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POSE: Prediction-Based Opportunistic Sensing
for Energy Efficiency in Sensor Networks

Using Distributed Supervisors
James Z. Hare, Shalabh Gupta, Member, IEEE, and Thomas A. Wettergren, Senior Member, IEEE

Abstract—This paper presents a distributed supervisory
control algorithm that enables opportunistic sensing for energy-
efficient target tracking in a sensor network. The algorithm
called Prediction-based Opportunistic Sensing (POSE), is a dis-
tributed node-level energy management approach for minimizing
energy usage. Distributed sensor nodes in the POSE network self-
adapt to target trajectories by enabling high power consuming
devices when they predict that a target is arriving in their cov-
erage area, while enabling low power consuming devices when
the target is absent. Each node has a Probabilistic Finite State
Automaton which acts as a supervisor to dynamically control
its various sensing and communication devices based on target’s
predicted position. The POSE algorithm is validated by extensive
Monte Carlo simulations and compared with random schedul-
ing schemes. The results show that the POSE algorithm provides
significant energy savings while also improving track estimation
via fusion-driven state initialization.

Index Terms—Distributed fusion, distributed sensor networks,
multimodal network control, network intelligence, opportunistic
sensing, prediction-based control, sensor scheduling.

NOMENCLATURE

A Probabilistic finite state automaton (PFSA)
alphabet.

C Number of associated tracks.
Esi Energy consumed by sensor node si.
Enet Energy consumed by the network.
F Target state transition matrix.
f False alarm rate.
H Measurement matrix.
Ĩ Identity matrix.
Îsi

x , Îsi
�, Îsi

W Received information ensembles.
M Four-tuple PFSA.
N Number of sensor nodes.
N si Neighborhood of sensor node i.

N si
R Set of neighbors with packet reception.
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N si
T Set of trustworthy neighbors.

Psi
d (k) Sensor detection model.

Psi
r Packet reception model.

Pfa False alarm probability model.
Psi

HPS Probability that a target is present within
sensor node si’s coverage area.

Pm Probability of missed detection.
Psleep Probability of sleep in a random network.
p PFSA state transition probabilities.
Q Process noise covariance.
Rc Sensor node communication radius.
Rs,HPS, Rs,LPS Sensing radius of high power sensing (HPS)

and low power sensing (LPS) devices.
R Measurement noise covariance.
S Set of sensor nodes.
Ssi,c Innovation covariance of estimate c.
si Sensor node i.
T Cycle time.
T Set of Targets.
T̂si

x , T̂si
�, T̂si

W Trustworthy sets of information received.
uτl , usi Positions of target l and sensor si.
vsi,c Innovation of estimate c.
Ŵsi Filter gain matrix
w(k) Measurement noise.
x(k) Target state at time k.
x̂si Estimated target state.
z(k) Measurement vector at time k.
α Probability of detection.
β Probability of receiving packets.
� Target noise gain matrix.
δ PFSA state transition function.
ζ Designed weight for the Psi

HPS function.
� Set of PFSA states.
λ Probability of staying in the Sleeping state.
	si,c Probability of target c in coverage area.
ξ Threshold of trustworthy estimates.
ρ Network density.
σ 2

v Process noise variance.
σ 2

x , σ 2
y Position measurement variance.

�̂
si Estimated target covariance.

�̃
si,c Cross-covariance matrix between sensor.

τl Target l.
υ(k) Model process noise at time k.
� Region of interest (ROI).
�2 Track association measure.
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I. INTRODUCTION

RAPID developments in sensing, communication, and data
processing technologies have led to the emergence of dis-

tributed sensor networks (DSNs) which are used in a wide
range of applications. For example, DSN are deployed for
intelligence, surveillance, and reconnaissance operations [1],
target tracking [2]–[4], environmental monitoring [5], personal
health monitoring [6], structural health monitoring [7], [8],
complex system diagnostics [9], border surveillance [10], [11],
traffic monitoring [12], and many others. Furthermore, these
sensor networks have evolved to consist of advanced sensor
nodes, where each node is equipped with multiple hetero-
geneous sensing devices, a communication device, a data
processing unit (DPU), and a memory unit [13]. However,
a major limitation that still persists in sensor networks is that
of the limited availability of energy resources at each sensor
node. If a sensor node is depleted of its energy reserves, it fails
to operate and collect data and thus leads to coverage gaps and
missed detections. Often it is difficult and time consuming to
charge or replace the failed nodes due to the large size of the
ROI. This can lead to poor performance of the network and
in the worst case scenario mission suspension.

Therefore, it is important that these sensor nodes utilize
their different devices in an energy-efficient manner to improve
the network lifetime. A simple method is random schedul-
ing which turns the devices on and off randomly [14], thus
preserving energy, while other methods perform scheduling
according to a clock. In contrast, there are yet other methods
that optimize the activity of the network based on the local
spatio-temporally varying demand [15]. These methods fall
under the category of Opportunistic Sensing where the devices
are enabled and disabled dynamically for efficient utilization
of energy resources [16]. To perform opportunistic sensing in
a pro-active manner, it is desired that the network has predic-
tive intelligence to allow the sensor nodes to prepare for an
event (e.g., target arrival) in advance.

For opportunistic sensing, information must be commu-
nicated between sensor nodes; however, sharing informa-
tion consumes energy [17], thus making it difficult to bal-
ance communication requirements and energy minimization.
Specifically, in the multitarget tracking application, it is desired
to track the targets with high power sensing devices oppor-
tunistically, i.e., to turn on the high-power sensing devices
only on the nodes which are located in the region(s) where
the target(s) are currently present or approaching. This requires
accurate predictions of the targets’ paths via distributed fusion
of information received from multiple nodes detecting the tar-
gets. However, the information received may be associated
to different targets [18], corrupted by noise, or provide false
beliefs of targets present in the environment [19]. These issues
can drastically increase the tracking error if data validation,
association, and filtering are not incorporated into the DSN.

This paper addresses these issues by presenting a dis-
tributed supervisory control algorithm called Prediction-based
Opportunistic Sensing (POSE). This algorithm manages the
power consumption of each sensor node in a distributed fash-
ion to enable energy-efficient target tracking while minimizing
tracking error and missed detection rates. Each node consists

of multiple devices including high power sensors, low power
sensors, a DPU and a communication device. Each node also
contains an embedded supervisor, i.e., a PFSA, which enables
and disables the devices on the node in an opportunistic
manner to conserve energy.

The states of the PFSA represent the different activities
of the node which correspond to enabling/disabling its var-
ious sensing and communication devices [11], [20]. The state
transition probabilities of the PFSA are dynamically updated
based on the information received from neighboring nodes or
from direct observation of a target using the local sensor suite.
These probabilities control the switching of the PFSA states to
facilitate opportunistic sensing based on the predicted target(s)
trajectories. For example, the PFSA of a sensor node enables
its high power consuming devices when a target is present
within its coverage region, while disabling them and entering
into a low power consuming cycle when it is not present.

The main contribution of this paper is the development of
the POSE algorithm that is built upon distributed supervisors
(i.e., PFSA) that enable scheduling of multimodal sensor nodes
consisting of several sensing devices that consume different
amounts of energy. The POSE algorithm is validated by Monte
Carlo simulations for multiple scenarios on a MATLAB plat-
form and compared with random scheduling schemes. The
results show that the POSE algorithm provides significant
energy savings and low missed detection rates while improving
tracking accuracy via fusion-driven state initialization.

II. RELATED WORK

Energy-efficient target tracking has been studied using var-
ious approaches throughout the DSN literature. To begin
with, the sensor nodes must be deployed in a manner that
enables full coverage of the ROI [21], [22]. This can be
achieved by optimally placing sensor nodes to maximize cov-
erage [23], [24]; however, this becomes impractical for large
scale networks, in complex geographical regions, and due
to the deployment time. To overcome this limitation, the k-
coverage problem was studied [25] to ensure that every point
within the ROI is observable by at least k sensor nodes
at a given time. This assumes that the sensor nodes are
deployed according to a random distribution, e.g., uniform
or Poisson [2]. Once the sensor nodes are deployed, energy-
efficient scheduling schemes are employed. In target tracking
problems, the highest priority is accurate state estimation of
the target. Therefore, adaptive sampling methods [26], [27]
were developed to adjust the sampling interval to ensure accu-
rate track estimation where the trace of the covariance matrix
is used to represent the estimation accuracy.

Typical sensor scheduling approaches found in the literature
are based on three types of network architectures: 1) cen-
tralized; 2) hybrid; and 3) distributed. Centralized networks
require each sensor node to communicate their observations to
a central computing station which calculates and transmits the
optimal scheduling decisions to each sensor node while esti-
mating the target trajectory [28], [29]. Some of these methods
employ sensor selection techniques to minimize the number
of sensors used for data collection [29], [30]. The central-
ized architectures can guarantee that the scheduling protocol
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will minimize the energy consumption of the network; how-
ever, these architectures are not scalable and thus very difficult
to implement on large scale networks due to multiple factors
such as communication limitations, transmission delays, and
data processing requirements.

Hybrid network architectures were proposed to overcome
the limitations of centralized architectures by identifying a few
sensor nodes throughout the ROI, to act as central computers,
called cluster heads (CHs) [31], [32]. Each CH forms an inde-
pendent cluster which consists of multiple sensor nodes within
its communication neighborhood. These sensor nodes send all
the measurement data to their CH for analysis to generate
state estimates for target tracking, sensor scheduling, and even
for new CH selection [15], [27], [33]. The CH performs sen-
sor scheduling by means of an optimization algorithm which
selects the optimal subset of sensors within the cluster to track
the target. This requires the knowledge of the positions of all
the sensors within the cluster as well as their respective energy
levels. Since the information measured outside of the cluster
is unobservable, scheduling decisions in hybrid networks are
only locally optimal.

The CH-based methods allow for controlled energy con-
sumption throughout the network to maximize its lifetime [34].
These methods eliminate the bandwidth limitation found in
centralized networks by limiting a cluster’s size to allow
for single-hop communications. However, data transmission
between the sensor nodes and the CH occur frequently [35],
thus consuming energy. Furthermore, if a CH were to
fail, due to defects or energy depletion, the entire clus-
ter would stop receiving scheduling decisions, rendering a
large gap in the coverage area of the overall network [36].
This requires implementation of dynamic CH election
schemes [37].

Distributed network architectures have also been proposed
where each sensor node dynamically controls its own tasks
based on the information measured by its own sensor suite
or perceived from its neighboring nodes [38]. The methods
reported here deal with partial information broadcasting [39],
adapting sensor frequency [40], and scheduling binary sen-
sor nodes [41] for accurate target tracking with energy
minimization. Unlike most hybrid approaches, the distributed
networks tend to be reactive in the sense that they only
communicate information when an event has occurred, thus
allowing for savings on transmission costs. Also, distributed
architectures do not require sensor or CH selection, thus
allowing for less computation requirements. Similar to hybrid
networks, the scheduling decisions here are only locally
optimal due to limited observation region; however, these
architectures are scalable, provide fault tolerant attributes
by construction, and eliminate the bandwidth limitations of
centralized networks.

The POSE algorithm developed in this paper utilizes dis-
tributed supervisors that rely on target’s state predictions
to probabilistically control the multimodal sensor nodes
for energy minimization. This algorithm provides sig-
nificant energy savings for network lifetime extension
while ensuring low missed detection rates and tracking
errors.

Fig. 1. Example of a sensor node.

III. PROBLEM FORMULATION

The main objective of the POSE algorithm is to utilize
energy resources opportunistically, i.e., only when needed, for
a target tracking application. Specifically, the objective is to
track targets with minimal energy consumption by enabling
the high power consuming devices on any node only when a
target is present or predicted to be within its coverage area.
Otherwise, the high power consuming devices are disabled,
but the node stays aware in low-power consuming states.

Let � ∈ R
2 be the ROI and let T = {τ1, τ2, . . . τL} be the set

of L targets which are traveling through �. Let the position
of a target τ� ∈ T at time step k be denoted as uτ�(k) =
(xτ� , yτ�)(k) ∈ �. Now let S = {s1, s2, . . . sN} be the set of N
sensor nodes which are randomly deployed throughout � to
track the targets.

A. Description of Sensor Node

Each sensor node si ∈ S , located at usi = (xsi , ysi) ∈ �,
contains a sensor suite of heterogeneous sensing devices, a
DPU, a communication device (transmitter/receiver), and a
GPS device, as shown in Fig. 1. The sensor suite includes sev-
eral low power sensing (LPS) devices [e.g., passive infrared
(PIR) or ultrasonic sensors] for target detection, and a high
power sensing (HPS) device (e.g., a laser or a camera) for fur-
ther target interrogation (e.g., accurate position measurements
or high-resolution images).

The energy consumed [41] by a node si is given as

Esi = eDPU · tDPU + eLPS · tLPS + eHPS · tHPS

+ eRX · tRX + eTX · tTX + eclock · tclock (1)

where ej denotes the energy consumed per unit time by a
certain device “j” including DPU, LPS, HPS, receiver (RX),
transmitter (TX), and clock; and tj denotes the total time dura-
tion for which the device is on. The total energy consumed by
the network is computed as

Enet =
N∑

i=1

Esi . (2)

Definition 1 (Neighborhood): The neighborhood of a sen-
sor node si ∈ S is defined as

N si �
{
sj ∈ {S \ si} :

∥∥usj − usi
∥∥ ≤ Rc

}
(3)

where Rc is the communication radius of the node.

B. Target Motion and Measurement Models

The motion of a target, τ�, is modeled using the discrete
white noise acceleration model [42] as follows:

x(k + 1) = Fx(k) + �υ(k) (4)
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where x(k) ∈ R
n is the target state at time k, F is the

state transition matrix, � is the noise gain matrix, the pro-
cess noise υk is zero-mean white Gaussian sequence and
the covariance of the process noise multiplied by the gain
is E[�υ(k)υ(k)′�′] = �σ 2

υ�′ = Q, where σ 2
υ is the pro-

cess noise variance of the position estimates. The elements
of x(k), F, and Q depend on the state estimation algorithm.
In this paper, three different state estimation algorithms are
used: 1) the Kalman filter (KF); 2) the extended KF (EKF);
and 3) the interacting multiple models (IMMs) filter.

For the KF algorithm, a linear target motion model is used
and the target state is defined as x(k) � [x(k), ẋ(k), y(k), ẏ(k)]′.
This model assumes that the target is traveling in a straight line
and the state transition matrix and process noise covariance are
given as [42]

F =

⎡

⎢⎢⎣

1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

⎤

⎥⎥⎦ (5)

Q =

⎡

⎢⎢⎢⎣

1
4 T4 1

2 T3 0 0
1
2 T3 T2 0 0

0 0 1
4 T4 1

2 T3

0 0 1
2 T3 T2

⎤

⎥⎥⎥⎦σ 2
υ (6)

where T is the cycle time between state transitions.
For the EKF algorithm, a nonlinear motion model is used

and the target state is augmented with the turning rate,
φ(k); thus x(k) � [x(k), ẋ(k), y(k), ẏ(k), φ(k)]′. This model
assumes that the target is traveling with a constant turning rate
to accommodate for curved trajectories. The state transition
matrix and process noise covariance are given as [42]

F =

⎡

⎢⎢⎢⎢⎢⎣

1 sin(φ(k)T)
φ(k) 0 − 1−cos(φ(k)T)

φ(k) 0
0 cos(φ(k)T) 0 − sin(φ(k)T) 0
0 1−cos(φ(k)T)

φ(k) 1 sin(φ(k)T)
φ(k) 0

0 sin(φ(k)T) 0 cos(φ(k)T) 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎦
(7)

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
υ

4 T4 σ 2
υ

2 T3 0 0 0
σ 2

υ

2 T3 σ 2
υ T2 0 0 0

0 0 σ 2
υ

4 T4 σ 2
υ

2 T3 0

0 0 σ 2
υ

2 T3 σ 2
υ T2 0

0 0 0 0 σ 2
φT2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where σ 2
φ is the process noise variance of the turning rate.

For the IMM state estimator, the KF and the EKF estimators
are run in parallel and combined to utilize both linear and
nonlinear motion models described above. Details of the IMM
state estimator are presented in [42].

The measurement model is given as

z(k) = Hx(k) + w(k) (9)

where z(k) ∈ R
2 is the measurement vector of the target at

time k, H is the measurement matrix, and w(k) is the zero-
mean white Gaussian noise such that E[w(k)w(k)′] = R.

Fig. 2. PFSA based distributed supervisor.

The measurement matrix is assumed to extract the position
estimates of the state and is given as

H =
[

1 0 0 0
0 0 1 0

]
. (10)

When the nonlinear model is implemented in EKF, the H
matrix is augmented with zeros to form a 2 × 5 matrix. The
covariance matrix R of the measurement noise is given as

R =
[

σ 2
x 0
0 σ 2

y

]
(11)

where σ 2
x and σ 2

y are the variances of the x and y positions,
respectively. When the nonlinear model is implemented, R is
augmented with zeros to form a 3 × 3 matrix.

Note: Detailed derivations of the above models are provided
in [42] and are beyond the scope of this paper.

C. Distributed Supervisors for Opportunistic Sensing

The scheduling of each sensor node is controlled by a dis-
tributed PFSA-based supervisor, as shown in Fig. 2. First a
definition of PFSA is presented below.

Definition 2 (PFSA): A PFSA [43] is defined as a four-
tuple M = 〈�, A, δ, P〉, where:

1) � is a finite set of states;
2) A is a finite alphabet;
3) δ ⊆ � × A × � is a set of state transitions;
4) p : � × � → [0, 1] are the state transition probabilities

which form a stochastic matrix P ≡ [pi,j], where pi,j ≡
p(θi, θj) ∀θi, θj ∈ �, such that

∑

θ ′∈�

p
(
θ, θ ′) = 1, ∀θ ∈ �.

The state set � consists of four states: 1) Sleeping (θ1);
2) Listening (θ2); 3) LPS (θ3); and 4) HPS (θ4), as shown in
Fig. 2. These states have the following attributes.

1) Sleeping (θ1): Disables all devices on the node to
consume minimal energy.
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Fig. 3. Illustration of the functioning of the POSE algorithm.

TABLE I
DEVICES ENABLED(�)/DISABLED(χ ) AT PFSA STATES

2) Listening (θ2): Disables all sensing devices but collects
information from the neighbors, fuses them, and predicts
if a target will arrive in its own HPS coverage area.

3) LPS (θ3): Detects the target using a low power sensor
for conserving energy.

4) HPS (θ4): Detects the target using a high power sensor,
estimates its current state, predicts its next position for
tracking and broadcasts it to the neighbors.

Table I shows the various devices that are enabled or disabled
on different PFSA states.

The alphabet is defined as A = {ε, 0, 1}, where ε is the null
symbol which is emitted when no information is available,
0 indicates no target detection, and 1 indicates target detec-
tion. A symbol is emitted at each state transition based on the
information observed/received at the current state as shown
in Fig. 2. Thus a symbol sequence is generated which keeps
track of the node’s target detection history.

The state transition probabilities of the PFSA are dynami-
cally updated based on the observed/received data to facilitate
opportunistic sensing. The PFSA at each sensor node is
designed to enable the HPS state only when it detects that
a target is present or predicts that it is arriving within the
node’s HPS coverage area. When the target is outside its cov-
erage area, the node conserves energy by cycling in the low
power consuming states, i.e., Sleeping, Listening, and LPS. In
this cycle, the target may still be detected by the LPS device
or predicted in the Listening state. In the LPS state the node
detects a target using simple LPS devices. In the Listening

state the node does not perform any sensing itself but it col-
lects information from its neighbors about the target’s presence
and its state in their coverage areas. It then uses this informa-
tion to fuse and predict the arrival of the target in its own
coverage area. The node then transitions from either the LPS
or the Listening state to the HPS state depending on the target
detection or its predicted arrival, respectively.

Fig. 3 illustrates the POSE algorithm in a multitarget track-
ing scenario with N randomly deployed sensor nodes and two
targets traversing through the region �. As seen in the fig-
ure, the sensor nodes form spatio-temporal clusters of HPS
nodes in a distributed manner, within the regions where the
two targets are detected and predicted to be, while the sen-
sor nodes outside of these regions conserve energy by staying
in Sleeping, Listening, and LPS states. The HPS node clusters
broadcast the target state information to alarm all the Listening
nodes in the neighborhood. The Listening nodes then again use
this information received from multiple HPS nodes to predict
the next position of the target, and accordingly transition to the
HPS state during the next time step. In this manner, HPS clus-
ters are formed around the target for tracking accuracy, while
the remaining network conserves the energy. The zoomed in
region in Fig. 3 shows the corresponding PFSAs in action.

IV. POSE ALGORITHM

This section presents the POSE algorithm which uses a
distributed PFSA-based supervisor at each node si ∈ S for
scheduling. The following sections describe the details of the
individual states of the PFSA with the corresponding subalgo-
rithms, and the computation of the state transition probabilities
which govern the switching of states.

A. Sleeping State

The Sleeping state θ1 is designed to minimize energy con-
sumption by disabling all devices on the node when no target
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Fig. 4. Process diagram for the Listening state.

is detected nearby. In the Sleeping state, the sensor node either
stays in the Sleeping state with a probability psi

11(k) = λ or
makes a transition to the Listening state with a probability
psi

12(k) = 1 − λ, where λ is a design parameter that governs
the looping of the node in the Sleeping state. The value of
λ is chosen to be 0.5 based on its effect on network charac-
teristics, which are presented in Section V-A. At the Sleeping
state θ1, the following state transitions are possible: δθ1 =
{(θ1, ε, θ1), (θ1, ε, θ2)}, where ε denotes no observation of the
target.

B. Low Power Sensing State

The LPS state θ3 is designed to conserve energy while
enabling target detection using the LPS device. Only the LPS
device and the DPU are enabled at this state while all com-
munication devices are disabled. From the LPS state the node
can transition to either the HPS state θ4 if a target is detected
or to the Sleeping state θ1 if no target is detected according
to the following probabilities:

psi
34(k) = Psi

d (k) and

psi
31(k) = 1 − Psi

d (k) (12)

where Psi
d (k) is the detection model. This paper, like other

works [15], uses a simple detection model which assumes that
the target is detected if it falls within the sensing radius. A
more realistic model can be incorporated into Psi

d to represent
the real sensor suite and will be studied in our future work. The
model used here is equal to the detection probability α = 0.95
if a target is present within the sensing radius, while it is equal
to the probability of a false alarm [44] Pfa = 1−e−fT if a target
is absent, where f = 10−3 s−1 is the false alarm rate during a
T second scan. Thus, at the LPS state θ3 the following state
transitions are possible: δθ3 = {(θ3, 0, θ1), (θ3, 1, θ4)}, where
the symbol 0 or 1 is emitted for target absence or detection,
respectively.

C. Listening State

The Listening state θ2 is designed to conserve energy while
enabling target prediction without sensing itself. Only the DPU
and the Receiver are enabled at this state while all sensing
devices are disabled. Here the sensor node listens to its neigh-
bors to receive if there is any target information available. The
information received must then be: 1) validated; 2) associated;
and 3) fused together to estimate and initialize the state of the
target. Then, a one-step prediction of the target state is com-
puted to predict the target’s path. If a target is predicted to

arrive in the next time step within the node’s HPS coverage
area, then the state transition probabilities of this state are
updated to favor the transition of the node’s state to the HPS
state for further interrogation. The associated steps are shown
in Fig. 4 and described below.

1) Information Received From Neighbors: Consider a
neighboring sensor node sj ∈ N si and consider that a tar-
get is present within its HPS sensing radius Rs,HPS. If this
node is in the HPS state at time k, then it observes the target
and generates estimates of the target state x̂sj(k|k), its covari-
ance �̂

sj
(k|k), and the filter gain matrix Ŵsj(k) (for details

see Section IV-D). Then, it broadcasts the information packet
(x̂sj(k|k), �̂sj

(k|k), Ŵsj(k)) to its neighbors (assuming a single-
hop network) which are in the Listening state within the com-
munication radius, Rc. Since node si is in the Listening state, it
receives these packets with a probability Psi

r = β, where β =
0.95. A realistic communication model based on channel prop-
erties will be studied in future work. Let N si

R ⊆ N si be the set
of neighbors in the HPS state from which packets are success-
fully received. Then the following information ensembles are
constructed:

Îsi
x (k) = {

x̂sj(k|k), ∀sj ∈ N si
R

}

Îsi
�(k) =

{
�̂

sj
(k|k), ∀sj ∈ N si

R

}

Îsi
W(k) =

{
Ŵsj(k), ∀sj ∈ N si

R

}
. (13)

2) Formation of Trustworthy Sets: Since some of the
received estimates might be poor due to noise and other
factors, it is important to ensure that they are reliable
before using them further. Therefore, the received infor-
mation ensembles Îsi

x (k), Îsi
�(k), and Îsi

W(k), are filtered to
form sets of trustworthy estimates. This allows the node
to determine reliable state estimates, thus reducing false
alarms.

The set of trustworthy neighbors N si
T ⊆ N si

R is obtained by
evaluating the sum of the position error as follows:

N si
T =

{
sj ∈ N si

R : Trace
(

H�̂
sj
(k|k)H′) ≤ ξ

}
(14)

where H is the measurement matrix and ξ is the maximum
tolerance of the estimate. In this paper, ζ = (σx + σy)/2 was
chosen. Next we define the trustworthy sets.

Definition 3 (Trustworthy Sets): Define T̂si
x (k) ⊆ Îsi

x (k),
T̂si

�(k) ⊆ Îsi
�(k), and T̂si

W(k) ⊆ Îsi
W(k) to be the trustworthy

sets of state estimates, covariance estimates, and filter gain
estimates, respectively.
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These trustworthy sets are constructed as follows:

T̂si
x (k) = {

x̂sj(k|k), ∀sj ∈ N si
T

}

T̂si
�(k) =

{
�̂

sj
(k|k), ∀sj ∈ N si

T

}

T̂si
W(k) =

{
Ŵsj(k), ∀sj ∈ N si

T

}
. (15)

Remark 1: The trustworthy sets capture reliable informa-
tion which enables: 1) elimination of faulty state estimates;
2) enhanced fusion of the state estimates; 3) reduced compu-
tational complexity; and 4) reduced false alarms.

3) Track-to-Track (T2T) Association: Since there could be
multiple targets in the ROI which might be passing close
to each other, the trustworthy sets T̂si

x (k), T̂si
�(k), and T̂si

W(k)
formed in the previous section, may contain information
related to different targets. Therefore, the estimates in trust-
worthy sets must be associated to the correct targets and used
to identify the number of targets for improving the state vector
fusion. Since each sensor node in the network uses the same
process noise in the motion model [45], each estimate received
is correlated and the traditional Mahalanobis distance metric
cannot be used. To overcome this, Bar-Shalom [45] proposed
a track association measure using the metric

�2
jh = (

x̂sj(k|k) − x̂sh(k|k))′
[
�̂

sj
(k|k) + �̂

sh
(k|k)

− �̂
sj,sh

(k|k) − �̂
sh,sj

(k|k)
]−1 × (

x̂sj(k|k) − x̂sh(k|k))

(16)

where �2
jh is the association metric between sensors sj and sh

which belong to the set of trustworthy neighbors N si
T ; and(

x̂sj(k|k), �̂
sj
(k|k)) and

(
x̂sh(k|k), �̂

sh
(k|k)) are the state and

covariance estimates for a target at time k, for sensors sj and
sh, respectively. The cross covariance term �̂

sj,sh
(k|k) in (16),

between sensor sj and sh is computed as follows:

�̂
sj,sh

(k|k)
=
[
I − Ŵsj(k) · H

]
F ·�̂sj,sh

(k − 1|k − 1) · F′[I − Ŵsh(k) · H
]′

+
[
I − Ŵsj(k) · H

]
· Q ·

[
I − Ŵsh(k) · H

]′
(17)

where I is an identity matrix, and �̂
si,sj

(k − 1|k − 1) is the
previous cross covariance between sensors sj and sh.

To implement T2T Association, the sensor node si forms
groups by associating the estimates received from its trust-
worthy neighbors using the χ2-Test [45]. This is done in a
manner such that any two sensors, say sj and sh, within a
group, must satisfy �2

jh ≤ χ2
m(γ ), where m is the number of

measurements and γ = 0.05 is the level of significance.
Thus each sensor from the set of trustworthy neighbors is

assigned to one of the groups N si,c
T , c = 1, 2, . . . , C, such that

C⋃

c=1

N si,c
T = N si

T (18)

and the intersection between any two groups is empty. Note
that C may not be necessarily equal to the total number of
targets L in the ROI. This is because not all targets may have
been observed by the same group of sensors.

The corresponding estimates in trustworthy sets
T̂si

x (k), T̂si
�(k), and T̂si

W(k) are grouped as follows:

T̂si,c
x (k) = {

x̂sj(k|k), ∀sj ∈ N si,c
T

}
, ∀c = 1, . . . , C

T̂si,c
� (k) =

{
�̂

sj
(k|k), ∀sj ∈ N si,c

T

}
, ∀c = 1, . . . , C

T̂si,c
W (k) =

{
Ŵsj(k), ∀sj ∈ N si,c

T

}
, ∀c = 1, . . . , C. (19)

This procedure is an important step for each node since
it needs to develop a reliable state estimate correspond-
ing to every target that is believed to be in its neighbor-
hood. If the node were to bypass association, the fused
state estimate could be inaccurate leading to poor control
strategies.

4) Track-to-Track Fusion: Once the information received
from neighbors is filtered and associated to form C trustwor-
thy groups, T̂si,c

x (k), T̂si,c
� (k), and T̂si,c

W (k), ∀c = 1, 2, . . . , C,
the next step is fusion of information within each group sepa-
rately to generate a total of C target state estimates. This paper
utilizes the T2T Fusion algorithm [46] for this purpose which
combines multiple state estimates into a single estimate.

For fusion, the following procedure is performed. For each
group c = 1, 2, . . . , C, the cross covariance matrix �̃

si,c
(k)

between all sj, sh ∈ N si,c
T is constructed as follows:

�̃
si,c

(k) =

⎡

⎢⎢⎣

...
...

...

· · · �̂
sj,sh

(k|k) · · ·
...

...
...

⎤

⎥⎥⎦ (20)

where �̂
sj,sh

(k|k) is given as

�̂
sj,sh

(k|k) =
{

�̂
sj
(k|k) if sj = sh

�̂
sj,sh

(k|k) otherwise.
(21)

Then, the node si computes the fused covariance matrix and
state vector from its trustworthy associated groups as follows:

�̂
si,c

(k|k) =
(

Ĩ
(
�̃

si,c
(k)
)−1̃

I′)−1
(22)

x̂si,c(k|k) = �̂
si,c

(k|k)̃I(�̃si,c
(k)
)−1

⎡

⎢⎢⎣

...

x̂sj(k|k)
...

⎤

⎥⎥⎦ (23)

where Ĩ = [
I . . . I

]
consists of |N si,c

T | n × n identity matrices
and x̂sj(k|k) ∈ T̂si,c

x (k). In this manner single estimates are
produced for each associated group in the trustworthy set.

5) One-Step Prediction: The next step in the Listening state
algorithm is to predict the states of all expected targets during
the next time step. This allows the sensor node to construct a
belief of each expected target’s trajectory and update the state
transition probabilities of the PFSA for opportunistic sensing.
Thus for each expected target c = 1, 2, . . . , C, the one-step
predictions of its state and covariance are computed.

For the KF estimator, these are obtained as

x̂si,c(k + 1|k) = Fx̂si,c(k|k)
�̂

si,c
(k + 1|k) = F�̂

si,c
(k|k)F′ + Q (24)
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Fig. 5. Computation of the transition probability, Psi
HPS(k).

while for the EKF estimator they are obtained as

x̂si,c(k + 1|k) = F(k)x̂si,c(k|k)
�̂

si,c
(k + 1|k) = fx(k)�̂

si,c
(k|k)fx(k)

′ + Q (25)

where the corresponding F and Q are used for the KF and the
EKF, respectively; and fx(k) = [ �x F(k)′]′|x=x̂si,c(k|k). For the
IMM, the model that produces the maximum likelihood, �

si,c
0j

(described in the supplementary material), is used to compute
the one-step prediction as described above.

These predictions made by the sensor node si in the
Listening state are then used to determine whether or not to
enable its HPS device, as described below.

6) Updating the State Transition Probabilities: Once the
one-step predictions are obtained for the C tracks, the sensor
node si computes the probability of a target traveling through
its HPS coverage region at time k, which is given as

	si,c(k) =
∫ ∫

D
N
(

ẑsi,c(k|k), �̂si,c
z (k|k)

)
dxdy (26)

where D = {x, y|(x − xsi)2 + (y − ysi)2 ≤ Rs,HPS}, ẑsi,c(k|k) =
Hx̂si,c(k|k) and �̂

si,c
z (k|k) = H�̂

si,c
(k|k)H′. Next it computes

the probability that a target is present within its sensing radius
(or will travel there at time k + 1) as follows:

Psi
HPS(k) = max

c

(
ζ	si,c(k) + (1 − ζ )	si,c(k + 1)

)
(27)

where the weight ζ ∈ [0, 1]. Preferably more weight is given
to the predicted position of the target, s.t. ζ < 0.5, to allow the
sensor node to prepare and activate its HPS device opportunis-
tically for energy-efficient target tracking. A visual illustration
of this is shown in Fig. 5.

Finally, the PFSA on node si which is in the Listening
state utilizes Psi

HPS(k) to update its state transition probabil-
ities. From the Listening state, it may transition to either the
LPS or HPS states with the following probabilities:

psi
23(k) = 1 − Psi

HPS(k) and

psi
24(k) = Psi

HPS(k). (28)

Thus, at the Listening state θ2 the following state transitions
are possible: δθ2 = {(θ2, 0, θ3), (θ2, 1, θ4)}, where the symbol
0 or 1 is emitted for target’s predicted absence or detection
within the HPS sensing radius, respectively.

D. High Power Sensing State

The HPS state θ4 is designed to estimate target’s state
and track it when it is within its sensing radius Rs,HPS. Here
the HPS device, DPU, and transmitter are enabled and all
other devices are disabled. At this state, the node broad-
casts the target’s state x̂si(k|k), covariance �̂

si
(k|k), and filter

gain matrix Ŵsi(k) to the other nodes within its neighbor-
hood. Since this state consumes the most energy, it should be
enabled only when the target’s current or predicted position is
within its sensing radius. Fig. 6 shows the steps of the HPS
state.

The node can come to the HPS state from either the LPS
or the Listening state. If it has come from the LPS state, then
it must have detected a target, but has not initialized the tar-
get’s state and covariance, thus requiring state initialization. In
contrast if it has come from the Listening state, then it must
have fused received estimates and concluded that a target is
traveling or will be traveling through its sensing radius during
the next time step. Here it has already initialized estimates
of C target tracks; therefore, it uses each of these C tracks
to estimate the targets’ next state using C parallel estima-
tors. The track that produces the maximum likelihood is used
throughout the rest of the estimation process. First we describe
the state initialization process when it comes from the LPS
state.

1) State Initialization: In this paper, state initialization is
achieved using the two-point differencing method [42] which
is described in the supplementary material.

2) State Estimation: Next the sensor node performs state
estimation to continue tracking the target. As discussed ear-
lier, the three different state estimation algorithms consid-
ered in this paper include the KF, the EKF, and the IMM
filter [42].

Now consider that it has come from the Listening state, so it
already has C track estimates x̂si,c(k−1|k−1), �̂

si,c
(k−1|k−

1), and Wsi,c(k), c = 1, 2, . . . , C. Then using the KF or the
EKF algorithm, the sensor node si first detects the target and
receives a new measurement zsi(k). Then, for each existing
track the following updates are computed:

Wsi,c(k) = �̂
si,c

(k|k − 1)H′(Ssi,c(k)
)−1 (29)

x̂si,c(k|k) = x̂si,c(k|k − 1) + Wsi,c(k)vsi,c(k) (30)

�̂
si,c

(k|k) = �̂
si,c

(k|k − 1) − Wsi,c(k)vsi,c(k)Wsi,c(k)′ (31)

where vsi,c(k) and Ssi,c(k) are the innovation and innova-
tion covariance (see the supplementary material). Next, the
sensor node must associate the measurement zsi(k) with the
target c ∈ C. This is done by selecting the target track ĉ that
maximizes the likelihood of the estimator as follows:

ć = argmax
c

{
|2πSsi,c(k)| 1

2 exp

{
−vsi,c(k)′(Ssi,c(k))−1vsi,c(k)

2

}}
.

(32)

Then the updated estimates produced by the sensor node are

x̂si,ć(k|k), �̂
si,ć

(k|k), and Ŵsi,ć(k). These estimates are then
broadcasted to the neighbors.
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Fig. 6. Process diagram of the HPS state.

When using the IMM filter, both KF and EKF estimators
are run in parallel. The IMM gives priority to the model that
closely matches the target’s trajectory, i.e., uses the EKF when
the target is turning or the KF when the target is traveling in a
straight line. Similar to the KF and EKF described above, each
x̂si,c(k −1|k −1) and �̂

si,c
(k −1|k −1) are passed through the

IMM and the resulting estimates are associated with the mea-
surement zsi(k). The IMM filter computes the state estimate,
covariance, and filter gain as follows:

x̂si,c(k|k) =
2∑

j=1

x̂si,c
0j (k|k)μsi,c

j (k) (33)

�̂
si,c

(k|k) =
2∑

j=1

μ
si,c
j (k)

{
�̂

si,c
0j (k|k) +

[
x̂si,c

0j (k|k) − x̂si,c(k|k)
]

×
[
x̂si,c

0j (k|k) − x̂si,c(k|k)
]′}

(34)

Wsi,c(k) = �̂
si,c

(k|k)H′R−1 (35)

where x̂si,c
0j (k|k) is the mixed updated state estimate, μ

si,c
j (k) is

mode probability, and �̂
si,c
0j (k|k) is the mixed updated covari-

ance estimate for model j, j = 1, 2; i.e., KF or EKF. Details
are provided in the supplementary material.

After all C state and covariance estimates are updated, the
track ć is selected as

ć = argmax
c

2∑

j=1

�
si,c
0j (k) (36)

where �
si,c
0j (k) is the likelihood function corresponding

to model j which is described in the supplementary
material.

3) One Step Prediction and Probability Update: Once the
state estimation process is completed, the estimates are broad-
casted to the neighbors to alert them of the targets’ presence.
Then, a one-step prediction is computed as described in
Section IV-C5 and the state transition probabilities are updated
as in Section IV-C6 and result in the following:

psi
42(k) = 1 − Psi

HPS(k) and

psi
44(k) = Psi

HPS(k). (37)

Thus, at the HPS state θ4 the following state transitions are
possible: δθ4 = {(θ4, 0, θ2), (θ4, 1, θ4)}, where the symbol 0 or
1 is emitted for target’s predicted absence or detection within
the HPS sensing radius, respectively.

E. Characteristics of Random Scheduling Network

For comparison with the POSE algorithm, the characteristics
of a network implemented with a random scheduling scheme
are obtained using the following result.

The lower bound on sensor density ρ needed to obtain the
probability of missed detections Pm is given as

ρ ≥ − ln(Pm)

πR2
s α(1 − Psleep)

(38)

where Psleep is the sleeping probability for each node and α

is the probability of detection for an individual sensor.
The above result is derived as follows. The probability that

an individual sensor sampled from the ROI � with an area A�

detects the target, i.e., the hit probability, is represented by a
spatial Poisson process given as [44]

p = Pr
{
Dsi = 1|target in �

} = 1 − e−αφ (39)

where Dsi = 1 if there is a detection and 0 otherwise, and φ =
(πR2

s /A�) is the probability that the sampled sensor lies within
a distance of sensing radius Rs from the target when sensor
nodes are uniformly distributed. Now let N′ = N(1−Psleep) =
ρA�(1 − Psleep) be the number of sensors that are sensing
the target. Since each sensor is statistically independent and
identical, the probability of exactly k sensor detections is given
by repeated Bernoulli trials as follows [44]:

Pr
{∑

Di = k
}

=
(

N′

k

)
pk(1 − p)N′−k. (40)

The probability of missed detections Pm, is given as

Pm = Pr
{∑

Di = 0
}

=
(

N′

0

)
p0(1 − p)N′ = e−αφN′

. (41)

Hence, the result follows by taking ln on both sides.
This result could be used to generate the characteristic plots

of Pm versus ρ and Psleep. The results section compares these
characteristics with those of the POSE network.

V. RESULTS AND DISCUSSION

This section presents the results and discussion of vali-
dation of the POSE algorithm on an ROI �, which is a
100 × 100 m2 environment. First the POSE network charac-
teristics are evaluated and then the algorithm is validated by
thorough Monte Carlo simulation runs in MATLAB of dif-
ferent scenarios which consist of multiple targets trespassing
through the ROI. The sensor node considered in the simula-
tions consists of a Pandaboard DPU [47], a Xbee TX/RX with
a communication radius Rc = 30 m [48], a Hokuyo UTM-
30LX scanning Laser sensor as the HPS device with a sensing
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(a) (b)

(c) (d)

Fig. 7. Comparison of the POSE and random scheduling networks in terms of performance and energy savings. (a) Target trajectories for generating network
characteristics. (b) Percentage energy savings of the POSE network. (c) Characteristic curves of the random scheduling network. (d) Characteristic curves of
the POSE network.

TABLE II
SENSOR NODE ENERGY MODEL WEIGHTS

radius as Rs,HPS = 10 m [49], and six parallax PIR sensors as
the LPS device with a sensing radius of Rs,LPS = 10 m [50].
The energy consumption of each device is given in Table II.

A. Characteristics of POSE Network Versus
Random Scheduling

First, we obtain the characteristics of a network with a ran-
dom scheduling scheme using the result shown above and vali-
date them by Monte Carlo simulations. The random scheduling
scheme has each sensor node randomly switch between sleep-
ing and sensing states with a probability Psleep > 0, while the
all on scheme [51] has Psleep = 0. For simulation runs, the
sensor density ρ was varied and for each ρ the nodes were
distributed according to a uniform distribution in �. Then,
four target trajectories were passed through �, as shown in

Fig. 7(a). For each target trajectory, 300 Monte Carlo runs
were simulated where the sensor node deployment was redis-
tributed during each run. Then Pm was obtained for different
Psleep values and plotted. Fig. 7(c) shows the characteristic
curves of Pm versus sensor density ρ for different Psleep val-
ues. As expected Pm decreases as ρ increases and increases as
Psleep increases. Fig. 7(c) also shows that the theoretical and
simulated results match closely, thus validating (38).

Subsequently, the POSE network characteristics were
obtained in a similar fashion for the same ROI, sensor node
densities, and target trajectories [as shown in Fig. 7(a)] as
the random scheduling network. Fig. 7(d) shows the charac-
teristic curves of Pm versus sensor density ρ for different λ

values, where λ is the loop probability on the Sleeping state
of the PFSA. As seen from Fig. 7(c) and (d), the character-
istic curves for most of the λ values (say 0 ≤ λ ≤ 0.5) of
the POSE network are between Psleep = 0 and Psleep = 0.2;
thus are close to the all on scheme. However, they do not go
below the all on scheme which is obvious. The performance
of the POSE network approaches the all on scheme as the
node density increases. As also seen, the POSE network beats
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Fig. 8. Simulation scenarios as targets traverse through �. All sensor nodes away from the target are in the low power consuming states while the nodes
around the targets are in the HPS state allowing for opportunistic sensing.

the performance of most of the random scheduling schemes
with Psleep > 0.2.

While achieving a performance close to that of the all on
scheme, the POSE network results in significant energy sav-
ings, since only a small fraction of HPS nodes are enabled
during each time step around the target. Let Enet,∗ denote the
total energy consumption of a sensor network provided in (2),
where the ∗ represents POSE and random scheduling, respec-
tively. Then the percent energy savings of the POSE network
compared to the random scheduling network is defined
as %EnergySavings = 1 − (Enet,POSE(λ)/Enet,RAND(Psleep))

where the total energy consumption of each scheduling algo-
rithm were computed for a given λ and Psleep value, respec-
tively. Fig. 7(b) highlights the significant energy savings which
increase as λ increases. Thus the following tradeoff exists: for
energy savings the value of λ should be large, while for reduc-
ing the Pm, the value of λ should be small. Based the results
in plots of Fig. 7(b) and (d), a value of λ = 0.5 is selected
and the sensor node density of ρ = 0.02 is chosen for further
validation studies to achieve a Pm < 0.02.

To further validate the POSE network performance, the
probability of missed detection was simulated for various val-
ues of α to show the effects of the detection model. The results
obtained are included in the supplementary material.

B. POSE Network Validation

The tracking performance of the POSE algorithm is val-
idated on three scenarios that consist of different targets
traveling through �, as shown in Fig. 8. For each scenario,
300 Monte Carlo runs are simulated with a sensor node density
ρ = 0.02. For each scenario, the sampling time is assumed
to be T = 1 s and the state estimation algorithms KF, EKF,
and IMM, are implemented. The measurement noise for each
model is assumed to be σx = σy = 1 mm and was taken
from the Hokuyo UTM-30LX datasheet. The process noise
for the KF and EKF are assumed to be σv = 0.03 m and
σφ = 0.2 degrees/sec, to minimize the estimation error of the
targets for accurate predictions. For the IMM, the same values
of process noise are implemented for their respective models.

As seen in Fig. 8, scenario 1 has a single target traveling
with a velocity of 1.4 m/s though the ROI with an “S” shaped

trajectory while scenario 2 has two targets traveling with a
velocity of 2 m/s following a curved trajectory. The third
scenario incorporates three targets traveling with velocities
between 2.8 and 3.2 m/s with crossing trajectories.

The tracking accuracy is compared with the all on scheme,
to validate that the POSE algorithm obtains the same tracking
accuracy while saving energy by switching states. Thus the
root mean squared error (RMSE) of the position and velocity
of the targets is computed at each time step as

RMSEτl(k) =
√√√√ 1

300

300∑

mc=1

MSEsi,τl
mc (k)

where mc represents the Monte Carlo run, MSEsi,τl
mc (k) =

(1/N′′)
∑N′′

j=1(x
τl
mc(k) − x̂si,τl

mc (k))2, and N′′ is the number of
sensors during Monte Carlo run mc that estimated target τl.

The RMSE for each target scenario is shown in Fig. 9. These
figures show the results of the three state estimation algorithms
for each targets position and velocity estimate for POSE and
the all on network. It can be seen that the POSE algorithm
results in a smaller tracking error then the all on network
for each state estimation algorithm. This can be attributed
to the accurate state initialization achieved in the Listening
state via fusion. Thus, the POSE algorithm is able to track
multiple targets traveling through the ROI better than the all
on network that is always monitoring due to the fusion-driven
state initialization of the Listening state, while saving tremen-
dous amounts of energy. This result also shows the benefits of
each state estimation algorithm for different target trajectories.
The POSE-KF produces the smallest tracking error when the
targets are traveling in a straight line, while the POSE-EKF
is the smallest during the turning conditions. By incorporat-
ing both of these models into the IMM, the overall estimation
error in the linear and nonlinear trajectories is minimized by
switching between these models.

For each scenario, the average energy consumption per sen-
sor node is computed. The energy savings as compared to the
random schemes are shown in Fig. 10. It is observed that as
the number of targets increases the percentage energy savings
decreases since more nodes are enabled in the POSE network
around each of those targets.
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Fig. 9. RMSE results for the POSE and always monitoring scheduling schemes.

Fig. 10. Percentage energy savings per sensor node.

C. Computational Complexity Analysis

The complexity of the POSE algorithm mainly arises in the
HPS and Listening states of the PFSA. The HPS states com-
plexity is dominated by the state estimation process. For that
process, the primary computation is the inverse of the covari-
ance matrix [52], which is of the order of O(n3), where n is the
number of state variables (n = 5 in our examples). Similarly,
the Listening state’s complexity is dominated by the track-
to-track fusion step, which is of the order of O((n · |Nsi

T |)3),

TABLE III
COMPUTATION TIMES IN LISTENING AND HPS STATES

where |Nsi
T | is the number of trustworthy neighbors. Further,

the computational complexity was analyzed by measuring the
average times taken in each of the above states and the results
are shown in Table III. Due to the computational require-
ments of the HPS device (e.g., laser), the proposed method
may require computationally powerful nodes. However, many
cheap and powerful DPUs are becoming widely available (e.g.,
ODROID [53]) making these multimodal sensor nodes very
practical. In this paper, the POSE algorithm was simulated in
the MATLAB environment on an i5 3.1-GHz CPU computer.
Our future work aims to implement this algorithm on an actual
sensor node (e.g., with a Pandaboard or an ODROID processor,
which have ∼1.2-GHz and ∼1.5-GHz speeds, respectively).

VI. CONCLUSION

This paper presented a novel distributed supervisory con-
trol algorithm, called POSE, that facilitates node-level energy
management, for minimizing energy usage in target-tracking
applications of DSNs. Each sensor node is governed by a
supervisor, which is a PFSA, which dynamically adapts its
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transition probabilities and switches states to control the com-
munication and sensing devices on the node based on the
target’s information. Simulation results for various scenar-
ios show that the network can opportunistically adapt to
targets’ trajectories, minimize missed detection rates, and sig-
nificantly reduce the energy consumption as compared to
random scheduling schemes while ensuring accurate target
state estimation.

Future work is envisioned in the following areas. First,
alternative methods of data association and fusion would be
explored to further improve the computational complexity
for more energy savings. Second, the methodology would
be extended to 3-D environments for real life applications.
Finally, the method would be experimentally validated on a
physical sensor network in laboratory and outdoor settings.

REFERENCES

[1] R. A. Best, Jr., Intelligence, Surveillance, and Reconnaissance (ISR)
Programs: Issues for Congress, document ADA447906, DTIC, Fort
Belvoir, VA, USA, 2005.

[2] K. Mukherjee, S. Gupta, A. Ray, and T. A. Wettergren, “Statistical-
mechanics-inspired optimization of sensor field configuration for detec-
tion of mobile targets,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 41, no. 3, pp. 783–791, Jun. 2011.

[3] S. Zhu, C. Chen, W. Li, B. Yang, and X. Guan, “Distributed optimal
consensus filter for target tracking in heterogeneous sensor networks,”
IEEE Trans. Cybern., vol. 43, no. 6, pp. 1963–1976, Dec. 2013.

[4] H. Mahboubi, W. Masoudimansour, A. G. Aghdam, and
K. Sayrafian-Pour, “An energy-efficient target-tracking strategy
for mobile sensor networks,” IEEE Trans. Cybern., vol. 47, no. 2,
pp. 511–523, Feb. 2017.

[5] G. Werner-Allen et al., “Deploying a wireless sensor network on an
active volcano,” IEEE Internet Comput., vol. 10, no. 2, pp. 18–25,
Mar./Apr. 2006.

[6] H. Lee, J. S. Choi, and R. Elmasri, “A static evidential network for
context reasoning in home-based care,” IEEE Trans. Syst., Man, Cybern.
A, Syst., Humans, vol. 40, no. 6, pp. 1232–1243, Nov. 2010.

[7] S. Gupta, D. S. Singh, and A. Ray, “Statistical pattern analysis of ultra-
sonic signals for fatigue damage detection in mechanical structures,”
NDT E Int., vol. 41, no. 7, pp. 491–500, 2008.

[8] H. E. Garcia, W.-C. Lin, S. M. Meerkov, and M. T. Ravichandran,
“Resilient monitoring systems: Architecture, design, and applica-
tion to boiler/turbine plant,” IEEE Trans. Cybern., vol. 44, no. 11,
pp. 2010–2023, Nov. 2014.

[9] N. Najjar, S. Gupta, J. Hare, S. Kandil, and R. Walthall, “Optimal sensor
selection and fusion for heat exchanger fouling diagnosis in aerospace
systems,” IEEE Sensors J., vol. 16, no. 12, pp. 4866–4881, Jun. 2016.

[10] X. Jin, S. Sarkar, A. Ray, S. Gupta, and T. Damarla, “Target detec-
tion and classification using seismic and PIR sensors,” IEEE Sensors J.,
vol. 12, no. 6, pp. 1709–1718, Jun. 2012.

[11] J. Hare, S. Gupta, and J. Wilson, “Decentralized smart sensor scheduling
for multiple target tracking for border surveillance,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), Seattle, WA, USA, 2015, pp. 3265–3270.

[12] T. Semertzidis, K. Dimitropoulos, A. Koutsia, and N. Grammalidis,
“Video sensor network for real-time traffic monitoring and surveillance,”
IET Intell. Transp. Syst., vol. 4, no. 2, pp. 103–112, Jun. 2010.

[13] A. El Kateeb, “Mote design supported with remote hardware modifica-
tions capability for wireless sensor network applications,” Int. J. Adv.
Smart Sensor Netw. Syst., vol. 3, no. 3, pp. 13–21, Jul. 2013.

[14] C. Liu, K. Wu, Y. Xiao, and B. Sun, “Random coverage with guaran-
teed connectivity: Joint scheduling for wireless sensor networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 17, no. 6, pp. 562–575, Jun. 2006.

[15] J. Lin, W. Xiao, F. L. Lewis, and L. Xie, “Energy-efficient distributed
adaptive multisensor scheduling for target tracking in wireless sensor
networks,” IEEE Trans. Instrum. Meas., vol. 58, no. 6, pp. 1886–1896,
Jun. 2009.

[16] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management
in energy harvesting sensor networks,” ACM Trans. Embedded Comput.
Syst., vol. 6, no. 4, p. 32, 2007.

[17] M. C. Ranasingha, M. N. Murthi, K. Premaratne, and X. Fan,
“Transmission rate allocation in multisensor target tracking over a shared
network,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 39, no. 2,
pp. 348–362, Apr. 2009.

[18] J. Liu, M. Chu, and J. E. Reich, “Multitarget tracking in distributed
sensor networks,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 36–46,
May 2007.

[19] X. Luo, M. Dong, and Y. Huang, “On distributed fault-tolerant detec-
tion in wireless sensor networks,” IEEE Trans. Comput., vol. 55, no. 1,
pp. 58–70, Jan. 2006.

[20] J. Hare, S. Gupta, and J. Song, “Distributed smart sensor scheduling for
underwater target tracking,” in Proc. Oceans, 2014, pp. 1–6.

[21] X. Liu, “A deployment strategy for multiple types of requirements
in wireless sensor networks,” IEEE Trans. Cybern., vol. 45, no. 10,
pp. 2364–2376, Oct. 2015.

[22] C.-P. Chen et al., “A hybrid memetic framework for coverage optimiza-
tion in wireless sensor networks,” IEEE Trans. Cybern., vol. 45, no. 10,
pp. 2309–2322, Oct. 2015.

[23] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Grid coverage for
surveillance and target location in distributed sensor networks,” IEEE
Trans. Comput., vol. 51, no. 12, pp. 1448–1453, Dec. 2002.

[24] Y. Song, B. Wang, Z. Shi, K. R. Pattipati, and S. Gupta, “Distributed
algorithms for energy-efficient even self-deployment in mobile sensor
networks,” IEEE Trans. Mobile Comput., vol. 13, no. 5, pp. 1035–1047,
May 2014.

[25] H. M. Ammari and S. Das, “A study of k-coverage and measures of
connectivity in 3D wireless sensor networks,” IEEE Trans. Comput.,
vol. 59, no. 2, pp. 243–257, Feb. 2010.

[26] W. Xiao, S. Zhang, J. Lin, and C. K. Tham, “Energy-efficient adap-
tive sensor scheduling for target tracking in wireless sensor networks,”
J. Control Theory Appl., vol. 8, no. 1, pp. 86–92, 2010.

[27] Y. Liu, B. Xu, and L. Feng, “Energy-balanced multiple-sensor collab-
orative scheduling for maneuvering target tracking in wireless sensor
networks,” J. Control Theory Appl., vol. 9, no. 1, pp. 58–65, 2011.

[28] Y. Li, L. W. Krakow, E. K. P. Chong, and K. N. Groom, “Approximate
stochastic dynamic programming for sensor scheduling to track multiple
targets,” Digit. Signal Process., vol. 19, no. 6, pp. 978–989, 2009.

[29] E. Masazade, M. Fardad, and P. K. Varshney, “Sparsity-promoting
extended Kalman filtering for target tracking in wireless sensor
networks,” IEEE Signal Process. Lett., vol. 19, no. 12, pp. 845–848,
Dec. 2012.

[30] X. Shen and P. K. Varshney, “Sensor selection based on generalized
information gain for target tracking in large sensor networks,” IEEE
Trans. Signal Process., vol. 62, no. 2, pp. 363–375, Jan. 2014.

[31] Y.-C. Chen and C.-Y. Wen, “Decentralized cooperative TOA/AOA target
tracking for hierarchical wireless sensor networks,” Sensors, vol. 12,
no. 11, pp. 15308–15337, 2012.

[32] A. C. Voulkidis and P. G. Cottis, “Optimal node allocation in
multiservice WSNs based on correlated strategy,” IEEE Trans. Wireless
Commun., vol. 15, no. 6, pp. 4196–4205, Jun. 2016.

[33] S. Aeron, V. Saligrama, and D. A. Castanon, “Efficient sensor man-
agement policies for distributed target tracking in multihop sensor
networks,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2562–2574,
Jun. 2008.

[34] O. Younis, M. Krunz, and S. Ramasubramanian, “Node clustering
in wireless sensor networks: Recent developments and deployment
challenges,” IEEE Netw., vol. 20, no. 3, pp. 20–25, May/Jun. 2006.

[35] A. A. Abbasi and M. Younis, “A survey on clustering algorithms for
wireless sensor networks,” Comput. Commun., vol. 30, nos. 14–15,
pp. 2826–2841, 2007.

[36] W.-P. Chen, J. C. Hou, and L. Sha, “Dynamic clustering for acoustic tar-
get tracking in wireless sensor networks,” IEEE Trans. Mobile Comput.,
vol. 3, no. 3, pp. 258–271, Jul./Aug. 2004.

[37] O. Younis and S. Fahmy, “HEED: A hybrid, energy-efficient, distributed
clustering approach for ad hoc sensor networks,” IEEE Trans. Mobile
Comput., vol. 3, no. 4, pp. 366–379, Oct./Dec. 2004.

[38] E. Cayirci, H. Tezcan, Y. Dogan, and V. Coskun, “Wireless sensor
networks for underwater surveillance systems,” Ad Hoc Netw., vol. 4,
no. 4, pp. 431–446, 2006.

[39] J. Li, Q.-S. Jia, X. Guan, and X. Chen, “Tracking a moving object via
a sensor network with a partial information broadcasting scheme,” Inf.
Sci., vol. 181, no. 20, pp. 4733–4753, 2011.

[40] C. Feng, L. Yang, and J. W. Rozenblit, “Adaptive tracking in energy
sensitive distributed wireless sensor networks,” Ad Hoc Sensor Wireless
Netw., vol. 12, nos. 1–2, pp. 55–77, 2011.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CYBERNETICS

[41] J. Chen, K. Cao, K. Li, and Y. Sun, “Distributed sensor activation algo-
rithm for target tracking with binary sensor networks,” Cluster Comput.,
vol. 14, no. 1, pp. 55–64, 2011.

[42] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation With
Applications to Tracking and Navigation: Theory Algorithms and
Software. New York, NY, USA: Wiley, 2004.

[43] E. Vidal, F. Thollard, C. De La Higuera, F. Casacuberta, and
R. C. Carrasco, “Probabilistic finite-state machines—Part I,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 27, no. 7, pp. 1013–1025,
Jul. 2005.

[44] T. A. Wettergren, “Performance of search via track-before-detect for dis-
tributed sensor networks,” IEEE Trans. Aerosp. Electron. Syst., vol. 44,
no. 1, pp. 314–325, Jan. 2008.

[45] Y. Bar-Shalom, “On the track-to-track correlation problem,” IEEE Trans.
Autom. Control, vol. AC-26, no. 2, pp. 571–572, Apr. 1981.

[46] Y. Bar-Shalom, X. Tian, and P. K. Willett, Tracking and Data Fusion:
A Handbook of Algorithms. Storrs, CT, USA: YBS, 2011.

[47] PandaBoard. Accessed on Jul. 20, 2017. [Online]. Available:
https://www.cs.utexas.edu/∼simon/378/resources/PandaBoardES.pdf

[48] XBee Transceiver. Accessed on Jul. 20, 2017. [Online]. Available:
https://www.sparkfun.com

[49] Hokuyo UTM-30lx Laser. Accessed on Jul. 20, 2017. [Online].
Available: https://www.hokuyo-aut.jp/

[50] Parallax PIR Sensor. Accessed on Jul. 20, 2017. [Online]. Available:
https://www.parallax.com

[51] S. Pattem, S. Poduri, and B. Krishnamachari, “Energy-quality trade-
offs for target tracking in wireless sensor networks,” in Information
Processing in Sensor Networks. Berlin, Germany: Springer, 2003,
pp. 32–46.

[52] F. Daum, “Nonlinear filters: Beyond the Kalman filter,” IEEE Trans.
Aerosp. Electron. Syst. Mag., vol. 20, no. 8, pp. 57–69, Aug. 2005.

[53] Odroid. Accessed on Jul. 20, 2017. [Online]. Available:
http://www.hardkernel.com/main/main.php

James Z. Hare received the M.S. degree in electri-
cal engineering from the University of Connecticut,
Storrs, CT, USA, in 2016, where he is currently
pursuing the Ph.D. degree with the Department of
Electrical and Computer Engineering.

His current research interests include decision
making and control in distributed sensor networks,
intelligent network control systems, data analysis in
complex-networked systems, and fault detection and
diagnosis.

Shalabh Gupta (M’07) received the B.E. degree
in mechanical engineering from the Indian Institute
of Technology Roorkee, Roorkee, India, in 2001,
and the M.S. degrees in mechanical engineering
and electrical engineering and the Ph.D. degree
in mechanical engineering from Pennsylvania State
University, University Park, State College, PA, USA,
in 2004, 2005, and 2006, respectively.

He is currently an Assistant Professor with the
Department of Electrical and Computer Engineering,
University of Connecticut, Storrs, CT, USA. His cur-

rent research interests include distributed autonomy, cyber-physical systems,
robotics, network intelligence, data analytics, information fusion, and fault
diagnosis in complex systems.

Dr. Gupta is a member of the American Society of Mechanical Engineers.

Thomas A. Wettergren (SM’06) received the B.S.
degree in electrical engineering and the Ph.D. degree
in applied mathematics from Rensselaer Polytechnic
Institute, Troy, NY, USA.

He is with Naval Undersea Warfare Center,
Newport, RI, USA, where he currently serves as the
U.S. Navy Senior Technologist for Operational and
Information Science. He is also an Adjunct Professor
of mechanical engineering with Pennsylvania State
University, University Park, State College, PA, USA.
His current research interests include development of

new analytical and computational methods for the mathematical modeling and
control of multiagent undersea sensing systems.

Dr. Wettergren was a recipient of the NAVSEA Scientist of the Year, the
Assistant Secretary of the Navy Top Scientist of the Year, and the IEEE-USA
Harry Diamond Awards. He is a member of SIAM.

https://www.cs.utexas.edu/~simon/378/resources/PandaBoardES.pdf
https://www.sparkfun.com
https://www.hokuyo-aut.jp/
https://www.parallax.com
http://www.hardkernel.com/main/main.php

