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Abstract— Heat exchangers are critical components of the envi-
ronmental control system (ECS) of an aircraft. The ECS regulates
temperature, pressure, and humidity of the cabin air. Fouling of
the heat exchangers in an ECS may occur due to the deposition
of external substances (e.g., debris) on the fins that obstruct
the air flow, which increases the pressure drop across the heat
exchanger and degrades its efficiency. Fouling is a critical issue,
because it necessitates time consuming, periodic, and expensive
maintenance. In this regard, this paper presents a two step
process for fouling diagnosis of the heat exchanger: 1) optimal
sensor set selection that contains the most relevant information
for fault classification and 2) robust data analysis and sensor
fusion in the presence of various uncertainties for the inference of
fouling severity via different machine learning tools. This process
of heat exchanger fouling diagnosis is implemented and tested on
the data generated from an experimentally validated high-fidelity
Simulink model of the ECS provided by an industry partner.

Index Terms— Heat exchanger fouling, optimal sensor
selection, environmental control system, minimum redundancy
maximum relevance (mRMR), fault diagnosis.

I. INTRODUCTION

HEAT exchangers are critical components of the
Environmental Control System (ECS) of an aircraft. The

ECS regulates temperature, pressure and humidity of the cabin
air [1]. Typically, several plate fin heat exchangers are used
in an ECS, which consist of plates and fins stacked over each
other and brazed together. Plate fin heat exchangers are used in
this application because of their compact design, light weight
and high efficiency. Often, physical objects (e.g., debris) accu-
mulate on the fins of the heat exchanger due to particulates and
other contaminants present in the air stream. This phenomenon
is known as fouling which obstructs the flow of the cooling
medium through the heat exchanger and hence degrades its
efficiency. Fouling [2] is a critical issue because in absence of
a reliable fouling diagnosis methodology, it necessitates time
consuming, periodic and expensive maintenance [3]. As such,
early fouling diagnosis is of utmost importance to facilitate
Condition Based Maintenance (CBM), i.e., to clean the heat
exchanger only when necessary.
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Fig. 1. System diagram of the environmental control system (ECS). Note:
Not all sensors are shown in the figure.

The ECS is a complex system consisting of various com-
ponents such as the primary and secondary heat exchangers,
turbines, compressor, condenser, and water extractor [4]. These
components are interconnected through various mechanical
and pneumatic connections, as shown schematically in Fig. 1.
In addition, various sensing devices such as temperature,
pressure and flow sensors are mounted at different locations
in the ECS. Due to interdependence of this complex system,
fouling of a heat exchanger may influence conditions in other
locations in the ECS. As a result, its effects might be observed
in the readings of various sensors throughout the system.

In this regard, there are three critical issues that need to
be addressed for heat exchanger fouling diagnosis. First, in a
complex interconnected system such as the ECS, a large num-
ber of sensors are available for data collection. For applications
considered in this study, more than 100 ECS parameters are
recorded. Second, due to the complexity of the system, it is
often possible that the sensors that carry the most pertinent
information about the heat exchanger fouling may be located
away from the close vicinity of the heat exchanger. Therefore,
to address both problems, optimal sensor selection and data
reduction are essential for efficient fault diagnosis, which is
often infeasible by means of visual inspection only. Third,
the sensor outputs are stochastic in nature and are susceptible
to various sources of uncertainties that arise from variations
in operational parameters such as occupant count, day type,
and other factors such as mechanical vibrations, sensor biases,
and measurement noise. Therefore, it is important to include
uncertainties in the data analysis procedure for making robust
and accurate classification decisions. Furthermore, it is desired
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to fuse the information derived from selected sensors for
improved diagnosis accuracy and robustness to sensor fail-
ures. The paper focuses on the above issues while primarily
addressing the challenges of optimal sensor selection.

Recent literature has developed several feature selection
algorithms that are categorized into two main types based
on their evaluation criteria. The first in this category are the
Wrapper Algorithms that depend on the evaluation of the
Correct Classification Rate (CCR)1 for each feature using a
specified classifier [5]–[7]. Wrapper algorithms guarantee a
high CCR but are computationally expensive if the number
of features is large because they rely on the cross-validation
algorithm to calculate the CCR. Besides that, the wrapper
algorithms cannot be generalized to any classifier. The second
type are the Filter Algorithms that evaluate the performance of
each feature based on an evaluation function. Recently, many
filter algorithms have been developed using the concepts of
information theory [8], [9]. Filter algorithms do not depend
on the classifier, are computationally less expensive, and may
perform as good as the wrapper algorithms [6].

In addition, there exist the Embedded Algorithms that take
advantage of both the wrapper and the filter algorithms. The
embedded algorithms use a filter to select a candidate list
of sensors and then apply a wrapper on this list to rank
the optimal set of sensors [9]. Embedded algorithms are less
expensive than wrappers and more accurate than filters; yet
they are pertinent to the specified classifier [10]. Several search
methods have been suggested for the above algorithms, such
as the forward and backward search [8], [9]. Dash and Liu [11]
compared different such search methods.

This paper utilizes the embedded algorithm with the
minimum Redundancy Maximum Relevance (mRMR) crite-
rion [9] as a filter, and applies it to the sensor selection problem
in the ECS to find a candidate list. Subsequently, the paper
presents a modified embedded algorithm, called the Unsuper-
vised Embedded Algorithm for ranking the candidate list, that
relies on the K -means clustering method instead of depending
on a classifier. This method has low computational complexity,
faster execution, and it does not depend on a specific classifier.
Once the optimal set of sensors is selected, the paper uses
different machine learning tools for data analysis and fusion
to make classification decisions.

This paper uses an experimentally validated high fidelity
Simulink model of the ECS provided by an industry partner
to generate sensor data for nominal and different fouling
conditions of the heat exchanger while considering various
sources of uncertainties in the system. This data is then used
for feature extraction using tools such as the Gaussian Mixture
Models (GMM) and the Principal Component Analysis (PCA).
The extracted features are then classified using the k-Nearest
Neighbors (k-NN) classifier. The main contributions are below:

• Optimal sensor selection for fouling diagnosis using an
existing embedded algorithm that uses the mRMR criteria
as a filter and a classifier (k-NN) for ranking.

• Optimal sensor selection for fouling diagnosis using a

1CCR is the ratio of correctly classified samples to the total number of
testing samples.

novel Unsupervised Embedded Algorithm, that uses the
mRMR criteria as a filter and the K -means clustering
method for ranking.

• Application of the Maximum Entropy Principle for data
partitioning to compute probability distributions and to
estimate the mutual information in the mRMR criteria.

• Application of different machine learning tools for
classification of the heat exchanger fouling severity.

• Validation of the above methods on the data generated
from a high fidelity Simulink model of the ECS.

The paper is organized into seven sections and two
appendices. Section II presents the relevant background infor-
mation while Section III describes the ECS system and the data
generation process. Sections IV and V describe the optimal
sensor selection methodology and the data analysis method for
fouling diagnosis, respectively. Finally, results are discussed
in Section VI and the paper is concluded in Section VII
with recommendations for future work. Appendices A and B
describe the maximum entropy distribution and the calculation
of mutual information, respectively.

II. LITERATURE REVIEW

Several techniques have been proposed in recent literature
for fault detection, diagnosis and prognosis (FDDP) of air-
conditioning systems, in particular, Heating, Ventilating and
Air Conditioning (HVAC) systems [12]–[14]. Katipamula and
Brambley introduced a two-part survey of FDDP of HVAC
systems [15], [16]. Buswell and Wright [17] accounted for
uncertainties in model-based approaches to minimize false
alarms in fault diagnosis of HVAC systems. Fault diagnosis
of Air Handling Units (AHU) was presented in [18]–[20].
Pakanen and Sundquist [21] developed an Online Diagnostic
Test (ODT) for fault detection of Air Handling Units (AHU).
Qin and Wang [22] performed a site survey on hybrid fault
detection and isolation methods for Variable Air Volume (VAV)
air conditioning systems. Rossi and Braun [23] designed a
classifier that uses temperature and humidity measurements for
fault diagnosis of the Vapor Compression Air Conditioners.
Zhao et al. [24] utilized exponentially-weighted moving
average control charts and support vector regression for fault
detection and isolation in centrifugal chillers. Najjar et al. [25]
developed a tool for data visualization, reduction, clustering,
and classification of the actual data obtained from flight
test reports of the Liquid Cooling System (LCS) in aircrafts.
Shang and Liu [26] used the Unscented Kalman Filter (UKF)
to diagnose sensor and actuator faults in the Bleed Air
Temperature Control System. A model-based approach for
fault isolation in Aircraft Gas Turbine Engines was presented
by Gupta et al. [27] and Sarkar et. al [28]. Isermann [29]
provided a review of model-based fault detection and
diagnosis methods.

Heat exchanger fouling diagnosis has become a critical
research issue in recent years. Najjar et al. [2] presented the
fouling severity diagnosis of the Plate Fin Heat Exchanger
using the principal component analysis (PCA) and the
k-nearest neighbor classification (k-NN). Kaneko et al. [30]
introduced a statistical approach to construct predictive
models for thermal resistance based on operating conditions.
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TABLE I

LIST OF CRITICAL SENSORS IN THE ECS

Riverol and Napolitano [31] used Artificial Neural
Networks (ANN) to estimate the heat exchanger fouling.
Garcia [32] used Neural Networks and rule based techniques
to improve heat exchanger monitoring. Adili at al. [33] used
genetic algorithms to estimate the thermophysical properties
of fouling.

Sensor selection has also gained recent attention by a
diverse research community. Han et al. [34] studied feature
selection problem for chillers. Namburu et al. [35] used
genetic algorithm for sensor selection and applied SVM,
PCA, and Partial Least Squares (PLS) for fault classification
in HVAC systems. Optimal sensor selection for discrete-event
systems with partial observations was performed by Jiang and
Kumar et al. [36]. Gupta et al. [37] discussed stochastic sensor
selection with application to scheduling and sensor coverage.
Joshi and Boyd [38] used convex optimization to perform
sensor selection. Hero and Cochran [39] provided a review
of the methods and applications of sensors management.
Xu et al. [40] used sensor configuration, usage and reliability
costs for sensor selection for PHM of aircraft engines.
Shen et al. [41] considered the problem of multistage
look-ahead sensor selection for nonlinear dynamic systems.

III. SYSTEM DESCRIPTION

The Environmental Control System (ECS) is an air con-
ditioning system that regulates temperature, pressure and
humidity of the cabin air. In order to meet the health
and comfort requirements of the passengers, the ECS sup-
plies air to the cabin at moderate temperatures and pres-
sures [1]. Figure 1 shows a simplified system diagram of the
main ECS components, namely: i) primary heat exchanger,
ii) secondary heat exchanger, iii) air-cycle machine (ACM),
iv) condenser, and v) water extractor. The ACM in turn
consists of a compressor and two turbines: a) first stage
turbine and b) second stage turbine. The compressor and the
turbines rotate on the same shaft [1], [42]–[44]. In addition,
various sensing devices such as temperature and pressure
sensors [1] are mounted at different locations of the ECS.
Table I shows a list of critical sensors, as also shown in Fig. 1.

The primary heat exchanger is supplied with hot bleed air
through two ducts, namely, the primary bleed air duct and
the secondary bleed air duct, where air flow in each duct is
controlled by a valve (not shown in Fig. 1). These ducts are
then merged together to drive the bleed air to the primary

Fig. 2. An illustration of the plate fin heat exchanger.

heat exchanger. As shown in Fig. 1, hot bleed air is cooled in
the primary heat exchanger, using ambient ram air as a sink,
to a temperature below the auto-ignition temperature of fuel
as a safety measure in case of a fuel leak. Air that comes
out of the primary heat exchanger flows into the compressor
section of the ACM where it gets compressed and thus heated.
Air then flows out of the compressor into the secondary heat
exchanger where it is cooled again using ram air as the sink.
Air then flows through the hot side of the condenser heat
exchanger where moisture is condensed out of the air-flow and
collected by the water extractor. Air then flows into the first
stage turbine where it gets expanded and cooled. Cold air out
of the turbine flows through the cold side of the condenser heat
exchanger into the second stage turbine where it gets further
expanded and cooled providing the air at the desired cabin
supply temperature and pressure [42].

A. Primary and Secondary Heat Exchangers

The heat exchangers used in the ECS under consideration
are the cross-flow plate fin heat exchangers that are built from
light weight plates and fins stacked over each other, as shown
in Fig. 2. By definition, the direction through which the hot-air
flows is called the hot-side while the direction through which
the ram air flows is called the cold-side of the heat exchanger.
The fins are placed alternatively in parallel to the hot air flow
and the cold air flow, hence the name cross-flow plate fin heat
exchanger. Plate fin heat exchangers are desirable for their
compact sizes, high efficiency, and light weight.

The function of the heat exchanger is to transfer heat from
the hot air to the ram air. The temperature can be set to the
desired value by controlling the flow of the ram air in the cold-
side of the heat exchanger. Debris accumulates on the fins of
the heat exchangers due to several factors including chemical
reactions, corrosion, biological multiplications and freezing.
This phenomenon is known as fouling and it obstructs the
ram air flow. Fouling lowers the heat efficiency of the heat
exchanger because the deposited material has low thermal con-
ductivity and hinders the transfer of heat [26], [33]. A detailed
description of fouling substances and cleaning methods can be
found in [26] and [45]. In this regard, this paper focuses on
the fouling diagnosis of the secondary heat exchanger.

The heat transfer rate Q̇ (Watts) through the heat
exchanger [46] is given by Eq. (1) as follows

Q̇ = κ · Ah · (Tavg,h − Tm) = κ · Ac · (Tm − Tavg,c) (1)
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Fig. 3. Normalized flow vs secondary heat exchanger impedance.

where κ is the overall heat transfer coefficient (W/(m2 K )),
Tm is the metal temperature (K ), and Tavg,x and Ax are
the average air temperature (K ) and the total heat transfer
area (m2) at the x-side, respectively. The subscript x is either
h for the hot-side or c for the cold-side. The total heat transfer
areas of the hot and cold sides are calculated as follows

Ax = Wh Wc Nx [1 + 2nx(lx − εx )] (2)

where Wh , Wc, lx , and εx are the fin dimensions (m) as shown
in Fig. 2, and Nx and nx are the number of fin layers and fin
frequency per unit length at the x-side, respectively [47], [48].

The heat transfer is also calculated as a function of the input
and the output temperatures of the heat exchanger, as follows

Q̇ = ṁhcp,h(Ti,h − To,h) = ṁccp,c(To,c − Ti,c) (3)

where ṁx , cp,x , and Ti,x and To,x are the mass flow
rate (kg/s), specific heat (J/(kgK )), and the input and output
temperatures of the x-side, respectively [46].

The pressure drop between the input and the output pres-
sures at the cold-side of the heat exchanger is modeled as

�P = Pin,c − Pout,c

= 1

β
zcṁ2

c (4)

where Pin,c and Pout,c are the input and the output pres-
sures (k Pa) for the cold-side, β is a dimensionless correction
factor and zc is the flow impedance (k Pa · s2/kg2) which
is varied in the simulation to represent different fouling
conditions. The plot of the flow vs the flow impedance is
shown in Fig. 3. A change in zc affects ṁc and thus affects
the heat transfer and the output temperatures of hot and cold
air streams as computed using Eq. (1)-(3). This also affects
the sensor readings of all other sensors in the ECS.

B. Data Generation Process

This paper utilizes an experimentally validated high-fidelity
Simulink model of the ECS provided by an industry partner.
The model is used to generate dynamic data for various
sensor locations around the ECS system for fouling diagnosis.
It is important to note that the model represents the ECS
performance for a specific aircraft and has been validated to
match experimental results from lab testing and flight data for

TABLE II

DAY TYPES

TABLE III

PASSENGER LOAD CATEGORIES

TABLE IV

DEFINITION OF FOULING CLASSES

this specific ECS. For this paper, the model is exercised to gen-
erate time series of sensor data for various ground operating
conditions (e.g., ambient temperature, occupant count, etc.).
Ground operating conditions are chosen because typically
more debris exists in the aircraft vicinity while on the ground
as opposed to in-flight operation. Data generated for this study
includes a large number (> 100) of sensor outputs.

Figure 4 shows the stochastic time series data plots of
three critical sensors under various uncertainties for different
day types. The structure of the data is explained below.
Let us denote the sensor suite by a set S = {s1, . . . sN },
where N is the total number of sensors. For each sensor si ,
the time series data are collected for 600 seconds at the
sampling rate of 1 sample/sec, thus generating a data sequence
zi = [zi (1), . . . zi (600)], ∀i = 1, . . . N . The system
reaches steady state after 300 seconds, thus the data from
301 to 600 seconds is used for analysis; however this interval
could be reduced for higher sampling rates.

It is to be noted that the system behavior and the sensor
data are affected by several input parameters, which affect the
accuracy of fouling diagnosis. This paper considers variations
in two main input parameters: the ambient temperature for
different day types and the load corresponding to different
occupant counts on the aircraft. Besides the heat exchanger
fouling itself results in variations in sensor data. Thus the
objective is to capture the effects of fouling under different
input conditions. Specifically, the data is generated by varying
the aforementioned parameters as described below.

• Ambient Temperature (TA): As expected, the ambient
temperature is the most critical external parameter that affects
sensor readings. The effect of ambient temperature could
be misinterpreted and could lead to false diagnosis of heat
exchanger fouling. Thus, to incorporate the effect of ambient
temperature, sensor data is categorized into five different day
types: i) extremely cold, ii) cold, iii) medium, iv) hot and
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Fig. 4. Stochastic time series data of three critical sensors for five different day types.

v) extremely hot day types. The temperature ranges for each
day type are shown in Table II. Each day type is further
partitioned into eight uniformly spaced temperature values.

• Occupant Count (OCC): The occupant count also affects
ECS sensor readings due to passengers adding heat load that

the ECS reacts to in order to maintain the desired cabin
conditions. The number of occupants is grouped into four
categories: i) Low Load, ii) Medium Load, iii) Heavy Load,
and iv) Very Heavy Load based on the percentage occupancy
in the cabin. Table III shows these four load categories. Since
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OCC has relatively less influence on the sensor readings, only
the middle point of each category is used for data generation.

• Heat Exchanger Fouling (zc): Fouling of the secondary
heat exchanger is modeled as an increase in the ram air-flow
impedance (zc) on the cold side of the heat exchanger.
When the flow impedance is increased, the air-flow decreases
simulating blockage due to heat exchanger fouling. This
lowers the effectiveness of the heat exchanger. For this paper
four fouling classes have been defined based on the flow
through the cold-side of the secondary heat exchanger as
follows: i) Green Class (c0)- i.e., 80-100 % flow, ii) Yellow
Class (c1)- i.e., 60-80 % flow, iii) Orange Class (c2)- i.e.,
40-60 % flow, and iv) Red Class (c3)- i.e., 0-40 % flow.
The reason to introduce Yellow and Orange classes is to
avoid direct confusion between the Green and Red classes.
The model is run for different values of flow impedance
and the resulting flow through the heat exchanger is observed.
The plot in Fig. 3 is used to determine the range of impedance
values for each of the above classes that are defined based on
the flow. Table IV shows the impedance intervals associated
with each class. Each class is further partitioned into eight
uniformly spaced flow values for data generation.

Thus, for each day type stochastic time series data are
generated for various combinations of the above parameters
to represent each fouling class. The model is run for different
combinations of the values of ambient temperature (8) (within
each day type), occupant counts (4), and impedance values (8)
(within each fouling class), resulting in a set consisting of
a total number of 8 × 4 × 8 = 256 runs of time series
data. Furthermore, for each day type, similar data sets are
generated for all the fouling classes, thus leading to a total
of 4 × 256 = 1024 runs of time series data. Subsequently,
the above data sets are generated for all five day types. Let
� = {γ1, . . . γ1024} denote the set of parametric combinations
and let t ∈ T = {1, . . . L = 600} denote the set of discrete
time indices. Then, for each day type the entire data for each
sensor si ∈ S is arranged in a |�| × L matrix Zsi , where
Zsi (γ, t) denotes the sensor reading at time t for parametric
combination γ . Thus, for any given s = si and γ = γ j ,
Zsi is a vector zi (γ j , •) = [zi (γ j , 1), zi (γ j , 2), . . . zi (γ j , L)],
which is the time series data for sensor si for input condition
γ j ∈ �. Figure 4 shows the stochastic time series data
plots of three critical sensors for each day type. For the
purpose of data analysis, the fluctuations in OCC and the
variations of impedance values within each class are consid-
ered as uncertainties. Other sources of uncertainties such as
measurement noise, mechanical vibrations, and fluctuations in
valve positions have been considered by adding white gaussian
noise with 25 dB SNR to the data. The variations in ambient
pressure have not been considered in this paper.

C. Heat Exchanger Fouling Diagnosis Architecture

Figure 5 shows the Heat exchanger fouling diagnosis archi-
tecture that consists of a training and a testing phase. The
training phase consists of generating stochastic data for each
sensor in the ECS (total 109 sensors) as described above. This
sensor data is labeled with the fouling class information and is

used for optimal sensor selection for each day type separately,
as described in Section IV. From the data of optimal sensors,
some useful features are extracted using PCA and GMM
methods and classifiers (k-NN) are trained to identify the
fouling classes, as described in Section V.

In the testing phase, an unlabeled time series data is gen-
erated for an unknown parametric condition γ ∈ � where the
fouling severity is also considered as unknown. Subsequently,
the optimal sensors identified in training phase are used for
feature extraction and classification using trained classifiers.
To further improve the classification accuracy, the results of
the top three optimal sensors are fused using the majority vote.

IV. OPTIMAL SENSOR SELECTION METHODOLOGY

Since a large number of sensors are available in the ECS
mounted at different locations, the underlying processes of
data generation, storage, and analysis become cumbersome.
Therefore, an optimal sensor selection methodology is needed
to rank the most relevant sensors in terms of the best classifi-
cation performance for heat exchanger fouling diagnosis. This
is formally stated in the following problem statement.

Optimal Sensor Selection Problem: Given the sensor set
S = {s1, . . . sN }, with N sensors, and the class set C =
{c1 . . . cM }, with M classes, the optimal sensor selection
problem is to select a set U� ⊆ S, where |U�|=n, n < N,
that consists of sensors with maximum classification accuracy
and are ranked accordingly in decreasing order.

As discussed in the introduction, two commonly used sensor
selection methods are: i) the wrapper method and ii) the filter
method. Since the wrapper algorithms rank the sensors based
on their correct classification rate (CCR), a feature extractor
and a classifier have to be designed, trained, and applied to all
sensors in order to compute their CCRs, thus making the whole
process computationally expensive. Furthermore, the wrapper
algorithms cannot be generalized to any classifier [5]–[7].
On the other hand, the filter algorithms evaluate the per-
formance of each sensor based on an information theoretic
measure [8], [9]. Filter algorithms are computationally less
expensive and do not depend on the choice of a classifier, but
they may not perform as good as the wrapper algorithms [6].

To circumvent this difficulty, the embedded algorithms take
advantage of both the wrapper and the filter algorithms by
using a filter to select a candidate list of sensors and then
applying a wrapper on this list to rank and select the optimal
set of sensors [9]. Embedded algorithms are less expensive
than wrappers and more accurate than filters; yet they are
pertinent to the specified classifier [10]. In this regard, this
section presents a detailed description of the optimal sensor
selection methodology based on the embedded algorithm.
In addition, a novel algorithm for sensor selection is presented,
called the unsupervised embedded algorithm, that relies on the
K -means clustering approach. This method has the advantage
that it does not depend on the choice of a classifier and enables
faster execution with very low computational complexity.

Both the embedded and the unsupervised embedded algo-
rithms are based on the minimum Redundancy Maximum
Relevance (mRMR) [9] criteria for the filter algorithm as a
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Fig. 5. Overall heat exchanger fouling diagnosis methodology with training and testing phases for each day type 	 = 1 . . . 5.

precursor step before applying the wrapper. The filter step
facilitates fast execution of the first round of data reduction
and produces a candidate list of top ranked sensors. Before
describing the optimal sensor selection techniques, some use-
ful information-theoretic quantities are defined below.

A. Information-Theoretic Measures

Definition 1 (Entropy): Entropy H (X) is defined as a
measure of uncertainty in a random variable X such that

H (X) = −
r∑

i=1

pi ln pi (5)

where X is a random variable whose outcomes belong to
the set X = {x1, . . . xr } with the associated probability
distribution defined as P(X = xi ) = pi for i = 1, . . . r .

According to Shannon [49], the entropy H (X) qualifies to
be a measure of uncertainty because it satisfies the following
three conditions:

• H (X) is a continuous function of pi .
• If the random variable X is uniformly distributed (i.e.,

pi = 1
r , ∀ i = 1, . . . r ), then H (X) is a monotonically

increasing function of r .
• If an event X = xi is split into two posterior sub-events,

then the original entropy can be expressed as a weighted
sum of the entropies of the sub-events.

The higher the entropy is, the higher is the uncertainty in
the random variable. On the other hand, the entropy reaches
its lowest value, H (X) = 0, when P(X) is a delta distribution.

Suppose now that we have two random variables: X
defined as above, and Y whose outcomes belong to the

set Y = {y1, . . . yr } with probabilities P(Y = y j ) = q j for
all j = 1, . . . r . Furthermore, suppose that the joint probability
distribution is defined as pi, j = P(X = xi , Y = y j ) for all
i, j = 1, . . . r . Then the joint and conditional entropies are
defined as follows:

H (X, Y ) = −
r∑

i=1

r∑

j=1

pi, j ln pi, j (6)

H (X |Y ) = −
r∑

i=1

r∑

j=1

pi, j ln p(X = xi |Y = y j )

= H (X, Y ) − H (Y ). (7)

Definition 2 (Mutual Information): The mutual information
between two random variables X and Y is defined as

I (X, Y ) = H (X) − H (X |Y )

= H (X) + H (Y ) − H (X, Y ) (8)
The subtraction of H (X |Y ) from H (X) represents the

information gained about the random variable X given the
information about the random variable Y [8]. The next section
presents a partitioning approach for transformation of the
continuous data to the symbolic domain for computation of the
information-theoretic quantities as needed in the filter method.

B. Data Partitioning for Symbol Sequence Generation

Consider the data matrix Zsi of size |�|×L for any particu-
lar sensor si , i = 1, . . . N , generated under different parametric
conditions as described in Section III-B. The encoding of
the underlying dynamics of this sensor data is achieved by
partitioning [50] of the sensor observation space using an
appropriate partitioning method. Let 
i ⊂ R be the compact
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(i.e., closed and bounded) region within which the observed
sensor data Zsi is circumscribed. Let � be the symbol alphabet
that labels the partition segments such that |�| = r , where
2 ≤ r < ∞. Then, the symbolic encoding of 
i is accom-
plished by introducing a partition {ϕ1

i , · · · , ϕr
i } consisting of

|�| mutually exclusive (i.e., ϕ
j
i ∩ ϕk

i = ∅,∀ j 
= k), and
exhaustive (i.e.,

⋃r
j=1 ϕ

j
i = 
i ) cells. Each cell is encoded

with a symbol from the alphabet �. For each input condition,
as the system evolves in time, the state trajectory (i.e., sensor
readings) fall within different cells of the partition, accordingly
the corresponding symbol is assigned to each point of the
trajectory. Let zi (γ, •) ≡ [zi (γ, 1), . . . zi (γ, L)] be a row of
Zsi for a given γ ∈ �. Then, for each sensor si ∈ S and for
each γ ∈ �, the time series data zi (γ, •) are transformed into
a symbol sequence [51] σ i (γ, •) ≡ [σi (γ, 1), . . . σi (γ, L)] as

[zi (γ, 1), . . . zi (γ, L)] → [σi (γ, 1), . . . σi (γ, L)] (9)

where L is the data length and σi (γ, t) ∈ �, ∀t = 1, . . . L.
Note: As mentioned earlier, this paper makes uses of only the
steady state part of the data for fouling diagnosis analysis.

To do the above symbolization, this paper uses the maximum
entropy principle [52] based partitioning to create a partition
of the observed sensor data space, which is finer in the
information dense regions and coarser in the low information
regions as described below.

Definition 3 (Maximum Entropy Principle, Jaynes [52]):
The maximum entropy principle states that the probability
distribution that unbiasedly estimates the distribution of a
random variable X under a given set of constraints is the
distribution that maximizes the entropy H (X).

Consider the following optimization problem:

P∗ =
⎡
⎢⎣

p1∗
...

pr∗

⎤
⎥⎦ = arg max

P
H (X); H (X) = −

r∑

j=1

p j ln p j

subject to:
r∑

j=1

p j = 1 (10)

The entropy is maximized for the uniform distribution (i.e.,
p j∗ = 1

r ,∀ j = 1, . . . r ). For proof please see Appendix A.
The Maximum Entropy Principle generates the unbiased

distribution for each of the sensor readings. Considering the
data matrix Zsi = [zi (γ, 1), . . . zi (γ, L)]γ=γ1,...γ|�| for sen-
sor i , the goal is to find the partition that results in maximum
entropy distribution (i.e., the uniform distribution). The parti-
tion cells are defined by the partitioning levels {L0

i . . . Lr
i },

such that ϕ
j
i = [L j−1

i , L j
i )∀ j = 1 . . . r . To compute the

maximum entropy partition for the sensor data Zsi , the first
step is to calculate the number of samples in each cell (i.e.,
η∗ = η j∗ = floor(|�|×L/r), ∀ j = 1, . . . r ). The second step is
to sort the entire data into a vector yi = [yi (1), . . . yi(|�|×L)],
such that

yi (	) ∈ Zsi ∀	 = 1, . . . |�| × L (11)

& yi (1) ≤ yi (2) . . . ≤ yi (|�| × L) (12)

Fig. 6. An illustration of the maximum entropy partitioning.

Then the partitioning levels are defined as follows:

L0
i = yi (1) (13)

Lh
i = yi (h · η∗) ∀h = 1, . . . r − 1, and (14)

Lr
i = yi (|�| × L) (15)

The algorithm counts the samples from the bottom and defines
the partitioning levels at the multiples of η∗ while setting the
first and the last levels at the min and the max of the original
data. This procedure generates a partition that is finer in
the regions of high data density and coarser in the regions
of low data density, as shown by an illustrative example
in Fig. 6. Subsequently, a unique symbol from the alphabet �
is assigned to all the data points in each cell of the partitioning.
This process transforms each data sequence in Zsi into a
symbol sequence, as shown in Eq. (9).

In the above manner, the maximum entropy partitioning
is constructed for all sensors and the corresponding data
are transformed into symbol sequences. Subsequently, the
candidate list of sensors is selected and ranked according to
the filter criteria as described next.

C. Minimum Redundancy Maximum Relevance (mRMR)

Based on mutual information, the mRMR criterion [9]
evaluates and ranks the sensors that best describe the classes
and simultaneously avoid sensors that provide redundant infor-
mation by means of the following two conditions: i) Maximum
Relevance and ii) Minimum Redundancy, as described below.

Let us define the random variables C and Sj , j = 1, . . . N ,
as follows:

• C: A random variable whose sample space is the set of
all symbol sequences and its outcome belongs to the class
set C = {c1, . . . cM }, and

• Sj : A random variable whose sample space is the sym-
bolized data matrix σ s j for sensor s j and its outcome
belongs to �.

Then the Maximum Relevance criteria is defined as follows.
Definition 4 (Max Relevance): The Maximum Relevance

criterion aims to find the set U�
1 ⊆ S, where |U�

1 | = n, n < N,
that has the maximum average mutual information between its



4874 IEEE SENSORS JOURNAL, VOL. 16, NO. 12, JUNE 15, 2016

Algorithm 1 The Forward Selection Search Algorithm

Result: An optimal set of sensors U� = {u1, . . . un}.
Initialization: S = {s1 . . . sN }, U� = ∅, j = 1
while j ≤ n do

• Step 1: Find the sensor u j ∈ S that maximizes the
criterion in Eq. (18) for a single sensor

• Step 2: Update S → S − u j

• Step 3: Update U� → U� ∪ u j , j → j + 1
end

sensors and the random variable C, such that

U�
1 = arg max

U1⊆S,|U1|=n
ϒ(U1, C);

ϒ(U1, C) = 1

n

∑

s j ∈U1

I (S j , C) (16)

The Maximum-Relevance criterion does not account for the
information redundancy between sensors. Thus, the Minimum
Redundancy criteria is defined as follows.

Definition 5 (Min Redundancy): The Minimum Redundancy
criterion aims to find the set U�

2 ⊆ S, where |U�
2 | = n, n < N,

that has the minimum average mutual information between its
sensor pairs, such that

U�
2 = arg min

U2⊆S,|U2|=n
�(U2),

�(U2) = 1

n2

∑

si ,s j ∈U2

I (Si , Sj ) (17)

The minimum Redundancy Maximum Relevance (mRMR)
criterion combines the above two criterion as follows.

Definition 6 (Minimum Redundancy Maximum Relevance):
The minimum Redundancy Maximum Relevance (mRMR) cri-
terion aims to find the set U� ⊆ S, where |U�| = n, n < N,
to optimize ϒ and � simultaneously, such that

U� = arg max
U⊆S,|U |=n

�(U, C),

�(U, C) = ϒ(U, C) − �(U) (18)
The evaluation of the mRMR criteria requires: a) computa-

tion of I (Sj , C) and I (Si , Sj ), ∀i, j = 1, . . . N , and b) finding
the solution of the optimization function in Eq. (18). The
mutual information quantities are computed from the symbol
sequences of each sensor data, as described in Appendix B.
The optimization problem based on the mRMR criterion is a
combinatorial problem, which can be solved using the Forward
Selection search method [9]. Note: this information-theoretic
method of sensor selection is more efficient and several orders
of magnitude faster as compared to the full wrapper method
that requires computation of the CCRs for all sensors.

Forward Selection Search: The forward selection search is
a greedy search algorithm that is used to find a (sub)optimal
solution of the mRMR optimization problem in Eq. (18). To be
specific, the algorithm starts with an empty set of sensors, then
keep adding sensors that maximize the mRMR criteria until
the desired number of n sensors is obtained. The details [53]
of the algorithm are shown in Algorithm 1.

D. Embedded Algorithm

As mentioned earlier, an embedded wrapper and filter
algorithm is used to tradeoff between the low complexity of
filter algorithms and the accuracy of wrapper algorithms in
the optimal sensor set selection procedure. In other words,
an embedded algorithm uses a filter algorithm first to select a
candidate list (CL) of n sensors; subsequently, a wrapper algo-
rithm (which uses a specific classifier) is deployed to select or
rank the optimal set of sensors [9] from the candidate list.
The embedded algorithms also have several deficiencies
including being specific to a certain classifier and requiring
tuning the classifier beforehand for each sensor separately.
To circumvent these disadvantages, the paper proposes the
unsupervised embedded algorithm as described next.

E. Unsupervised Embedded Algorithm

The unsupervised embedded algorithm also relies on a filter
algorithm (e.g., the mRMR) to select the candidate list (CL)
of n sensors. Then the data Zsi corresponding to each sensor
si ∈ CL, which consists of the data of all classes, are clustered
into M clusters using the K -means clustering algorithm [54],
where M is equal to the number of fouling classes (for this
paper M = 4). Lets call these clusters as {O1, . . .OM }.
Lets now define a random variable � j that is drawn on the
cluster O j and whose outcome belongs to the set of classes
C = {c1, . . . cM }. Subsequently, the entropy H (� j),
j = 1, . . . M , of the class distribution within each cluster is
computed using Eq. (5). Then, the weighted entropy for all
clusters for a sensor si is calculated as

Hsi =
M∑

j=1

|O j |
M∑

j ′=1
|O j ′ |

· H (� j ), ∀si ∈ C L . (19)

Finally, the sensors are ranked according to their entropies
such that the sensor that has the lowest entropy is ranked the
highest and so on. In this fashion the candidate list is re-ranked
and a possible list of top ranked sensors is selected for further
analysis. This process ranks the sensors in the order such that
the sensors that have the least uncertainty between classes in
their data clusters are ranked the highest, thus facilitating a
better classification decision.

V. DATA ANALYSIS FOR FOULING DIAGNOSIS

Once an optimal sensor set is obtained, different machine
learning methods are applied for analysis of sensor data
for fouling diagnosis. These methods consists of the feature
extraction and the classification steps as described below.

A. Feature Extraction

This paper explores two methods of feature extraction from
sensor data for heat exchanger fouling diagnosis; namely,
the Principal Component Analysis (PCA) and the Gaussian
Mixture Model (GMM) as described below.
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1) Principal Component Analysis (PCA): The Principal
Component Analysis (PCA) is a data reduction method.
Consider a data matrix X of dimension d × m, where
d > m > 0, whose columns are data vectors (e.g., sensor
data). The objective of PCA is to transform the data matrix X
into a matrix Y of size d × m′, where m′ < m. The columns
of Y hold the Score Vectors (also known as the Principal
Components). This transformation is accomplished using the
Karhunen-Loéve (KL) algorithm as summarized here. First,
the m × m covariance matrix CX of X is computed and
the corresponding eigenvalues are obtained and sorted in
descending order. Second, the eigenvectors associated with
the m′ largest eigenvalues are generated and arranged into an
m × m′ transformation matrix T . Finally, the scores of X are
computed using the following linear transformation

Y = X × T (20)

For implementation to the heat exchanger data, consider the
sensor data Zsi for a specific sensor si for a specific day type.
The nominal data corresponding to class c0 is extracted from
Zsi and averaged to get a time series data z̄0

i as follows:

z̄0
i = 1

256

∑

γ∈{γ1...γ256}
zi (γ, •) (21)

Thereafter, the steady state part of z̄0
i is partitioned into

m = 10 segments, each of length d = 30. These data
segments are organized to form a d ×m data matrix X0. Then,
following the steps of the K L algorithm above, the m × m′
transformation matrix T is obtained, where m′ = 2 and is
kept fixed. Subsequently, the scores (or principal components)
of any observation sequence zi are generated by reorganizing
the sequence into a d × m matrix X by breaking zi into m
segments of length d each. The scores of this sequence are
then computed using Eq. (20). These scores consist of m
points each of which are m′ = 2 dimensional. The scores
for all sequences in Zsi are plotted on the m′-dimensional
feature space. In the training phase these scores are labeled
with fouling class and are sent to the classifier for training,
while in the testing phase they are unlabeled and are sent to
the trained classifier for decision on the fouling class.

2) Gaussian Mixture Model (GMM): Consider sensor data
zi (γ, •) = [zi (γ, 1), . . . zi (γ, L)]. The Gaussian Mixture
Model (GMM) is a statistical model of zi (γ, •) represented
as a sum of R different Gaussian distributions as

P(zi (γ, •)|M) =
R∑

j=1

w j · Q(z; μ j , ρ j ) (22)

where M = {w1, . . . wR , μ1, . . . μR, ρ1, . . . ρR} is the set of
weights w j s, means μ j s and variances ρ j s, j = 1, . . . R, and z
is a random variable. The function Q(z, μ j , ρ j ) is a Gaussian
distribution given as

Q(z; μ j , ρ j ) = 1

(2π)1/2
√

ρ j
× e− 1

2 (z−μ j )′(ρ j )−1(z−μ j ) (23)

The parameters w j , μ j and ρ j ,∀ j = 1, . . . R, are estimated
from the data using the Expectation Maximization (EM)

algorithm [55]. Subsequently, M is used as a feature for
the classifier. For implementation to the heat exchanger data,
a GMM is constructed from sensor data with R = 2. For each
observation sequence zi (γ, •) in Zsi , the feature set Mi (γ ) is
computed as

Mi (γ ) = [w1
i , w

2
i , μ1

i , μ
2
i , ρ

1
i , ρ2

i ](γ ). (24)

B. Classification

Once the features are obtained as the principal components
or the parameter set of the GMM, they are processed by
a classifier to make a decision on the heat exchanger foul-
ing severity. This section describes the k-Nearest Neighbor
(k-NN) algorithm that is used as the classification technique.

k-Nearest Neighbor (k-NN): The k-Nearest Neighbor
(k-NN) classification algorithm is popular for its simplicity,
efficiency and low complexity. First, an odd value of k
is chosen, that represents the number of nearest neighbors
on the feature space. In the training phase, the optimal k
is selected that results in the highest Correct Classification
Rate (CCR) using the cross-validation algorithm for different
values of k = 1, 3, 5, . . . 21. In the testing phase, a new
feature point is classified using the majority rule among the
k-nearest neighbors as obtained from the training data. Thus
the predicted class ĉ ∈ C is obtained as follows:

ĉ = arg max
i=1...M

ni

k
(25)

where ni is the number of feature points corresponding to
the class ci ∈ C among the k nearest neighbors of the
testing point [2], [25]. The performance of the classifier
is evaluated using the random subsampling hold-out cross-
validation method. The results are summarized into a confu-
sion matrix [56], whose columns contain the predicted classes
while the rows contain the actual classes.

For implementation, the k-NN classifier is applied on the
feature space generated by PCA and GMM for each sensor in
the candidate list and each day type. For each observation
sequence zi (γ, •), the PCA based features (i.e., principal
components) are d = 30 dimensional vectors in m′ = 2
dimensional feature space while the GMM based features
(i.e. the parameter set of GMM) are 1 dimensional in the
6 dimensional feature space. Since the PCA based features are
vectors, the k-NN classifier produces d decisions one for each
point in the vector. Then, a single decision is obtained from
these decisions using the simple majority rule. For the cross-
validation method, 30 data sequences are hold-out from each
class and are used for testing while the remaining are used
for training. This process is repeated 50 times, where in each
run 30 data sequences are randomly selected from each class.
This generates a total of 1500 testing samples for each class.

C. Sensor Fusion

Sensor fusion is performed for further improvement in
the classification performance. Suppose for a given day
type the top three optimal sensors are {u∗

1, u∗
2, u∗

3}, where
u�

i ∈ U� ⊆ S,∀i = 1, 2, 3. Moreover, lets say that the classi-
fier has generated the following three decisions {ĉ1, ĉ2, ĉ3},
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TABLE V

DECREASINGLY SORTED CANDIDATE LIST AND OPTIMAL SENSOR SETS USING mRMR, UNSUPERVISED EMBEDDED,
EMBEDDED mRMR+PCA+k-NN AND EMBEDDED mRMR+GMM+k-NN ALGORITHMS

TABLE VI

CONFUSION MATRICES FOR THE OPTIMAL SENSORS WHEN USING PCA FOR FEATURE EXTRACTION AND k-NN FOR CLASSIFICATION

corresponding to the above three sensors, where ĉi ∈ C,
∀i = 1, 2, 3. Then, the fusion decision ĉF is obtained as
follows:

ĉF = arg max
ci ∈C

P(Cd = ci ) (26)

where Cd is a random variable drawn on the set {ĉ1, ĉ2, ĉ3}.

VI. RESULTS AND DISCUSSION

This section presents the results for optimal sensor selection
and the classification for Heat Exchanger fouling diagnosis.
As shown in the methodology in Fig. 5, the first step is
training of the classifiers. Therefore, sensor data is generated
using a Simulink model that has been experimentally validated
by our industry partner. For each sensor si ∈ S the data is
stored in a |�| × L matrix Zsi which includes the data for all
four fouling classes as described in Section III-B. The rows
of the matrix consist of various parametric combinations of
the ambient temperature (TA) within a specific day type,
the occupant count (OCC), and the impedance values (zc)
within each class, as shown in Tables II-IV. As described in
Section III-B, for each class there are 256 data sequences each
of length L = 600, thus resulting in a total of 4×256 = 1024
sequences for each day type. Similar data are generated for
each day type. To include the effect of other uncertainties
beyond the above parametric uncertainties, the data is
corrupted by 25d B Additive White Gaussian Noise (AWGN),

and the noisy data are plotted in Fig. 4. The noise is filtered
out using 5-levels wavelet denoising technique [57] using
6-taps Daubechies wavelet with soft-thresholding on the detail
coefficients of the wavelet. The thresholds are determined
using Stein Unbiased Risk Estimator (SURE). The paper uses
only the last 300 seconds of steady state data for analysis.

Subsequently, the data of all sensors for one day type
are taken and the mRMR technique is applied to find the
candidate list of top 10 sensors. To compute the information
theoretic quantities in the mRMR criterion, the sensor data
is transformed into symbol sequences using the Maximum
Entropy Partitioning as described in Section IV-B. The above
process is repeated for each day type. The resultant candidate
lists (CL) are shown in Table V.

Once the candidate list is generated for each day type using
the mRMR criteria, the unsupervised embedded algorithm
is applied on the candidate list, which includes a two-step
process: i) K -means clustering of each sensor data, ii) compu-
tation of weighted average cluster entropies and sensor ranking
as described in Section IV-E. The resultant sensor ranking is
presented in Table V. For comparison, the embedded algorithm
is used to rank the sensors which used two different wrappers:
i) PCA as the feature extractor and k-NN as the classifier, and
ii) GMM as the feature extractor and k-NN as the classifier.
As seen in Table V, the results of unsupervised embedded
algorithm improved the candidate list rankings which were
purely based on information-theoretic quantities, such that
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Fig. 7. Top three unsupervised embedded optimal sensors’ principal components 1 and 2 vs the ambient temperature for day types 1, 2 . . . 5.

the updated rankings are similar to the embedded wrapper
results. However, the unsupervised embedded algorithm does
not depend on the feature extraction and classification methods
and is computationally much more efficient.

Using the PCA procedure for feature extraction as described
in Section V-A1, a feature vector consisting of 30 feature
points are extracted from each data sequence in the data
matrix Zsi . Each feature point is composed of the elements
of the first and second principal components. These principal
components are computed from the eigenvectors whose

corresponding eigenvalues contain more than 90% of the
energy. Since ambient temperature can be measured and
known, it is used to augment the feature space as the third
axis where the other two axis are formed by the two principal
components. As a result, we have 30 feature points for each
data sequence plotted in a 3 − D feature space. This resulted
in excellent clustering of the classes as shown in Fig. 7.

Using the GMM procedure for feature extraction as
described in Section V-A2, the second order GMM was used
to extract a feature vector of size 1×6 from each data sequence
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TABLE VII

CONFUSION MATRICES FOR THE OPTIMAL SENSORS WHEN USING GMM FOR FEATURE EXTRACTION AND k-NN FOR CLASSIFICATION

TABLE VIII

CLASSIFICATION RESULTS FOR THE TOP THREE OPTIMAL SENSORS OBTAINED USING THE UNSUPERVISED EMBEDDED ALGORITHM

TABLE IX

COMPUTATION TIMES FOR THE SENSOR SELECTION ALGORITHMS

which is composed of the weights, means, and variances of the
2 mixtures as explicitly stated in Eq. (24). Similar to the PCA
procedure, the GMM feature space is also augmented with the
ambient temperature. Due to its high dimension, GMM feature
vectors are difficult to visualize; however, it leads to high CCR
in conjunction with k-NN classifier as discussed below.

The confusion matrices of the PCA + k-NN and the
GMM + k-NN methods are presented in Tables VI and VII,
respectively. An interesting observation on the confusion
matrices is that false-alarms and miss-detections mostly occur
between adjacent fouling classes. Table VIII presents the
CCR results which indicate that the performances of PCA
and GMM are comparable, with a slight lead for the GMM.

TABLE X

COMPUTATION TIMES FOR THE TESTING PHASE

Table VIII shows that not only do optimal sensors selected
using the unsupervised embedded algorithm lead to high
CCRs (above 85% in most of the cases), but also the majority
vote fusion of resultant sensors lead to superior results, above
94% for most of the day types. Besides that, testing the
PCA requires majority vote among the 30 feature vectors (as
described in Section V-A1) unlike the GMM; this makes the
GMM much faster to train and test. Nonetheless, training the
GMM requires the use of the Expectation Maximization (EM)
algorithm, which is more expensive than the KL algorithm.
The computation times on 32-bit MatLab running on a
3.10 GHz Intel(R) Core(TM) i5−2400 processor, 16 GB ram
and Windows 7 Operating System are shown in
Tables IX and X for training and testing phases, respectively.

VII. CONCLUSIONS AND FUTURE WORK

The paper presented a methodology for fouling diagnosis of
the Secondary Heat Exchanger in the Environmental Control
System of an aircraft that regulates temperature, pressure and
humidity of the cabin air as well as the air used to cool
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electronics onboard the aircraft. Since the ECS contains a large
number of sensors, an optimal sensor selection methodology is
presented to select the most useful sensors that provide the best
diagnosis results. The results of unsupervised embedded (UE)
algorithm for sensor selection are compared with embedded
wrapper algorithms. It is shown that the sensors ranked by UE
algorithm yield excellent classification results with significant
improvement in computational complexity. Subsequently, the
data of the top ranked sensors are analysed using the k-NN
classifier in combination with either PCA or GMM as feature
extractors and results are compared. The data is generated from
an experimentally validated high-fidelity Simulink model of
the ECS provided by our industry partner and included various
uncertainties generated by parametric fluctuations in ambient
temperature, occupant count, and flow impedance. Finally, the
majority vote algorithm is applied as a simple fusion technique
for further enhancement of the diagnosis results.

The following areas are envisioned for future research:

• Real-time implementation of the proposed heat exchanger
fouling diagnosis methodology on actual aircraft data

• Testing and validation of different sensor fusion methods
• Utilization of different machine learning tools for improv-

ing the classification performance
• Development of a similar fouling diagnosis methodology

for aircraft cruise operating conditions.

APPENDIX A
MAXIMUM ENTROPY DISTRIBUTION

Consider the optimization problem in Eq. (10). Using the
method of Lagrange multipliers, we define:

J = H (X) − (λ − 1)

⎛

⎝
r∑

j=1

p j − 1

⎞

⎠ (27)

where λ ≥ 0 is a real number. Taking the partial derivative
with respect to p j , ∀ j = 1, . . . r , and equating to zero, we get

∂J
∂p j

= − ln p j − 1 − λ + 1 = 0 (28)

Therefore we get:

p j∗ = e−λ (29)

Summing Eq. (29) for j = 1, . . . r , we get:

λ = ln r (30)

Using Eq. (30) into Eq. (29), we get the maximum entropy
distribution as

p j∗ = 1

r
∀ j = 1 . . . r (31)

which is the uniform distribution.

APPENDIX B
CALCULATION OF MUTUAL INFORMATION

This section describes the calculation of the mutual
information quantities I (Si , C) and I (Si , Sj ). Let the
symbol alphabet be equal to � = {α1 . . . αr } such that

αω ∈ �,ω ∈ {1, . . . r}. Let γ ∈ �, |�| = 1024 denote a
particular parametric combination for a simulation run. Let
σ i (γ, •)=[σi (γ, 1), . . . σi (γ, L)] denote the symbol sequence
for sensor si and simulation run γ , where σi (γ, t) ∈ �,
∀ t = 1, . . . L. Then, lets define a |�| × L matrix of all
symbol sequences generated from the sensor si , i = 1, . . . N ,
under different simulation runs as:

Gi = [σ i (γ, •)]γ=1,...|�| (32)

Lets now associate a label ai (γ ) to each row σ i (γ, •) of the
matrix Gi , such that ai (γ ) = m if and only if σ i (γ, •) belongs
to the class cm , m ∈ {1 . . . M}. Now, lets define the following:

• μi (α
ω): the number of occurrences of the event when

σi (γ, t) = αω in the matrix Gi .
• νi (α

ω, cm): the number of occurrences of the joint event
when σi (γ, t) = αω and ai (γ ) = m in the matrix Gi .

• χi, j (α
ω, αυ): the number of occurrences of the joint

events σi (γ, t) = αω and σ j (γ, t) = αυ .

Then the following entropies are calculated:

H (Si) = −
r∑

ω=1

μi (α
ω)

|�| · L
ln

μi (α
ω)

|�| · L
(33)

H (Si , C) = −
M∑

m=1

r∑

ω=1

νi (α
ω, cm)

|�| · L
ln

νi (α
ω, cm)

|�| · L
(34)

H (Si , Sj ) = −
r∑

ω=1

r∑

v=1

χi, j (α
ω, αv )

|�|2 · L
ln

χi, j (α
ω, αv )

|�|2 · L
(35)

The mutual information quantities required in Eq. (18) are
then calculated using Eq. (8).
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