episodic memory-based robotic planning
under uncertainty,” IEEE Transactions on Industrial Electronics, vol. 64,
no. 2, pp. 1762–1772, 2017.

[15] B. Pfeiffer, R. Batta, K. Klamroth, and R. Nagi, “Path planning for
uavs in the presence of threat zones using probabilistic modeling,” IEEE
Trans. Autom. Control, vol. 43, pp. 278–283, 2005.

[16] M. Davoodi, “Bi-objective path planning using deterministic algo-
rithms,” Robotics and Autonomous Systems, vol. 93, pp. 105–115, 2017.

[17] B. Wang, S. Li, J. Guo, and Q. Chen, “Car-like mobile robot path plan-
ning in rough terrain using multi-objective particle swarm optimization
algorithm,” Neurocomputing, vol. 282, pp. 42–51, 2018.

[18] H. Huang and A. V. Savkin, “Viable path planning for data collection
robots in a sensing field with obstacles,” Computer Communications,
vol. 111, pp. 84–96, 2017.

[19] T. Fraichard and H. Asama, “Inevitable collision states: A step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024, 2004.

[20] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke et al., “Junior:
The stanford entry in the urban challenge,” Journal of Field Robotics,
vol. 25, no. 9, pp. 569–597, 2008.

[21] L. Paull, S. Saeedi, M. Seto, and H. Li, “Auv navigation and localization:
A review,” IEEE Journal of Oceanic Engineering, vol. 39, no. 1, pp.
131–149, 2014.

